The LIMO Environment for Learning Programming
using Interactive Map Activities

Ruby Y. Tahboub Jaewoo Shin

Walid G. Aref Sunil Prabhakar

Department of Computer Science, Purdue University, West Lafayette, IN, USA
{rtahboub, shin152, aref, sunil} @cs.purdue.edu

Abstract—Advances in geographic information, interactive
two- and three-dimensional map visualization accompanied with
the proliferation of mobile devices and location data have tremen-
dously benefited the development of geo-educational applications.
In this paper, we introduce LIMO; a web-based programming
environment that is centered around operations on interactive
geographical maps, location-oriented data, and the operations of
synthetic objects that move on the maps. LIMO materializes a
low-cost open-ended environment that integrates interactive maps
and spatial data (e.g., OpenStreetMap). The unique advantage of
LIMO is that it relates programming concepts to interactive geo-
graphical maps and location data. LIMO offers an environment
for students to learn how to program by providing 1. an easy to
program library of map and spatial operations, 2. high-quality
interactive map graphics, and 3. example programs that introduce
users to writing programs in the LIMO environment.

I. INTRODUCTION

In recent years, the interest in learning computer science
among high-school students has significantly declined com-
pared to other STEM subjects. According to the Computer
Science Teaching Association CSTA [1] and the College
Board [2], enrollment in introductory computer science courses
has decreased in number by 17% from 2005. Despite the slight
4% increase in the most recent enrollment trend, academic
institutions are challenged to develop innovative methods to
improve retention and reverse the declining enrollment trends.

The key to inspire students to learn computer science lies
in adopting an active learning approach [3]. In active learning,
students use computations and programming to solve real-
world problems. Many academic institutions have redesigned
introductory computer science courses to include a visual
component (e.g., Scratch [4] and Alice [5]), a hardware
component (e.g., Finch robot [6] and Scribbler [7]), or a
context (e.g., media computation [8] and graphics [9]). Al-
though these approaches have successfully raised the interest
in computing and made programming accessible, none of the
environments provide a platform for maps as a pedagogical
tool for learning programming. Interactive maps (e.g., based on
OpenStreetMap, Google Maps, Bing Maps, or Google Earth)
and location-based services provide an alternative option to
learning a programming language by studying and applying
abstract concepts. Furthermore, interactive maps offer a unique
opportunity to add excitement to students while learning
programming by relating programming concepts to locations
and places that students are familiar with. Map activities, e.g.,
finding directions with certain properties, scale conversion, co-
ordinate systems, distance computations, shortest paths in road
networks, and spatial analysis are rich in semantics and help
students develop strong computational thinking skills [10].

In this paper, we introduce LIMO; a web-based environ-
ment for learning computer programming using Interactive
Map Operations. LIMO is centered around activities on inter-
active two- or three-dimensional geographical maps. Writing
programs in LIMO is simple. First, the program scene is set as
a map that is zoomed at a default location. Next, the user writes
a standard Python script that is enrished by the LIMO library
to encode the actions of the program’s default moving object
that is referred to as the Commuter. Finally, on running the
program, the animation of the movements of the Commuter
is displayed on the map and the program textual output is
displayed on a dedicated output area.

Figure 1 demonstrates a “Hello World” program that is
comprised of displaying “Hello World” on address ‘305 N
University St, West Lafayette, IN 47907”. This “Hello World”
program is realized using a read_address function that takes
as input the location/address where the ”Hello World” message
needs to be placed, and then the display_message function
that displays the message on the map in the designated
location.

& EM\ Sreet .
g g : b
= | E g] Mermg)
: Hello World
3rd Street -k
ﬁ -
=
S P
g . ‘
2nd Streat g ‘

1. address = read_address("305 N University St",
"West Lafayette", "IN", "47907")
2. display_message(“Hello World”, address)

Fig. 1. The visualization of the “Hello World” program in LIMO using
(a) OpenStreetMap, and (b) Google Earth.

