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Abstract

Simplified technology and low costs have spurred the use of location-detection devices in mowving
objects. Usually, these devices will send the moving objects’ location information to a spatio-temporal
data stream management system, which will be then responsible for answering spatio-temporal queries
related to these moving objects. A large spectrum of research have been devoted to continuous spatio-
temporal query processing. However, we argue that several outstanding challenges have been either
addressed partially or not at all in the existing literature. In particular, in this paper, we focus on the
optimization of multi-predicate spatio-temporal queries on moving objects. We present several major
challenges related to the lack of spatio-temporal pipelined operators, and the impact of time, space,
and their combination on the query plan optimality under different circumstances of query and object
distributions. We show that building an adaptive query optimization framework is key in addressing
these challenges and coping with the dynamic nature of the environment we are evolving in.

1 Introduction

The cost of location-detection devices has substantially decreased in recent years leading to their wide-
spread use in different kinds of equipments. Not only we may find Global Positioning Systems (GPSs) in
airplanes, ships, and cars, but also some mobile telephones and PDAs are already equipped with location-
detection devices. This has spurred research in spatio-temporal query processing and optimization and
providing location-based services. Spatio-temporal data stream management systems (ST-DSMSs for
short), e.g., PLACE [19] and CAPE [26], have been designed to handle massive numbers of location-aware
moving objects. These systems are used to support location-aware services and applications allowing,
for example, people to avoid traffic jams, parents to ensure their kids are safe, to provide an enhanced
911 service [1], and travelers to easily know about nearby facilities while driving.
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ST-DSMSs receive their input as streams of location updates from the moving objects. These streams
are characterized by their high input rate. Usually they cannot be stored and need to be processed on
the fly to answer queries that are issued to the ST-DSMS. Two types of queries are handled by ST-
DSMSs: (1) snapshot spatio-temporal queries and (2) continuous spatio-temporal queries. A snapshot
query is evaluated only once when it is submitted. The query answer depends on the spatio-temporal
data collected by the ST-DSMS so far. Continuous queries are registered with the ST-DSMS. They are
repeatedly evaluated with the available location information and their answers are updated with the
arrival of new location updates from the moving objects.

Several algorithms were proposed to answer spatio-temporal queries on moving objects. All of these
approaches focus on queries consisting of a single predicate. This predicate can be a range predicate, a
k-nearest-neighbor (kNN) predicate, or any other spatio-temporal predicate. However, these approaches
do not specifically consider several interesting queries which can have more than one predicate. Here are
just few examples of such queries:

Example 1: Suppose that you are driving on a highway and you want to know where are the
nearest motels so that you can sleep for the night. Obviously, you do not want to go backward; You want
a motel that is down the road in front of you. In this case, you may be interested in issuing a continuous
query to monitor the nearest motels (a kNN predicate), ahead of your way (a range predicate).

Example 2: Suppose that we are interested in monitoring a city to see whether, at any time, there
is a region in which the number of suspects is larger than the number of police officers. This query
involves retrieving the police officers and the suspects in each regions (two range predicates), grouping
by each region to get the count of both groups, then performing a theta join to retrieve the regions with
more suspects than police officers. Notice that in this case both police officers and suspects may be
continuously moving.

These two example queries show the importance of having multiple predicate spatio-temporal queries.
An immediate challenge that arises is how to build a query evaluation plan to answer multiple predicate
spatio-temporal queries. The next challenge is whether this query evaluation plan is optimal or there
might be other plans that incur less system overhead. For example, suppose that we want to retrieve
the trucks that are passing inside a certain area. Depending on the selectivities of the range predicate
(inside a certain area) and the selection predicate (type=*“truck”) respectively, we might end up with
two different optimal query evaluation plans.

