
M3: Stream Processing on
Main-Memory MapReduce

Ahmed M. Aly∗, Asmaa Sallam∗, Bala M. Gnanasekaran∗, Long-Van Nguyen-Dinh∗,
Walid G. Aref∗, Mourad Ouzzani†, Arif Ghafoor∗

∗Purdue University, West Lafayette, IN, USA
†Qatar Computing Research Institute, Qatar Foundation, Qatar

Abstract—The continuous growth of social web applications
along with the development of sensor capabilities in electronic
devices is creating countless opportunities to analyze the enor-
mous amounts of data that is continuously steaming from these
applications and devices. To process large scale data on large
scale computing clusters, MapReduce has been introduced as a
framework for parallel computing. However, most of the current
implementations of the MapReduce framework support only
the execution of fixed-input jobs. Such restriction makes these
implementations inapplicable for most streaming applications, in
which queries are continuous in nature, and input data streams
are continuously received at high arrival rates. In this demon-
stration, we showcase M3, a prototype implementation of the
MapReduce framework in which continuous queries over streams
of data can be efficiently answered. M3 extends Hadoop, the open
source implementation of MapReduce, bypassing the Hadoop
Distributed File System (HDFS) to support main-memory-only
processing. Moreover, M3 supports continuous execution of the
Map and Reduce phases where individual Mappers and Reducers
never terminate.

I. INTRODUCTION

In recent years, the MapReduce framework [1] has proved to

be successful in processing large datasets on large clusters of

machines, particularly after the massive deployment reported

by companies like Facebook, Google, and Yahoo!. However,

most of the current implementations of the MapReduce frame-

work target batch processing where MapReduce jobs operate

on fixed input data that is usually stored in some file system

integrated into the framework. For instance, in Hadoop [2],

input data to a MapReduce job is stored in the Hadoop

Distributed File System (HDFS) before the job is run. While

acceptable for batch processing applications, HDFS introduces

significant disk delays that make Hadoop inapplicable for

streaming applications in which input streams are received at

high arrival rates.

In [3], [4], MapReduce Online is introduced to support

continuous query processing on MapReduce. However, since it

is based on HDFS, it is not suitable for streaming applications,

in which data streams have to be processed without any disk

involvement. Moreover, MapReduce Online requires that each

set of input is processed through a fresh MapReduce job, in

which new Mappers and Reducers are invoked. This, implies

significant setup-time overhead for the multiple jobs being

invoked.

To support the processing of continuous queries over large

scale streaming data, we introduce M3, a main-memory im-

plementation of MapReduce, based on Hadoop. In M3 data

gets processed only through a main-memory-only data-path.

Moreover, Mappers and Reducers never terminate, hence,

there is only one MapReduce job per query operator that is

continuously executing. M3 is fault tolerant and incrementally

evaluates continuous queries. It also extends the SQL interface

of Hive [5], providing a way of issuing continuous streaming

queries on MapReduce.

II. STREAM PROCESSING ON MAPREDUCE

A straightforward implementation of a streaming application

using Hadoop is shown in Fig. 1a. Input data streams accu-

mulate into HDFS up to a certain size, at which a MapReduce

job is started to process the accumulated data. The Map phase

starts with all the Mappers reading input splits from HDFS,

processing the data, and finally writing intermediate key-value

pairs into local disks. The Reduce phase starts with all reducers

reading the intermediate key-value pairs from local disks,

processing these pairs, and then finally writing the output into

HDFS. Afterwards, a fresh MapReduce job is started for the

next accumulated data.

���

����	�

���

��
�����

��
���
�
��
�	�

����
����

�
�
��

���

����	�

��� ���

�������

��	�������

�
�

��
�

� �

��
�

�
�

��
�

��
��

�

Fig. 1. (a) Dataflow in Hadoop. (b) Dataflow in M3.