E@Z] LIMO

Program Scripting Area

Write your Python script here

1. commuter = []

2. address = read_address("1156 Hillcrest Rd", "West Lafayette”, "IN"
"47906")

. start_at(address, commuter)

. orient_to("EAST")

. display_marker(address)

. move_until("Hillcrest Rd", "Grant St", commuter)

. turn_right("Grant St", commuter)

. move_distance("N Grant S5t", ©.6,commuter)

9. last_location = commuter[len(commuter)-1]

10.print "Distance commuted = " + str(display distance(commuter)) + "mi"
11. display_marker(last_location)

12. show_on_map(commuter)

[RN T)

& ¢
5 Tomg Connalfy
Run Script Clear g
B D
%
3
Program Qutput West Stadium Avenue
Distance commuted = 1.27mi - | | Eset stad
[‘ st
— | ol ; Sytvia Streat é
Purdue £ i ® OpenStresiiap confbuto
University A | “ ot St | L
z 2 m Ly ihi- E - 1
it £ 1 5 DU ARYES Agnae0

Map Help
& (R
e g
= Golf Course s.écw

Western O

Happy
Holiow
Park

Cherry Lane

Ackerman
Hills.Golf
Course

o

yyyyyy

Fig. 2.

The main contributions of this paper are as follows.

1) We introduce LIMO, a web-based programming envi-
ronment centered around activities of interactive two-
and three-dimensional maps. LIMO provides easy-to-
program library of map and spatial operations with
high-quality output graphics.

2) We introduce the LIMO library; a high-level Python-
based map library that integrates map operations and
spatial functions.

3) We provide example programs that demonstrate how
the LIMO environment and library are used to write
map-visualized programs. Furthermore, the examples
showcase how LIMO can be used to demonstrate a
variety of introductory programming concepts.

The rest of the paper proceeds as follows. Section II
discusses the related work. Section III introduces the LIMO
user interface, LIMO library, and system design. Section IV
provides example LIMO programs and demonstrate its utility,
and Section V contains concluding remarks.

II. RELATED WORK

The traditional approach to learn a programming language
involves studying and applying abstract concepts (e.g., syntax
and semantics) that, by itself, represents a challenge for the
young learners. In contrast, Visual programming environments
e.g., Alice [5], Scratch [4], and Greenfoot [11] provide in-
tuitive graphical interfaces. Hence, the learner focuses on
programming rather than mastering the tedious programming
constructs. A typical program in these visual environments
is comprised of a personalized simulation with characters
(i.e., actors) that tell a story. Program development in LIMO
is similar to Scratch, Alice and other visual programming
environments. However, the LIMO environment is specialized

The LIMO programming environment consists of a program scripting area, a program output area, and an interactive map.

on the activities of interactive two- and three-dimensional
geographical maps and locations as the program’s primary
story. Furthermore, LIMO is distinguished by incorporating
interactive maps, location-oriented data, and spatial functions
into programming constructs. Lastly, programs in LIMO are
based on Python which makes LIMO reusable beyond being
a motivational environment for introductory programming.

Teaching programming in context (i.e., using domains
relevant to learners) has shown promising results in bringing
interest into learning computing [12]. Several mature works
have redesigned the introductory programming courses to
incorporate real-world contexts (e.g., media computation and
graphics). Guzdial [8] provides a media computation platform
that introduces programming concepts through the manipu-
lations of images, audio, and video. The work of [9] uses
the context of graphics applications (e.g., photon mapping)
to teach computer science topic e.g., data structures and algo-
rithms. LIMO can also be viewed as an in-context program-
ming environment. LIMO is distinguished by incorporating
interactive maps, location-oriented data, and spatial functions
into programming constructs.

Several works have integrated geographic datasets and
interactive maps into geo-education. Teresco [13] utilizes
highway data and Google maps to illustrate graph al-
gorithms e.g., Dijkstra. GI@School and GeospatialLearn-
ing@PrimarySchool [14], [15] initiatives have developed edu-
cational modules that integrate Geographical Information (GI)
science into high-school curricula. The GI initiatives cooperate
with high schools to hold practice-oriented classes that raise
interest in computing and GI as an emerging topic. One of the
most popular modules is a Geocaching (i.e., locating hidden
caches using a Global Positioning System GPS) application
for the XO-Laptop based on OpenStreetMap. The GI ini-
tiatives and LIMO meet in integrating computing and rich

GI capabilities into learning programming. Furthermore, map
integrated platforms raise interest in learning computing and
nurture computational thinking skills.

