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Abstract

Identifying similarities in large datasets is an essential operation in several
applications such as bioinformatics, pattern recognition, and data integra-
tion. To make a relational database management system similarity-aware,
the core relational operators have to be extended. While similarity-awareness
has been introduced in database engines for relational operators such as joins
and group-by, little has been achieved for relational set operators, namely
Intersection, Difference, and Union. In this paper, we propose to extend
the semantics of relational set operators to take into account the similarity
of values. We develop efficient query processing algorithms for evaluating
them, and implement these operators inside an open-source database sys-
tem, namely PostgreSQL. By extending several queries from the TPC-H
benchmark to include predicates that involve similarity-based set operators,
we perform extensive experiments that demonstrate up to three orders of
magnitude speedup in performance over equivalent queries that only employ
regular operators.

1. Introduction

Diverse applications, e.g., bioinformatics (Narayanan and Karp, 2004),
data compression (Wang et al., 2011), data integration (Schallehn et al.,
2004), and statistical classification (Mills, 2011), require similarity-awareness
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capabilities for identifying similar objects. Several similarity-aware relational
operators that introduce similarity processing at the database engine level
have been proposed in the past. These operators include similarity joins and
similarity group-by’s (Silva et al., 2010b), (Silva et al., 2009), (Silva et al.,
2013). However, little attention has devoted to the class of relational set
operations.

In standard SQL, relational set operations are based on exact matching.
However, assume that we want to find common or different readings that are
produced by two sensors. Assume further that the sensor readings are stored
in two separate tables. The standard SQL set intersect or set difference
(except) operators are not suitable for applying standard set intersection or
set difference on these two sensor-data tables to get the common/different
sensor readings. The reason is that sensor readings may be similar but not
necessarily identical. Thus, it is desirable to perform similarity set operations
on the two sensor-data tables to find similar or different readings. In this
paper, we introduce similarity-aware set intersection, difference, and union
as extended relational database operators.

This paper is a generalization of our previous work (Marri et al., 2014).
In addition to the similarity set intersect operator that we present in (Marri
et al., 2014), in this paper, we introduce the other similarity set operators,
namely similarity set difference and union. We analyze their corresponding
semantics and provide efficient algorithms for each operator. In addition,
we realize these operators inside an open-source relational database manage-
ment systems (DBMS) and provide an extensive experimental study of their
performance.

The contributions of this paper are as follows.

• We introduce the similarity-aware relational set operators that extend
the standard SQL relational set operators to produce results based on
similarity rather than on equality (Section 3).

• We develop efficient algorithms for the proposed similarity-aware rela-
tional set operators (Section 4) and implement them inside PostgreSQL,
an open-source relational database management system (PostgreSQL,
2015) (Section 5).

• We evaluate the performance and the scalability of the proposed algo-
rithms using the TPC-H benchmark (TPC, 2015). We extend several

2



queries from the TPC-H benchmark by including predicates that in-
volve similarity-based set operators. Performance results demonstrate
up to three orders of magnitude enhancement in performance over
equivalent queries that employ only regular relational operators (Sec-
tion 5).

2. Related Work

Similarity-awareness in relational operators has been mainly addressed in
the relational join and group by operators. There has been work in terms of
devising efficient algorithms as well integrating these similarity-aware oper-
ators inside a database engine. Another line of related research deals with
nearest neighbor search as one form of similarity. In this section, we go over
the main contributions in these different facets.

A nearest neighbor (NN) search finds the closest object to a query focal
point. There are mainly two variants, the k-NN (Seidl and Kriegel, 1998) and
all-NN (Clarkson, 1997) operations. A k-NN operation identifies the k closest
data objects to a query focal point, whereas the all-nearest-neighbor opera-
tion finds for each object in the outer table, its closest object(s) in the inner
table. (Lian and Chen, 2008) propose an efficient similarity search algorithm
by employing pruning techniques to find objects in selected subspaces instead
of the full space. Other performance improvement mechanisms are achieved
by exploiting indexing structures, e.g., the M-tree (Ciaccia et al., 1997) and
the slim-tree (Traina Jr et al., 2002).