As we see, answering spatio-temporal queries poses several challenges related to the lack of spatio-
temporal pipelined operators, and the impact of time, space, and their combination on the query plan
optimality under different circumstances of query and object distributions. It is then crucial to build
a complete framework for query optimization in ST-DSMSs that will include: selectivity estimation for
evolving spatio-temporal data that takes into account their properties like periodicity and correlation,
cost estimation model for spatio-temporal queries based on the selectivity estimation, adaptive query
optimization model for continuous spatio-temporal queries, and extension of query optimization in ST-
DSMSs to cover multiple multi-predicate spatio-temporal queries.

The rest of this paper is organized as follows. Section 2 gives the related work on ST-DSMSs. In
Section 3, we highlight the challenges to query optimization in ST-DSMSs. We present our initial work
in addressing those challnges along with specific research issues in Section 4. We conclude in Section 5.



2 Related Work

Recent research on continuous spatio-temporal query processing can be categorized into two categories.
The first category assumes the existence of a materialization of the incoming data from the moving objects
into secondary storage. Examples of external storage index structures used for continuous spatio-temporal
query processing are TPR-tree-like [16, 27, 28, 31], R-tree-like [12, 14], simple grid [7, 20, 25, 33], and B-
tree-like [10] structures. The second category does not assume that the data is materialized. This category
evaluates the continuous spatio-temporal queries on spatio-temporal streams (e.g., see [17, 33, 35]). Such
streams consist of the location updates of the moving objects over time.

For the evaluation of continuous spatio-temporal queries, four approaches are investigated in the
literature: (1) Re-evaluation of invalidated queries. The query answer has an additional parameter
used to validate the query result. This parameter is either temporal (e.g., valid time [38]) or spatial
(e.g., a safe period [36], a valid region [7], or a safe region [9]). A query that is not within the validation
parameter must be resubmitted for reevaluation. (2) Caching the results. Previous query results are used
to prune the search space for subsequent queries. The results can be cached either on the server side
(e.g., [13]), or the client side (e.g., [29]) if the client has the required storage and computing capabilities.
(3) Pre-computing the query result when the trajectory of the query is known a priori. As long as the
query trajectory has not changed, we can identify the objects that will be part of the query answer
using computational geometry for stationary objects (e.g., [30]) or information about the velocity of the
moving objects (e.g., [13]). (4) Incrementally evaluating the query. Instead of reevaluating the query
and producing the whole query answer when it changes, the query executor outputs positive and negative
updates of the previously reported answer [20, 33]. A positive update refers to an object being added to
the query answer, whereas a negative update indicates an object being removed from the answer [20].

Several spatio-temporal queries were investigated in the literature. They can be categorized as follows.
(1) Single range queries on moving objects(e.g., [3, 18, 24]). They retrieve the moving objects that are
located within a given region. (2) Single kNN queries for moving data points and/or moving queries
(e.g., [2, 11, 17, 18, 21, 29, 33, 35]). They retrieve the k neighbors (k > 1) that are closest to a query
point. (3) Single Aggregate Nearest Neighbors queries (e.g., [15, 22, 23, 34]). ANN queries retrieve
the set of objects that have the minimum aggregate distance from a given set of query points. (4)
Single reverse nearest neighbor query (e.g., [2]). This query retrieve the moving objects whose nearest
neighbor is the query point. (5) Multiple single range queries (e.g., [20]. (6) Multiple single kNN queries
(e.g., [20, 21, 33]).

The above categorization shows that most of the existing research focused on either answering a single
query with one spatio-temporal predicate, or enabling shared execution for several queries, all of which
are of the same type and have a single predicate. In contrast, work in the optimization of multi-predicate
spatio-temporal queries on moving objects has received less attention and poses more challenges that
have not been addressed.

3 Outstanding Challenges

In this section, we present in more details the challenges raised in the optimization of spatio-temporal
queries in ST-DSMSs by the multi-predicate queries and changing selectivities of these different predi-
cates.
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Figure 1: Moving vehicles (T = truck, O = other) on the spatial space and the corresponding query
execution plan.