III. THE LIMO PROGRAMMING ENVIRONMENT

We have realized a prototype for LIMO (Please see
http://ibnkhaldun.cs.purdue.edu:8181/limo/). In this section,
we present a first view on the LIMO environment including
its user interface and programming library. Also, this section
covers an overview of the LIMO system design.

A. LIMO User Interface

LIMO provides a web-based environment that integrates
Python scripting and interactive maps to facilitate creating
map-visualized programs. The LIMO user interface, illustrated
in Figure 2, is comprised of three main parts: a program
scripting area, a program output area, and an interactive
map. Users can create programs by writing Python scripts
that utilize the LIMO library to write map-centric programs.
Furthermore, the LIMO interface integrates OpenStreetMap
that facilitates exploring the various map features, e.g., the
roads and the parks, and visualizing the output of the executed
programs, e.g., an animation of the Commuter as it follows
moving directions on the map. Finally, the program output area
is dedicated to displaying textual output, e.g., computational
results performed by the executing program.

Figure 2 gives an example program in LIMO that provides
the commuting directions between two locations. The functions
start_at and orient_to (Lines 3-4) specify the start loca-
tion and direction of Commuter. Next, the display_marker
function (Line 5) adds a marker at the current location of
Commuter. The constructs move_until, move_distance, and
turn (Lines 6-8) control Commuter’s movement on the map.
Finally, the display_distance (Line 9) function prints in the
program output area the total distance commuted so far. On
running the program, the function show_on_map (Line 12)
displays the animation of Commuter’s movement on the map.

B. The LIMO Programming Library

LIMO integrates interactive maps and rich location-
oriented data and spatial data types into an easy to use
programming library. The LIMO library functions are designed
to enable users to process, customize, and visualize location
data on the map. The LIMO library offers two categories of
functions: map basics, and spatial.

The map functions enable users to interact with map and
perform primitive activities (e.g., displaying a message or
adding a marker on map). Location in the basic constructs
is represented as an actual address that can be explicit (e.g.,
intersection of two streets) or implicit (e.g., commuter’s current
location). Moreover, the basic map functions are suitable for
beginners with no map programming experience. For instance,
the semantics of display, move, and turn are intuitive and have
bases in reality. Hence, a wide variety of simple programs can
be written to describe the various movements of Commuter
while keeping track of time and distance.

The spatial functions encapsulate complex location-based
data and operations into easy-to-use functions. Location is

TABLE 1.

SAMPLE LIMO PROGRAMMING LIBRARY.

Category Function Name Description/ Options
start_at(address, Sets Commuter’s start
commuter) location to address

Direct Commuter
orient_to(direction) tqwards a certain

Map direction, e.g., East,

(Basics) West, North, or South
move_dlstance(street, Move Commuter for
distance, commuter), . .

X certain distance or until
move_until(streetl, . .
a clear intersection
street2, commuter)
Re-orient Commuter
turn_[right|left](street, towards a new
direction, e.g., right or
commuter)
left
display_message Place a text message,
(message, address| e.g., at given address
location) or at geo-location
. Place a marker on map
display_marker .
. at given address or at
(address| location) .
geo-location
. . Displ |
display_[distance| isplay tota
. distance/time
time](commuter)
commuted so far
. Return the distance
compute_distance
between two addresses
(addl1, add2) .
or geo-locations
Return a point that
get_location(address) represents the
Spatial geo-coordinate of
p address
Return the location (as
get(name, geometric shape) of the
description, place that matches
geometric shape) place-name and
discription
Return a list of
get_all(description, locations (as geometric
geometric shape) shape) for places that
match discription
Boolean operators that
overlaps| touches| test whether two
intersects| contains shapes: overlap, touch,
(shapel, shape2) intersect, or contain
one another
display_shape Display geometric
. shape (e.g., lake
(geometric shape)
boundary) on map