Similarity join retrieves objects from the two relations that overlap based
on a predefined threshold. Many types of similarity join have been proposed,
e.g., (Yu et al., 2007; Hjaltason and Samet, 1998; Silva et al., 2010b; Arasu
et al., 2006; Böhm and Krebs, 2004). k-nearest neighbor join (kNN join) is
a similarity join that combines each element in a dataset, say R, with the
k-nearest elements in another dataset, say S. Böhm and Krebs (Böhm and
Krebs, 2004) compute the kNN join using the multipage index (MuX). MuX
is an R-tree-based method to solve the optimization conflicts between the
CPU cost and the I/O cost. MuX uses large-sized pages for the input data
to reduce the I/O cost. Then, a secondary structure, namely buckets, with
a much smaller size within pages, is used to optimize the CPU time. Recent
approaches have investigated employing MapReduce to perform kNN join (Lu
et al., 2012) and hamming distance based similarity join (Tang et al., 2015).
The Quickjoin (Jacox and Samet, 2008) is a metric-space algorithm that
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works by processing a nested-loops join on smaller subsets that are obtained
after partitioning the dataset recursively. Join-Around (Silva et al., 2010b)
uses some properties of the distance and kNN joins. In addition to having
each object from the first set join with its closest object in the second set, only
the pairs within a pre-specified distance or radius are reported. There are
several similarity join algorithms that are based on the application of grids
to multidimensional datasets, e.g., Epsilon Grid Order (EGO) (Böhm et al.,
2001) and the Generic External Space Sweep (GESS) (Dittrich and Seeger,
2001). EGO is designed to process the similarity join on massive datasets.
This solution is based on obtaining a sort order of the data objects by setting
an equi-distant grid with cell length ε over the data space and comparing the
grid cells lexicographically. GESS associates with each point an ε-length
hypercube and then executes an intersection join on these hypercubes.

The Trie-Join (Wang et al., 2010), Fast-Join (Wang et al., 2011), ED-
Join (Xiao et al., 2008), Part-Enum (Arasu et al., 2006), and SSjoin (Chaud-
huri et al., 2006) are methods for string similarity joins. In the Trie-Join
approach, a trie-based structure indexes the strings and a sub-trie pruning
technique is used to efficiently perform the similarity join. SSjoin, denoting
set similarity join, presents strings as sets of q-grams. Based on the string
sets, SSjoin applies an overlapping function to exclude the non-matching
string pairs. Then, distance computation is performed on the pairs that
satisfy the overlapping condition. The other string similarity joins, namely,
Part-Enum, Fast-join, and Ed-Join, employ a filter-and-refine framework. In
the filter step, they produce candidate pairs by using string signatures. In
the refine step, the candidate pairs are tested to see whether they are part
of the final result or not.

The similarity group-by operator assigns every object to a group based
on the similarity condition. A similarity-based group-by is useful in data
mining applications, e.g., clustering, and duplicate detection and elimina-
tion. Group-by-Context and Group-by-Similarity are presented in (Schallehn
et al., 2002, 2001, 2004; Schallehn and Sattler, 2003; Tang et al., 2014).
Group-by-Context provides a mechanism for applying user-defined functions
for grouping purposes. In contrast, Group-by-Similarity is a special case of
context-aware grouping that provides the possibility to describe the simi-
larity among tuples and grouping strategies in a descriptive way. In (Silva
et al., 2009), the authors extend the standard database group-by operation
to form groups of similar tuples. They implement three instances of the
similarity grouping operator. Unsupervised Similarity Group-by (U-SGB)
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produces similarity groups based only on the specification of group proper-
ties (compactness and size). Supervised Similarity Group Around (SGB-A)
forms the groups around certain central points of interest and restricts their
extent based on group properties. Supervised SGB using Delimiters (SGB-D)
identifies groups based on a set of delimiting points.

In order to enable similarity queries into an RDBMS, an extension to
SQL to support nearest-neighbor queries is studied in (Gao et al., 2004).
This extension offers the ability to express the nearest neighbor queries in
the RDBMS through a user-defined predicate termed NN-UDP. Another
work (Barioni et al., 2005, 2006) allows expressing similarity queries in SQL
and executing them via a similarity retrieval engine, called SIREN (SImilar-
ity Retrieval ENgine). SIREN is a service implemented between an RDBMS
and the application programs. It processes and answers every similarity-
based SQL command sent from the application. The regular SQL commands
are forwarded to the RDBMS and the answers are sent back from the RDBMS
to the application program. In (Silva et al., 2010a, 2012), extensions to SQL
make the similarity operators first-class database operators by implementing
the operators inside the database engine.

Parallel to the presented work to support similarity-aware operators, we
propose new similarity set operators that extend the standard relational set
operators and that are evaluated using similarity predicates. In contrast to
realizing these operators as UDFs, we realize them inside the database engine.
In addition to enhancement in performance, integrating these operators into
a database engine allows for the interleaving of these similarity operators
with other database operators.