With such multiple reads/writes from/to HDFS as well as

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.120

1253

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.120

1253

local disks, the architecture of Hadoop is inapplicable to most

streaming applications. Therefore M3 extends Hadoop as in

Fig. 1b such that data processing is performed only through

main-memory, avoiding HDFS and local disk access. In M3,

direct communication between Mappers and Reducers takes

place using Java Remote Method Invocation (RMI), which is

a main-memory communication protocol.

Query processing in M3 is incremental [6], [7], i.e., only the

new input is processed, and the change in the query answer

is represented by three sets of inserted (+ve), deleted (−ve),

and updated (u) tuples. The query issuer receives as output a

stream that represents the deltas (incremental changes) to the

answer. Whenever an input tuple is received, it is transformed

into a modify operation (+ve, −ve, or u) that propagates in

the query execution pipeline, producing the corresponding set

of modify operations in the answer.

Supporting incremental query evaluation requires that some

intermediate state be kept at the various operators of the

query execution pipeline. For instance, consider the query:

“Continuously monitor the identifiers of cars that are in the
parking lot”. At every point in time, the execution of that

query has to store the current number of cars that are in

the parking lot so it can incrementally modify that number

according to the updates received from the streams. If Hadoop

is to be used as in Fig. 1a, then that intermediate state has to be

stored into HDFS before a MapReduce job completes, so that

the next MapReduce job can read that state back from HDFS.

However, in Hadoop, Mappers and Reducers terminate after

the job finishes, leaving no chance to maintain any state in

main-memory. In M3, Mappers and Reducers run continuously

without termintation, and hence can maintain main-memory

state throughout the execution.

III. FEATURES OF M3

The main features M3 are summarized as follows:

• Main-memory-only data flow. Throughout the query

execution, data flows only through main-memory, totally

avoiding any disk access. Input streams are temporarily

stored into main-memory buffers. Moreover, Mappers and

Reducers directly communicate through Java RMI.

• Continuity of MapReduce jobs. In M3, there is no need

to issue a separate MapReduce job per batch of stream

updates since Mappers and Reducers never terminate. In

consequence, operators’ states are kept in main-memory,

supporting incremental evaluation.

• Rate-based split. In contrast to splitting the input data

based on its size as in Hadoops Input Split functionality,

M3 splits the streamed data based on arrival rates. The

Rate Split layer, between the main-memory buffers and

the Mappers is responsible for balancing the stream rates

among the Mappers. This layer periodically receives rate

statistics from the Mappers and accordingly redistributes

the load of processing amongst Mappers. For instance,

a fast stream that can overflow one Mapper should be

distributed among two or more Mappers. In contrast,

a group of slow streams that would underflow their

corresponding Mappers should be combined to feed into

only one Mapper.

• Fault tolerance. In M3, each Mapper and Reducer has

two states: running and commited. To support fault toler-

ance, input data is replicated inside the main memory

buffers and an input split is not overwritten until the

corresponding Mapper commits. When a Mapper fails,

it re-reads its corresponding input split from any of the

replica inside the buffers. A Mapper writes its inter-

mediate key-value pairs in its own main-memory, and

does not overwrite a set of key-value pairs until the

corresponding reducer commits. When a reducer fails,

it re-reads its corresponding sets of intermediate key-

value pairs from the Mappers. Also the state of the

execution (which is stored with the Reducers as we will

show next) is replicated across more than one Reducers.

When a Reducer fails, it reconstructs its state from the

corresponding replica.

• Support of incremental processing. In M3, Query pro-

cessing in M3 is incremental [6], [7], i.e., only the new

input is processed.

• Support of multi-operator query plans. In M3, a query is

compiled into a tree of MapReduce jobs (a job per query

operator), with the output of a job directly connected to

the input of its parent. The leaves of the tree plan have

the streams as input and the root of the tree produces the

output of the query.

• Support for general window predicates. M3 supports

both predicate [8], [6] and sliding window predicates.