represented as a geo-coordinate point (e.g., using latitude and
longitude). Spatial functions enable creating programs that
incorporate real-world location data and apply it in creative
ways. For instance, get_location seamlessly converts a textual
address to its equivalent geo-coordinates, get_all is another
rich spatial function that provides a list of locations (in the
form of geo-coordinates or shapes) that match a place descrip-
tion parameter (e.g., all airports in Indiana). Consequently,
given the current location of Commuter, one program may
iterate over the list of interesting locations and find the closest

@ b x
g
? ¢ b 4 v A
¢ ¢ 0 4 \ ';
AR
A 2 Q‘\" v v "d
v ""
’

i
""" @Cpensteeatsp maﬁ
~12718661.93763, 1613860198

1. all_states = get_all("STATE", "POINT")
2. for i in range(len(all_states)):
3. display_marker(all_states[i])

(@)

1. all _states = get_all("STATE", "POLYGON")
2. for i in range(len(all_states)):
3. display_shape(all_states[i])

(b)

Fig. 3. Sample program using get_all construct with "POINT” and "POLYGON” parameter options, (a) displays a marker on each state, (b) displays a polygon

around each state.

(or farthest) location to the Commuter’s location. Another
program may simply visualize all the qualifying locations on
a suitably scaled map. Figure 3a-b illustrates two sample
programs that use the ger all construct to retrieve a list
of states. The second parameter in get_all determines the
type of the returned shape, e.g., POINT (Line a-1) returns
a geocoordinate point and POLYGON (Line b-1) returns a
polygon shape. Moreover, spatial predicates, e.g., intersect or
contains, further enrich the programming library by enabling
spatial tests, e.g., does the park contain a lake? Refer to Table |
for a list of sample LIMO programming library.

C. System Design

Figure 4 gives the process flow of a LIMO program inside
the LIMO programming environment. In the editing phase, the
user creates and edits her program. Upon program execution,
the LIMO backend analyzes the program script and invoke the
proper LIMO library functions to carry out map and spatial
operations. For example, the display_marker(“1001 Hillcrest
Rd ...”) requires a spatial query that obtains the geo-coordinates
of the address parameter. The geo-coordinates are used to
visualize the construct on the map. The backend performs
the actions specified by the program. Finally, in the execution
phase, the program output is visualized on the map and the
textual output is displayed on the output area.

The LIMO programming environment is a web application
that follows a multi-tier architecture as shown in Figure 5.
LIMO’s Presentation Layer embodies a web-based user inter-
face that integrates a scripting area and an interactive map.
The middle layer (i.e., Logic) consists of a Jython interpreter,
the LIMO library and a customized map visualization library.
Finally, the Data Layer uses a relational database that handles
spatial datasets. We discuss the technical details of each layer
next.

Editing Processing Execution
LIMO LIMO
User Interface | oy OpensStreetMap
spatial query
Program Visualization

Spatial Database

Fig. 4. Process flow diagram of a program in LIMO.

1) Presentation Layer: LIMQ’s user interface is built using
Google Web Toolkit (GWT) [16]: an open-source web tool for
developing JavaScript front-end applications. GWT is appeal-
ing for LIMO due to its cross-browser compatibility, efficient
testing and debugging, and not mandating prior background in
web languages (e.g., JavaScript or HTML).

An interactive map based on OpenStreetMap (OSM) is
integrated into LIMO’s user interface. OSM provides a free,
editable map of the world. Moreover, OSM offers open access
to map datasets. Finally, we use OpenLayers API [17] (open
source library for map development) for realizing visualiza-
tions on LIMO’s interactive map.