SELECT M.ID

FROM MovingObjects M
WHERE M.Type = "Truck"
INSIDE Area A

Table 1: Query Q

3.1 Lack of Spatio-temporal Pipelined Operators

As we have seen, most of the existing algorithms in the literature deal with answering single-predicate
spatio-temporal queries on moving objects and none of them is pipelined. In contrast, what we need is
to be able to compose a pipeline of query operators to answer multi-predicate spatio-temporal queries

In a nutshell, existing approaches work as follows: The input to the existing operators is a stream of
the location updates of the moving objects. The output of these operators are the moving objects satis-
fying the query. The query answer can be reported either periodically (or upon change) or progressively.
Periodic answers are the identifiers of all the objects forming the answer set. In the progressive case, the
answer set is reported progressively as a sequence of positive and negative updates. A positive update
indicates a new object being added to the answer set while a negative update indicates an object that is
being removed from the answer set. Since the input of the current operators is different in format and
semantics from their output, it is clear that we cannot just plug in the existing operators on top of each
other to form a pipeline to answer multi-predicate queries.

3.2 Temporal Challenge

In general, the distribution of the moving objects changes with time. For instance, a large number of cars
go to downtown from 9am to 5pm leaving the suburbs with fewer cars. During night, most of the cars
park and hence de-register from the ST-DSMS. Consequently the number of the cars in the ST-DSMS is
less.

Consider the query Q in Table 1 that returns the ID of any truck whose location is inside an area
A. The INSIDE query operator is proposed in [20] to check if a moving object is in a certain range.
Initially, at time ¢, the query optimizer finds that the selectivity of the INSIDE operator is less than the
selectivity of the predicate in the WHERE clause (Figure 1(a)). Thus the query optimizer selects the
query execution plan in Figure 1(b) to be used to answer the query (Plan A). At time to, several vehicles
enter the area A leading to the increase of the selectivity of the INSIDE operator while the number of
trucks decreases (Figure 1(c)). Consequently, the predicate in the WHERE clause is more selective than
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Figure 2: Moving vehicles (T = truck, O = other) on the spatial space and the corresponding query
execution plan.

the INSIDE predicate. In this case, Plan A becomes suboptimal and the optimal query evaluation plan
is Plan B (see Figure 1(d)). From the above example, we can see that we cannot build a static query
evaluation plan to efficiently answer a continuous spatio-temporal query over an extended period of time.

3.3 Spatial Challenge

We show here another outstanding challenge where mapping a query into an efficient query evaluation
plan is not one-to-one even at the same time instant. Consider the same query in Table 1, but with two
different areas as shown in Figures 2(a) and 2(c). The distribution of the objects on the space greatly
affect the choice of an optimal execution plan. In Figure 2(a), the INSIDE predicate is more selective
than the predicate in the WHERE clause and hence the INSIDE operator comes first in the plan; Plan A
(Figure 2(b)). On the other hand, for the same data distribution, and at the same time instant, but for
a different INSIDE predicate (Figure 2(c)), Plan B (Figure 2(b)) is the optimal query evaluation plan.

3.4 Spatio-temporal Challenge

Having moving queries with the moving objects makes the problem more complex. The selectivity of the
query evaluation plan not only depends on the distribution of the moving objects on the space, but also
on the location of the focal object of the moving query. When a query has more than one focal object
where all of them are moving, the query evaluation plan of the continuous query becomes suboptimal
faster.

The challenges that we presented in this section have several implications:

e Multi-predicate spatio-temporal queries requires special handling and cannot be efficiently answered
by simply stacking existing spatio-temporal operators on top of each other to form a pipeline.

e The selectivity of the different query operators changes over space and time. Consequently, the
cost of the query operators also changes over space and time and the optimal plan is changing over
space and time.

e [t crucial to consider adaptive query optimization techniques when dealing with ST-DSMSs.