3. Semantics of Similarity-based Relational Set Operators

3.1. Distance and Similarity

Let Q (resp. P ) be a relation with k attributes denoted by a1, a2, . . . , ak
(resp. b) and n (resp. m) tuples A1, A2, . . . , An (resp. B), where the schemas
of P and Q are union compatible as required by standard relational set op-
erations. To express the similarity between two tuples, one may use several
possible functions to describe the distance between each pair of correspond-
ing attribute values, e.g., edit distance, p-norm, or Jaccard distance. Let
D = {dis1, dis2, . . . , disr} be r distance functions. For any dist ∈ D, let
dist(Ai.at, Bj.at) be the distance corresponding to attribute at between the
tuples Ai and Bj using the distance function dist.
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In this paper, we adopt the following similarity predicate: Given r thresh-
olds ε1, ε2, ..., εr that correspond to each of the attributes a1, a2, . . . , ar, re-
spectively, where r ≤ k, we say that two tuples Ai and Bj match iff:
pred(Ai, Bj) = dis1(Ai.a1, Bj.a1) ≤ ε1 AND dis2(Ai.a2, Bj.a2) ≤ ε2 . . .
AND disr(Ai.ar, Bj.ar) ≤ εr.If r < k, the set of thresholds εr+1, . . . , εk are
assumed to have the value zero. An εi of value zero has to be assigned ex-
plicitly if at least one later attribute is assigned an ε >0. Furthermore, an εi
can be assigned an infinity value.

3.2. Similarity-aware Set Intersection

Similarity-aware Set Intersection takes the tuples of two tables as input
and returns only those tuple pairs that are similar within a threshold from
both tables. More formally, given two tables, say P and Q, that have union
compatible schemas, and a similarity predicate pred(A,B), the similarity-
aware set intersection operation is defined as follows.

Q ∩̃ P = {A | A ∈ Q, ∃ B ∈ P : pred(A,B)}
∪

{B | B ∈ P, ∃ A ∈ Q : pred(A,B)}

(1)

Q ∩̃ P has the same schema as Q and P .
Example: Consider the following two union compatible tables Q and P ;

each with one single attribute. If an attribute value x from Q has a similar
attribute value in P , then that value is denoted as x̃. Q = {a, b, c, d, e, f, g, z}
and P = {ã, b̃, c̃, h, i, j, k, l, z} For all calculated pred(t1, t2) such that t1 ∈ P
and t2 ∈ Q, only pred(a, ã), pred(b, b̃), pred(c, c̃), and pred(z, z) evaluate to

true. Thus, P ∩̃ Q = {a, b, c, ã, b̃, c̃, z}.
Three-way similarity-aware set intersection, denoted by ∩̃, is defined as

follows. Let Q, P , and R be three tables such that ∩̃(Q,P,R) = U . Each
tuple in U exists in at least one table and has two similar tuples in the
two other tables such that these two tuples are also similar to each other.
This can easily be extended to more than three tables. We skip the formal
definition of the three-way and multi-way similarity intersect operators for
brevity.
Example: In addition to the tables P and Q, given in the previous example,

let R = {˜̃a, ˜̃b, v, y}. Assume further that pred(a, ˜̃a), pred(ã, ˜̃a), and pred(b,
˜̃
b)

hold. Thus, applying the three-way similarity set intersect operator produces:
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∩̃(P,Q,R)={a, ã, ˜̃a}. Notice that because pred(̃b,
˜̃
b) does not hold, b, b̃,

˜̃
b are

not part of the answer.

3.3. Similarity-aware Set Difference

Similarity-aware Set Difference is an operator that returns the tuples
from one table such that these returned tuples do not have similar tuples
satisfying the similarity predicate in the other table. A Similarity-aware Set
Difference operation of P and Q is denoted by Q −̃ P . Given two tables Q
and P having identical (or compatible) schemas and the similarity predicate
pred(A,B), the Similarity-aware Set Difference operator can be defined as
follows:

Q −̃ P = {A | A ∈ Q ∧ !∃B ∈ P : pred(A,B)} (2)

Example: For the tables from the previous example, the result of the
Similarity-aware Set Difference of Tables Q and P is: Q −̃ P = {e, f, d, g}

3.4. Similarity-aware Set Union

In set theory, the intersection (or difference) of sets is a subset of the
union of these sets. Thus, the similarity union should be defined such that it
includes the results of the similarity set intersection as well as the similarity
set difference of the input sets. Notice that the similarity-aware set union
works in the same way as the standard union. Therefore, it is not discussed in
subsequent sections. Another option that is beyond the scope of this paper is
to leverage (Pola et al., 2013); the duplicate elimination function is extended
to consider the very similar tuples as duplicates; then the similarity union
can apply this similarity operator after combining the tuples from the input
tables.