2) Logic Layer: The Logic Layer (also termed the Appli-
cation Layer) plays a key role in executing programs in LIMO
including performing computations and communicating with
the Data Layer. The Jython interpreter processes the python
script and utilizes the LIMO library to carry out spatial and
map operations. On program execution, the textual output is
displayed on the program output area and the map related
data is moved to a customized map visualization library to

Presentation Layer
LIMO interface: Google Web Toolkit (GWT)

Program Output

Raw Python Script Area

Interactive Map

A A

Logic Layer | run program

Y

update [map

textual output

Jython Interpreter Customized M
and LIMO libra ustomized Map
i process map output » | Visualization Library
74
A
Data Layer | spatial data and geocoding

-1 OpenStreetMap dataset

PostgreSQl
PostGIS e

TIGER dataset

Fig. 5. The architecture of the LIMO programming environment.

create object movement animation. Finally, the interactive map
is updated with program visualizations.

3) Data Layer: The Data Layer is comprised of a relational
database management system (DBMS) and stored datasets.
LIMO deploys PostgreSQL [18]: an open-source relational
DBMS along with PostGIS [19]: an open-source extension that
adds support for spatial data to PostgreSQL.

The spatial database in LIMO stores TIGER [20] and
OpenStreetMap datasets. TIGER is a public dataset admin-
istrated by the U.S. Census Bureau [21]. TIGER consists of
geometric data that features roads, railroads, rivers, in addition
to legal and statistical geographic areas. LIMO uses TIGER
to support geocoding, e.g., translating between address and
geo-coordinates. Geocoding is crucial for LIMO in order to
visualize the actions of constructs on the map. OpenStreetMap
contains rich datasets about the locations of points of interests
(e.g., tourist attractions), lines (e.g., roads) and areas (e.g.,
lakes).

D. The LIMO Prototype

The LIMO project is being developed in Purdue University
[22]. The live LIMO environment and sample programs can
be accessed using http://ibnkhaldun.cs.purdue.edu:8181/limo/

IV. SAMPLE PROGRAMS

Figures 1 and 2 present the Hello World and the Commuting
Directions, respectively. This section provides additional sam-
ple LIMO programs to demonstrate the various programming
library functions and showcase how the LIMO environment
can be used to create stimulating open-ended programming
exercises.

A. Basic Programs

Program 1. This program presents an example of utilizing
display, compute-distance, and conditional structure If ... Else.
The goal of the program is to determine whether the user
should walk or bike from home to office. The user is willing

on)
Lockport Rochested

Springfield

Wincrester.
bhumbia

Colon
réethiap contribGiSH}

-BRA7004 46501 4476623 8AETS

Fig. 6. The output of Program 2. The map gives the boundaries of the states
that have shared borders with Indiana.

to walk only if the distance to office is less than 3 miles.
Otherwise, she prefers to bike. Moreover, the program adds a
marker and a message on the locations of home and office.

1. Home = read_address ("1001 Hillcrest

Dr.", "West Lafayette", "IN", "47906")
2. Office = read_address ("Airport Dr.",
"West Lafayette", "IN", "47907")
3. display marker (Home)
4. display message ("Start", Home)
5. display_marker (Office)
6. display_message ("Destination", Office)
7. distance = compute_distance (Home,

Office)
8. 4if distance < 3
9. print "I’'11 be walking!"
10. else:
11. print "I’11 be biking"

A simple extension to Program 1 is to add a third option
for driving in case the distance between home and office is
greater than 5 miles.

Program 2. This program presents an example of
utilizing get, get_all, display_shape, the spatial operator
touches, conditional and looping structures. The goal of the
program is to iterate over a list of geometries that represent
the boundaries of states. It is required to identify the states
that share borders with Indiana and display a boundary
around each one of them.

1. Ind_pol= get("Indiana", "STATE",
"POLYGON")
2. Ind_pnt= get ("Indiana", "STATE",
"POINT")
3. display message ("Indiana", Ind_pnt)
4. display_shape (Indiana)
5. all_states = get_all("STATE",

"POLYGON")

© OpenSiresthfap contributors.

-10075877.20386, 389637167719

Camp Flat Rock

neburg
© OfenStresthap contributors)

Columbnss -9651511.84927. 4904644.35239

(@)

Fig. 7.
of Indianapolis.