Consider for example the query: “Continuously monitor
the identifiers of cars that were in the parking lot within
the last 5 minutes”; a time-based window query in

which the window of interest is limited to the last 5

minutes. Consider another query: “Continuously monitor
the identifiers of cars that are exceeding the speed limit
(50 mph)”, in which the window of the query is based

on a predicate on the speeds of cars. For more details on

window predicates, the reader is referred to [9], [8], [6].

• Support of SyncSQL through Hive. Hive [5] provides

an interface to transform SQL queries into MapReduce

jobs. M3 extends the syntax of Hive to support continuous

streaming queries on data streams. The extended SQL

query language is based on SyncSQL [6].

IV. CONTINUOUS QUERY PROCESSING IN M3

In this Section, we show how continuous streaming queries

are incrementally evaluated inside M3. We show the operation

the Join operator as a representative for all binary operators.

A. Stream Tagging

M3 supports incremental evaluation of streaming queries by

using a Tagger operator [6] for each input stream. Typically,

the Tagger operators would be at the leaves of a query plan

to tag and filter the tuples of the input streams. A Tagger

operator ensures the proper assignment of tags (signs) to tuples

(e.g., +ve, −ve, or update (u)). For example, if the input tuple

12541254

corresponds to an object that has appeared before, the Tagger

operator would assign a u sign (for update) to indicate that

this tuple corresponds to an object that has been previously

processed. In M3, the query compiler pushes the window

predicates inside the Tagger operators to filter unqualified

tuples early on.

Consider the previous query: “Continuously monitor the
identifiers of cars that are exceeding the speed limit (50
mph)”. This query can be expressed using SyncSQL as

follows:

CREATE STREAMED VIEW SpeedyCarsView AS
CSELECT STREAMED CarID, Speed
FROM CarsSpeedStream CSS
WHERE CSS.Speed > 50;

M3 creates a view for the above query so that its streamed

output can be used as input to another query (as we show

in the next subsections). The intermediate key between the

Map and Reduce phases is set to be CarID, i.e., the object

ID. This implies that each Reducer will be responsible for a

set of the objects and that set never changes throughout the

execution. Each Reducer keeps a main-memory hash table for

the objects that satisfy a given window predicate. For example,

in the above query, the Tagger operator will store the IDs of

the cars that are exceeding the speed limit, along with their

speeds.

�� �� �� ��

��! ��" �#

�! �"
��
#

$!%�&"'

$"%�()'

$#%�**'

$&%�)&'

+$#%�**'

���

$*%�&('

$(%�",'

-���
**

��
"
&

-���
()
)&

+$"%�()'

+$&%�)&'

��! ��" �#

�! �"
��
#
!

!%�)"

"%�./ &%�&*

+$!%�)"'

���

*%�&#

(%�##

-���
**
)"

��
"

-���
./

0$"%�./'

1$&'

2
��
��
�

��
��

2
��
��
�

��
��

Fig. 2. Stream Tagging. (a) Execution at time t. (b) Execution at time t+1.

Fig. 2 shows the MapReduce job for the above query. The

input and output tuple format is < CarID, Speed >. Three

Mappers M1, M2, and M3 and two Reducers R1 and R2 are

running. R1 is designated to receive the odd IDs while R2 is

designated to receive the even IDs. The filter Speed > 50 is

applied at each Reducer to pass only cars with Speed greater

than 50. At time t, R1 produces + < 3, 55 > as the only

speeding car R1 encounters. The sign of the output tuple is +

as ID 3 was not in the state of R1 at the time it is received.

R1 records in its hash table that it had encountered ID 3 with

Speed 55. Similarly, R2 produces + < 2, 67 > and + < 4, 74 >

and records in its hash table that IDs 2 and 4 have speeds 67

and 74, respectively.

At time t + 1, R1 receives an update for the speed of ID

1 to be 72, so it produces + < 1, 72 >. R2 detects that the

speed of ID 4 drops below the speed limit, so R2 removes ID

4 from the hash table and outputs − < 4 >. R2 also detects a

change in the speed of ID 2, which happens to be still above

the speed limit, so R2 produces an update tuple u < 2, 80 >

and updates that value in the hash table.