4 Research Directions, Solutions, and Issues

In this section, we discuss some research directions that we have initiated to address the outstanding
challenges presented in this paper. In Section 4.1, we summarize some of our work on spatio-temporal
histograms (we refer the reader to the original paper [6] for more details. In Section 4.3, we present
our proposal to enrich spatio-temporal operators with pipelined operators for aggregate nearest neighbor
queries. In Section 4.2, we highlight potential improvements and extensions to the spatio-temporal selec-
tivity estimation using ST-Histograms. In Section 4.4, we set the foundations an adaptive spatio-temporal
query optimization framework. We discuss the optimization of multiple spatio-temporal executing simul-
taneously in Section 4.5.

4.1 Spatio-temporal Histograms (ST-Histograms)

We use ST-Histograms [6] for estimating the selectivity of continuous spatio-temporal query operators.
Unlike traditional spatio-temporal histograms that examine and/or sample all incoming data tuples,
ST-Histograms are built by monitoring the actual selectivity of the outstanding continuous queries. The
main idea to periodically send feedbacks, in form of statistics, from the query executor to the histogram
manager. These feedbacks are typically the selectivity of the spatio-temporal operators. These statistics
are inherently computed in the operators. They do not impose additional overhead on the query executor.
By using feedbacks from the query executor to build and refine ST-Histograms progressively, we avoid
scanning all input data like what most of the previous work [4, 8, 31, 32, 37] usually do.

When the histogram manager receives feedbacks from the query engine, it updates the histogram to
reflect the newly reported statistics. Initially, the whole space is assumed to be dark, where darkness
represents the unawareness of the selectivity. Queries act as spots of light. They light up a region with
their feedback about the region’s selectivity. The intensity of the light spot a query offers to a histogram
region is proportional to the fraction of the histogram region illuminated by the query. When queries
overlap, many light spots are directed to the overlapped histogram region. The more the light intensity
of a histogram region, the better accuracy of the refinement of the selectivity estimate of this histogram
region.

ST-Histograms are grid-based where the grid divides the universe uniformly into a number of disjoint
cells. A grid cell is either lit or dark. A lit grid cell corresponds to a region where one or more queries
overlap. A dark grid cell corresponds to a region where no query overlaps. Starting with all grid cells being
dark, the selectivity estimate of each bucket in the histogram is initialized uniformly. With successive
feedbacks received from the operators, better selectivity estimates are obtained due to a clearer view of
the coverage area. The actual selectivity S that a query ¢ reports is assumed to be distributed uniformly
on the query range. The grid cells overlapped by ¢ will have their values changed according to the
difference of S and the current selectivity estimate of ¢ (from ST-Histogram). Typically, this difference
is distributed according to the intensity of the light spot offered by ¢. Next, all the grid cells that have
dark portions will be modified similarly to conform with the unity invariance of ST-Histograms.

4.2 Spatio-temporal Histograms Extensions

In its original form, each feedback triggers an ST-Histogram refinement, typically the actual selectivity
of a spatio-temporal operator, to accommodate the actual selectivity of the corresponding single query
operator. The next level is to refine ST-Histograms using multiple feedbacks. By taking into account
the spatial relationship among different queries, we may reach better precision for the refinement. To be
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Figure 4: Dynamic Plan Formation (Scenario 1)

more specific, consider queries Q1 and Q2 in Figure 3. Q2 is contained totally inside Q1. Suppose that
we receive a feedback from Q1 as “actual selectivity is 20%”, and another feedback from Q2 as “actual
selectivity is 4%”. By using these feedbacks collectively, we can infer more information than just using
each separately and assuming uniformity for both queries upon each refinement. In fact, we can deduce
that the selectivity of the right part of Q1 (that is out of Q2) is 16%. Similar inferences may be made
for overlapping queries.

Instead of maintaining ST-Histograms online, we propose to enable an offline mode where several
snapshots of ST-Histograms used at different time intervals are kept. Typically, we want to mine ST-
Histograms to slice the spatio-temporal dimensions into volumes (cuboids) with almost constant selectiv-
ity. We intend to detect periodic patterns in these cuboids which would represent the motion of real-life
objects. For instance, people go to work every week day in the morning and return home at 5pm. That’s
why we have these two rush hours in which the selectivity of the moving objects is higher in downtown.
Periodic patterns do not manifest only in the temporal dimension but also in the spatial dimension.
Usually, people often go to work using the same routes (e.g., highways, trains). School buses follow the
same route to pick up or drop off students. After identifying the periodic patterns in the selectivity
cuboids, we can work in the offline mode where we have a finite set of cuboids, each of which will be
scheduled to be used for a certain period.