6. for state in all_states:
7. if touches (state, Ind_pol):
8. display_shape (state)

A related program finds the states through which the
Wabash river flows. The program first gets the geometry
of the river then uses the spatial function intersects to test
against each state boundary in the list as follows.

1. Wabash-river = get ("Wabash",
"RIVER", "POLYLINE")

4. if intersects (state, Wabash-river)

Program 3. This program presents an example of utilizing
get, display_shape, the spatial operator intersects, conditional
and looping structures. The goal of the program is to display
the I-65 Highway segments that intersect the boundary of the
city Indianapolis. The get constucts (Line 1) obtains a list
termed 165_segments that contains all of the [-65 Highway
segments. Refer to Figure 7a for illustration, the 165_segments
spans multiple states (e.g., Michigan, Indiana, ...). Next, the
boundary of Indianapolis city is obtained (Line 2) and the
spatial operator infersects is used inside a looping structure
to filter out the unqualified segments (Lines 4-6). Figure 7b
gives the output of the program.

1. I65_segments = get("I- 65",
"PRIMARY-ROAD", "POLYLINE")

2. Indy_pol = get("Indiana",
"POLYGON")

3. display shape (Indy_pol)

4. for i in range(len(I65_segments)):

5. if intersects (I65_segments([i],

Ind_pol):
6. display_ shape (I65_segments([i])

"CITY",

A related exercise on lists processing finds the states where

(b)

The output of Program 3. The map gives (a) I-65 Highway segments spanning multiple states (b) I-65 Highway segments that intersect the boundary

[-65 Highway passes. Next, for each state in the list the
program prints 1. cities and towns 2. finds the state with the
mimimum and the maximum number of the Highway seg-
ments. Moreover, add_marker and display_message functions
can be used annotate the answers on map.

Program 4. This program presents an example of
utilizing get-all, compute_distance, for loop, lists and the
list sort utility. The goal of the program is to obtain a list
of the geo-coordinate locations of airports in a given area
(e.g., state of Indiana) and find the closest five airports to a
Commuter’s location. The sample program uses the list sort
utility function to identify the closest airports. Next, the user
iterates over closest airports to (1) compute and display the
distance between her location and each airport (2) at each
airport location on map, add the airport name and marker.
Figure 8 gives the output of the program.

1. address = read address("1156 Hillcrest
Rd", "West Lafayette", "IN", "47906")

2. my_location = get_location (address)

display message ("HOME", my_location)

4. airport_list = get_all ("AIRPORT",
"POINT")

5. for i in range(len(airport_list)):

w

6. airport_loc = (airport_1list[i][0],
airport_list[i][1])

7. distance = compute_distance (my_location,
airport_loc)

8. airport_list[i] .append(distance)

9. airport_list = sorted(airport_list,

key =lambda x x[31])
10. for i in range(5):

11. airport_loc = (airport_list[i][O0],
airport_list[i][1])

12. airport_name = airport_list[i] [2]

13. display marker (airport_loc)

14. display_message (airport_name,airport_loc)

15. print airport_name,

A
Lmqqh‘ eartt

Oahnke Arprt 3.73376469788
Rush Arprt 4.49891889
Aretz Arprt 4.74112375265
Halsmer Arprt 6.81153938687

Fig. 8. The output of Program 4. The map gives the locations of the five
closest airports to the HOME location.

airport_list[i][3]

B. Advanced Problems

Interactive maps can be used to construct open-ended
programming problems, i.e., ones that can have multiple
potential solutions. In the following, we present ideas for
some open-ended problems relevant to the LIMO programming
environment.

Program 5. The design of a 5K race route. This problem
has a restriction on the race distance in addition to the start and
end locations. In contrast to the Commute Directions program,
there might be multiple or even no possible solutions.

Program 6. Planning a road trip. This problem involves
choosing the points of interest and allocating the gas budget
that is determined by the total miles to be commuted. Many
compelling questions can be addressed in this setting. For
instance, finding a potential trip route that allows the user to
visit as many places as the budget and miles restrictions allow.