B. Stream Joins

In M3, joins among streams are supported using Repartition

Join [10], in which the intermediate key between Map and

Reduce is set to be the same as the join key.

Consider the query: “Continuously monitor the identifiers
of cars on Highway I-65 that are exceeding the speed limit
(50 mph)”. The query can be expressed using SyncSQL as:

CREATE STREAMED VIEW SpeedyI-65View AS
CSELECT STREAMED CarID
FROM SpeedyCarsView SC, I-65Stream S65
WHERE SC.ID == S65.ID;

This query joins the stream of cars on interstate highway

I-65 with the speedy-cars view, Sc, discussed in Section IV-A.

A MapReduce job is initiated for the above query in which

the intermediate key between the Map and Reduce phases is

set to be CarID. This implies that IDs from different streams

that should join would go to the same Reducer all the time.

Each Reducer keeps three main-memory states (hash tables),

the first is the join state, the second is the S65 state, and the

third is Sc state.

3���

��! ��" �#

�! �"

3�����
�
�

+$�	%�)'

+$�	%�!'

+$�	%�"'

+$�(*%�#'

+$�(*%�"'

+$�(*%�!'

+$�(*%�,'

+$�	%�#'

+$�	%�&'

+ !

+ #

+ "

��! ��" �#

�! �"

1$�	%�!'

1$�(*%�,'

+$�(*%�&'

+$�(*%�)'

1 !

+)

+ &

��� ���

3���

��

��
��

(*

��

��
��

	

��

��
��

(*

�(* �
�
�
!%�#%�,

�	��
�
�
!%�#%�)

3�����
�
�

�(* �
�
�
"

�	��
�
�
"%�&

3�����
�
�

�(* �
�
�
!%�#%�)

�	��
�
�
#%�*%�)

3�����
�
�

�(* �
�
�
"%�&

�	��
�
�
"%�&%�(

"!%�# #%�) "%�&

��

��
��

	

+$�	%�*'

+$�	%�('

Fig. 3. Joining streams. (a) Execution at time t. (b) Execution at time t+1.

Fig. 3 shows the MapReduce job for the above query. The

input format is Sign < StreamID,CarID >. The output

format is Sign < CarID >. Three Mappers M1, M2, and M3

and two Reducers R1 and R2 are running. R1 is receiving the

odd IDs (from both streams), while R2 is receiving the even

IDs.

12551255

At time t, R1 produces +1 and +3 since IDs 1 and 3 are

received from both input streams. Also R1 records 1 and 3

in its three states. IDs 9 and 7 from streams S65 and Sc

respectively are also recorded in the corresponding states.

Similarly, R2 produces +2 and adds ID 2 to the three states,

and adds ID 4 to the state of Sc.

At time t+1, R1 receives a negative update for ID 1 from

Sc, so, it removes it from both the join and Sc states, and

produces −1. It also produces +7 in response to receiving

+ < S65, 7 >, as ID 7 was in the state of Sc at time t. Similarly,

R2 produces +4 after receiving + < S65, 4 >.

C. Stream Aggregates

In M3, grouping the output of a query is achieved through

a separate MapReduce job in which the intermediate key

between the Map and Reduce phases is set to be the same

as the grouping key. Each Reducer keeps a state of the local

aggregates (SUM, AVERAGE, . . .) for the grouping keys it

is responsible for. The HAVING condition is applied at each

Reducer.

Consider the query: “Continuously monitor how many cars
on Highway I-65 are exceeding the speed limit (50 mph),
grouped by the car make. Report the total number of speeding
cars only if the count per car make is > 2”. The query can

be expressed using SyncSQL as:

CSELECT STREAMED Make, Count(CarID)
FROM SpeedyI-65View
GROUP BY Make
HAVING Count(CarID) > 2;

M3 initiates a MapReduce job for that query, in which the

intermediate key between the Map and Reduce phases is set

to be the car make. Each Reducer keeps the count of the car

make(s) it is responsible for.