It can be easily verified that the distributive law applies for similarity
interesection over (similarity) union; i.e., Q ∩̃ (P ∪R) = (Q ∩̃ P )∪ (Q ∩̃ R).
On the other hand, union cannot be distributed over similarity intersection;
i.e., Q ∪ (P ∩̃ R) 6= (Q ∪ P ) ∩̃ (Q ∪ R). This can be seen by considering a
tuple in P which does not have a similar tuple in R but has a similar tuple
in Q. This tuple will be part of the output for Q∪ (P ∩̃ R) but will be part
of the output for (Q ∪ P ) ∩̃ (Q ∪R).
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3.5. Extended SQL Syntax for Similarity-aware Set Operations

We extend SQL to introduce the similarity-aware set operators in the
following way.

( SELECT a1, a2, ... FROM table1

[SETOP]
SELECT a1, a2, ... FROM table2

[SETOP]
...
SELECT a1, a2, ... FROM tablen
) WITHIN VALUES ( ε1,ε2,...)

Where SETOP is either INTERSECT, EXCEPT, or UNION. For example,
multi-way similarity-aware set intersection is expressed by multiple INTER-
SECT keywords between the sub-queries with the same parentheses. The
phrase WITHIN VALUES provides the similarity thresholds for each of
the attributes participating in the similarity set operation.

3.6. Implementation-Independent Similarity-set Operator

It is important for the semantics of the proposed similarity-set opera-
tors to be implementation-independent, that is, regardless of the way each
similarity-set operator is implemented in a database engine, it should return
the same results. To illustrate, assume to the contrary, that the similarity-
aware set intersection is defined as: For each element in one set, say e, report
e if it has a similar element in the other set, and from the other set re-
port only the first matching element. One implementation of this definition
may sort the input sets and start a sequential reading over the other data
set looking for matching tuples. Another implementation may start without
sorting. Typically, these two different implementations will produce different
results. It is important to define similarity set operators in a way that is
implementation independent.

To demonstrate that the semantics of our similarity set operators are
implementation-independent, we express them using standard relational op-
erators that are already known to be implementation-independent. We use
the standard Join (./), Project (Π), and Union (∪) to realize the similar-
ity intersection set operator and hence demonstrate the implementation-
independence of the latter. The similarity intersect operator on two relations
Q and P can be expressed using standard relational operators as illustrated
in Figure 1.
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Result

∪

ΠQ.a1,Q.a2,...

./pred(A,B)

Q P

ΠP.a1,P.a2,...

./pred(A,B)

Q P

Figure 1: Expressing Similarity Set Intersection Using Relational Operators.

This tree applies a theta-join between the two relations using the similar-
ity predicate on all attributes involved in the similarity-aware intersection.
Then, a projection operator is performed twice to separate the joined tuples
into two tables, one corresponding to Q’s tuples and the other to P ’s tuples.
Finally, a union operator is applied to combine the sub-results.

To express the similarity set difference, we use another standard relational
operator, namely Except (−), that excludes the tuples from one table that
appear in the other table. The similarity-aware set difference is expressed
in Figure 2. The leaf level of the tree is a join to combine each tuple in
one table to its matching tuple(s) in the other table based on the similarity
predicate. Then, a projection is performed to get the matching tuples from
only the left relation. Finally, an except operator excludes these matching
tuples from the left relation.

From the above, the two similarity operators can be expressed using stan-
dard relational operators and hence the proposed semantics are necessarily
implementation-independent.

Result

−

Q ΠQ.a1,Q.a2,...