4.3 Continuous Aggregate Nearest Neighbor Queries

We propose to enrich the set of spatio-temporal operators with pipelined operators that can answer
aggregate nearest neighbor (ANN) queries. ANN queries [22, 15, 23, 34| represent aggregation of multiple
nearest neighbor queries. In spatial databases, these queries have two sets of points P and ) as inputs
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Figure 5: Dynamic Plan Formation (Scenario 2)

and the answer is the k points in ) with minimum aggregate distance to the points in P. In ST-DSMSs,
P is a set of landmarks and @ are the moving objects. The aggregate function can be sum, min, or max,
and the query is a continuous query (CANN). We propose three pipelined CANN operators, namely
MANN, EMANN, and BANN, which are designed in a way to benefit from the geometrical properties of
the aggregate functions. MANN is a multi-way operator that is aware of the whole set of landmarks. It
computes the distance to all landmarks before pruning any input. We consider two classes of aggregate
functions: (1) with or (2) without monotonically increasing evaluators® respectively. For the first class,
we propose EMANN, an enhanced version of MANN, that allows the early pruning of the search space.
BANN is a binary operator. The idea is to build a query pipeline that answers the CANN query for a
set of n landmarks as n BANNs where each BANN is aware of only one landmark.

Having a pipelined binary operator is very appealing for query optimization. We build the query
pipeline in a top down fashion: (i) build the topmost operator, (ii) eliminate a landmark which will be
assigned to the topmost operator, and (iii) proceed with the remaining landmarks to build the operator
beneath. This process continues until we are left with one landmark that will be assigned to the last
BANN operator. The processing of a CANN is in the reverse order. A location update entering the
pipeline is compared with the landmark associated with the bottommost operator. This update is either
pruned or used as input to the above operator and so on.

Getting the optimal elimination order is too expensive; we need to enumerate the different O(n!)
orders. The challenge now is on optimizing a pipeline of BANNs, which will consist of getting the
“almost” optimal elimination order of landmarks that will lead to “nearly” a minimal cost evaluation
plan without having to search the O(n!) orders. In [5], We propose different elimination order policies
to compute the elimination order needed to build the pipeline.

4.4 Adaptive Spatio-temporal Query Processing and Optimization

Since the cost of a query changes with space and time, as we pointed out in Section 3, we propose to
have a cuboid cost function for a continuous spatio-temporal query. This cost function will be affected
by the following factors:

1. Average lifetime of an input update in the query pipeline - This is the execution time needed for
a location update to propagate through the query pipeline until either it is reported to the user,
dropped out of the pipeline, or stored in an intermediate state of a spatio-temporal operator.

!The evaluator E of an aggregate function f with order m is monotonically increasing with respect to m iff m > m’' =
E(f,m) = E(f,m")



2. Average storage required as internal states per input update - Upon an arrival of a location update
to a query pipeline, it might get stuck in an internal state for some time before it is dropped or
reported to the user. This cost factor relates to the probability of being stored in an operator and
the amount of storage needed.

3. Average selectivity of input updates - This is the ratio of total number of moving objects whose
location updates are forwarded to the query pipeline.

Being able to capture a representative cost function for the continuous spatio-temporal query will enable
us to provide a framework for adaptive query processing and optimization.