4������ 4������

��! ��" �#

�! �"
����
5
2

+$"%��'

+$!%�5'

+$)%�5'

+$#%��'

+$&%�2'

+$.%�5'

���

+$*%��'

+$(%��'

+$,%��'

2���

#
!

+$�%�&'

��! ��" �#

�! �"

1$)%�5'

+$!!%��'
+$!"%�2'

1 5

+$2%�#'�
���

1$*%��'

+$!/%�2'

����
�
�

2���

&
!

����
5
2

2���

"
#

����
�
�

2���

#
"

+$5%�#'� 0$�%�#'

�
��

��
61
�(
*

�
��

��
61
�(
*

Fig. 4. Group By. (a) Execution at time t. (b) Execution at time t+ 1.

Fig. 4 shows the MapReduce job for the above query. The

input format is Sign < CarID,Make >. The output format is

Sign < Make,Count > Three Mappers M1, M2, and M3 and

two Reducers R1 and R2 are running. R1 handles car makes

A and C, while R2 handles car makes B and D.
At time t, R1 produces + < A, 3 > as the sum of the cars

received of car make A is exceeding 2. Since the number of car

make C cars received so far is less than 2, R1 reports nothing

for car make C. R1 also records in its state the counts of car

makes A and C as 3 and 1 respectively. Similarly R2 produces

+ < B, 4 > and records in its state the counts of car makes B
and D.

At time t+1, R1 detects that the count of car make A drops

to 2, i.e., A no longer qualifies the HAVING condition, so, it

produces − < A >. R1 also detects that the count of car make

C jumps to 3, and hence qualifies the HAVING condition, so,

it produces + < C, 3 >. Similarly, R2 detects that the count

of make B cars changed to 3, yet still qualifies the HAVING
condition, so it produces the update tuple u < B, 3 >.

V. DEMO SCENARIO

We will demonstrate M3 and showcase its performance.

More specifically, we will show how M3 performs when

processing continuous queries over streaming data that arrive

at a wide variety of stream rates. We will use streams of spatio-

temporal data, generated using BerlinMOD [11], in which 2

million cars that are making about 300 million trips over 28

days report their location updates in the city of Berlin. We

will compare M3 against Hadoop, and also demonstrate the

functionalities and performance gains the various components

of M3 can achieve. We will show how the main-memory-

only data path of M3 can support higher stream rates, when

compared to Hadoop.

ACKNOWLEDGMENT

This research is supported in part by QCRI, and the National

Science Foundation under Grants III-1117766, IIS-0964639,

and IIS-0811954.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in OSDI, 2004.

[2] “Apache hadoop: http://hadoop.apache.org/.”
[3] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot,

K. Elmeleegy, and R. Sears, “Online aggregation and continuous query
support in mapreduce,” in SIGMOD Conference, 2010, pp. 1115–1118.

[4] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears, “Mapreduce online,” in NSDI, 2010, pp. 313–328.

[5] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive - a warehousing solution over a map-
reduce framework,” PVLDB, 2009.

[6] T. M. Ghanem, A. K. Elmagarmid, P. Å. Larson, and W. G. Aref,
“Supporting views in data stream management systems,” ACM Trans.
Database Syst., 2010.

[7] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and A. K.
Elmagarmid, “Incremental evaluation of sliding-window queries over
data streams,” IEEE Trans. Knowl. Data Eng., 2007.

[8] T. M. Ghanem, W. G. Aref, and A. K. Elmagarmid, “Exploiting
predicate-window semantics over data streams,” SIGMOD Record, 2006.

[9] W. G. Aref, “Window-based query processing,” in Encyclopedia of
Database Systems, 2009.

[10] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian,
“A comparison of join algorithms for log processing in mapreduce,” in
SIGMOD Conference, 2010.

[11] C. Düntgen, T. Behr, and R. H. Güting, “Berlinmod: a benchmark for
moving object databases,” VLDB J., 2009.

12561256