Program 7. Data visualization activities. There are many
interesting real-world activities that involve visualizing data on
maps, e.g., keeping track of social media friends and followers
around the country. Another example is monitoring the local
weather e.g., storms, snow accumulation, and other relevant
weather data.

Program 8. The design of a map game. Hunting for
hidden treasures is a very intriguing game for all ages. Markers
on the map can be used to represent treasures and the goal is
to use the LIMO library to encode the path to each treasure.
In this game, user-defined metrics (e.g., the distance or the
number of turns) can be used as scoring criteria i.e., the value

of a hidden treasure may increase when the user finds a path
that minimizes the total number of turns.

V. CONCLUDING REMARKS

The computer science education community has placed
tremendous resources to raise interest in computing and im-
prove retention. A substantial share of these efforts relies on
developing innovative programming environments that target
the young learners. Along this line, we introduce LIMO-
a web-based environment for learning programming using
activities related to interactive two- and three-dimensional
geographical maps and the operations of moving objects on
the maps. An essential aspect of LIMO is that it provides
a diverse programming library that enables users to process,
customize, and visualize location data on the map. In our view,
the integration of interactive maps, location-based data, and
delivering seamless spatial constructs within an educational
programming environment is a very promising direction. We
plan to develop LIMO further by extending the LIMO library
with additional spatial and visual functions. Moreover, we plan
to conduct a usability study that involves novice users to assess
the efficacy of using LIMO while learning programming.

VI. ACKNOWLEDGEMENTS

This research is supported in part by the National Science
Foundation under Grants III-1117766 and I1I-0964639.

REFERENCES

[1] Computer science teaching association. [Online]. Available:

http://csta.acm.org/Research/sub/HighSchoolSurveys.html
[2] College board. [Online]. Available: http://www.collegeboard.org
[3] J.J. McConnell, “Active learning and its use in computer science.”

[4] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond., “The
scratch programming language and environment.” TOCE, vol. 10(4),
2010.

[5] C. Kelleher, R. Pausch, and S. Kiesler, “Storytelling alice motivates
middle school girls to learn computer programming.” in CHI, 2007, pp.
1455-1464.

[6] T. Lauwers and I. Nourbakhsh., “Designing the finch: Creating a robot
aligned to computer science concepts.” in AAAI, 2010.

[7]1 Scribbler. [Online]. Available: http://www.parallax.com/product/28136

[8] M. Guzdial, “A media computation course for non-majors.” SIGCSE
Bulletin, vol. 35, pp. 104-108, 2003.

[9] S. Matzko and T. A. Davis, “A graphics-based approach to data
structures,” in I7iCSE, 109-113, p. 2008.

[10] J. M. Wing., “Computational thinking.” CACM, vol. 49(3), pp. 33-35,
2006.

[11] M. Kolling, “The greenfoot programming environment.”

[12] S. Cooper and S. Cunningham, “Teaching computer science in contex,”
ACM Inroads, vol. 1(1), 2010.

[13] J. D. Teresco, “Highway data and map visualizations for educational
use,” in SIGCSE, 2012, pp. 553-558.

[14] T. Bartoschek, G. Gundelsweiler, and C. Brox., “Gi@ school: Gi
education and marketing at high schools.” in AGILE, 2007.

[15] T. Bartoschek, H. Bredel, , and M. Forster., “Geospatiallearning@
primaryschool: A minimal gis approach.” in GIScience 2010 extended
abstracts, 2010.

[16] Google web toolkit. [Online]. Available: http://www.gwtproject.org
[17] Open layers. [Online]. Available: http://openlayers.org

[18] Postgresql. [Online]. Available: http://www.postgresql.org

[19] Postgis. [Online]. Available: http://postgis.org

[20]

[21]
[22]

Census tiger. [Online]. Available: http://www.census.gov/geo/maps-
data/data/tiger.html

Us census bureau. [Online]. Available: http://www.census.gov

The limo environment. [Online]. Available:
http://mps.cs.purdue.edu/wiki/index.php/LIMO