We propose to use a spatio-temporal data-to-plan grid to prevent a query plan from being executed on
all location updates arriving to the ST-DSMS. This data-to-plan grid will serve as a layer to route location
updates to the available relevant plans. Consequently, an arriving location update will be forwarded
only to the queries which it may affect the answers. We use a dynamic plan formation mechanism to
adapt to the changing system parameters. The adaptation involves the addition, removal, or shuffling
of operators in the query evaluation plan. When a continuous spatio-temporal query is registered, a
initial query evaluation plan is built. This plan may cover multiple grid cells. In this case, a sub-plan
is created for each grid cell and a union operator is used to collect the query answers from the different
sub-plans. When the cost of the plan changes due to the motion of the query and/or the objects, three
events may take place: (1) re-shuffle the operators in the plan, (2) decompose the plan into sub-plans,
or (3) re-consolidate the sub-plans again to form one plan.

Consider the case of a continuous query () consisting of a range predicate and a selection. At time
t1, the range predicate is exclusively covered by one data-to-plan grid cell and is more selective than the
WHERE clause. The corresponding query evaluation plan is depicted in Figure 4(a). At time to, the
query @ moves and covers two grid cells. Thus, two sub-plans are composed for ), one per grid cell. The
results of these two sub-plans are merged together to form the query answer (Figure 4(b)). At time ¢,
@ moves and is covered exclusively by one grid cell but has larger selectivity than the WHERE clause.
The two sub-plans re-consolidate and form the current query evaluation plan (Figure 4(c)).

Even on the sub-plan granularity, sub-optimality may exist. Consider the example in Figures 5(a)—
5(b), during the motion of the query, the cost of the query evaluation plan may change due to the change
in the selectivity of the operators. In this case, we may need to shuffle the query operators of one or
more sub-plans to maintain the optimality of the current plan.

Trying to maintain an optimal plan at all time may not always be a good choice. First, frequent
query re-optimizations may negatively affect system performance and query answers may be delivered
too late after being invalidated. Moreover, attempting to keep the current query evaluation plan optimal
may lead to thrashing. Chasing optimality whenever sub-optimality is detected may lead to frequent
query re-optimization switching back and forth among few query evaluation plans. Consequently, CPU
cycles will be wasted more on re-optimizations than on actual query processing. In contrast, a spatio-
temporal query evaluation plan that is robust for a reasonable period of time would help avoiding such
thrashing. While enumerating different query plans, the spatio-temporal query optimizer should select
a query evaluation plan that withstands small variations in the selectivity of the query operators and in
the total cost of the query plan.

4.5 Spatio-temporal Query Optimization of Multiple Queries

It is often the case that several concurrent spatio-temporal queries have common operators. This would
enable sharing the operators and sometimes complete sub-plans by incorporating the current workload
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Figure 6: Optimization of multiple spatio-temporal queries

in the evaluation of the cost of any enumerated query evaluation plan. More specifically, whenever a
new spatio-temporal query is submitted, it is decomposed into query fragments. Then, if a similar query
fragment already exist, it can be potentially reused. In this case, the cost of executing this query fragment
can be ignored when we compute the total cost of the query. Moreover, existing continuous queries may
have their query evaluation plan changed with the arrival of a new plan if this change will allow more
sharing of operators and thus less system overhead than the case of no sharing.

Consider the two continuous spatio-temporal queries Q1 and )2 whose query evaluation plans are
depicted in Figure 6(a). Suppose that Q2 consists of a selection (black operator) and a range query
(white operator). In this example, the range query is more selective than the selection, and thus the
white operator is executed first. In Figure 6(b), we show a new arriving query @3 that consists of a
window join of the black operator (selection) and another operator. 2 will have its query evaluation plan
changed to allow for sharing of the selection between the two queries. The total cost of all operators in the
system is less with the sharing even though the individual query evaluation plan for ()2 is sub-optimal.

5 Conclusions

In this paper, we highlighted the major challenges raised in optimizing spatio-temporal queries especially
in the presence of multi-predicate queries. These challenges relate to the lack of spatio-temporal pipelined
operators, and the impact of time, space, and their combination on the query plan optimality under
different circumstances of query and object distributions. We have also presented some of our preliminary
work in building a uniform adaptive query optimization framework that we believe is key in addressing
these challenges and coping with the dynamic nature of the environment we are evolving in.
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