./pred(A,B)

Q P

Figure 2: Expressing Similarity Set Difference Using Relational Operators.
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2.2	   35	  
	  2	   30	  
2.3	   25	  
2.5	   20	  
2.3	   25	  

	  a	   	  b	  

	  0.9	   	  10	  

	  2	   	  30	  

	  2.5	   	  20	  

	  4	   	  40	  

	  a	   	  b	  

	  0.1	   	  5	  

	  1.5	   15	  

	  2.2	   35	  

	  2.3	   25	  

5	   50	  

!!

outer	  

inner	  

prevInner	  

mark	  

	  a	   	  b	  
2	   	  30	  
2.2	   35	  
	  2	   30	  
2.3	   25	  

!!
	  a	   	  b	  
0.5	   	  10	  
2.1	   29	  
	  2.1	   33	  
2.1	   50	  
2.8	   65	  
7	   60	  

mark	  

inner	  

prevInner	  

	  a	   	  b	  
2	   	  30	  
2.2	   35	  
2.1	   33	  

outer	  

	  a	   	  b	  
2	   	  30	  
2.2	   35	  
	  2.1	   33	  
2	   30	  
2.3	   25	  
2.1	   29	  

	  a	   	  b	  
2	   	  30	  
2.1	   29	  
	  2.2	   35	  
2.3	   25	  

LEVEL	  1	  

LEVEL	  2	  

A<er	  repor=ng	  	  
all	  matching	  tuples	  

{	  Consecu=ve	  
	  tuples	  

A<er	  repor=ng	  	  
all	  matching	  tuples	   Filter	  

Q	   P	  

R	  

Figure 3: Sample execution: Sim-Intersect. Threshold list={0.5,5}
4. Algorithms for Realizing the Similarity-aware Set Operators

In this section, we realize the proposed similarity-aware set operators.
The query processing algorithm for a similarity set operator is an extension of
the sort-merge join algorithm. The first step of the algorithm sorts both input
tables unless they are already sorted. We thus assume that our algorithms
work for totally ordered attributes only. In high-level terms, the similarity set
operator compares tuples based on a Mark/Restore mechanism that avoids
the O(n2) complexity that would result from a nested-loops implementation.
To find matching/non-matching tuples between two tables (named the outer
and inner tables), the Mark/Restore mechanism marks the position of a tuple
that may need to be restored later if some condition is satisfied as explained
next.

4.1. Similarity-aware Set Intersection Algorithm

The semantics of the similarity intersect operator is implementation-
independent. Therefore, while it cannot impact the result, the order in which
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relations are processed may impact performance. Thus, the query optimizer
has to make ordering decision based on available statistics. This optimization
is outside the scope of this paper. Our implementation uses left associativ-
ity to process the relations. Since the binary and multi-way similarity set
intersection operators work in the same way, we develop one algorithm for
both.

The result of a multi-way similarity intersect is constructed in stages,
where each stage has a binary operator that produces an intermediate result
that is then sent to the next stage. In the first stage (first level), the inter-
mediate result is constructed so that each similar outer and inner tuples are
consecutive, i.e., are next to each other in the order of emission. Similarly,
results of the second stage are constructed such that the three similar tu-
ples from the three input relations of the multi-way similarity intersect are
produced in consecutive order similar to the order of the relations. In other
words, the first tuple is from the first relation, the second tuple is from the
second relation, and so on.

Algorithm 2 realizes the similarity-aware set intersection operator.
Lines 1 and 2 initialize the outer and inner tuples. Both input relations
are assumed to be sorted. Lines 4-11 advance the current inner and outer
tuple(s) until a match based on the first attribute is found, i.e., when
dist(outer[0], inner[0]) ≤ ε1, where 0 refers to the index of the first attribute.
Once a match is found, Line 12 marks the inner tuple position. Marking a
tuple allows re-positioning the inner cursor to the marked tuple later in the
process.

Algorithm 1 Advance Outer

1: function advanceOuter(outer,level)
2: while level 6= 0 do
3: advance outer
4: level← level − 1
5: end while
6: end function
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Algorithm 2 SimIntersect(inner, outer, nodeLevel)
Input: outer relation, inner relation and the level of the similarity set intersection.
Output: similarity set intersection result.

1: get initial outer tuple
2: get initial inner tuple
3: do forever {
4: while outer[0]! ∼ inner[0] do
5: if outer[0] < inner[0] then
6: level← nodeLevel
7: advanceOuter(outer,level)
8: else
9: advance inner

10: end if
11: end while
12: mark inner position
13: do forever {
14: do{
15: count← compare(outer,inner,nodeLevel)
16: level← nodeLevel
17: if count = level then
18: ReportMatchingTuples(inner,outer,level)
19: end if
20: prevInner ← inner
21: advance inner
22: }
23: while inner[0] ∼ outer[0]
24: level← nodeLevel
25: advanceOuter(outer,level)
26: if outer[0] ∼ prevInner[0] then
27: restore inner position to mark
28: end if
29: break
30: }
31: }

The above procedure is demonstrated in Figure 3 that illustrates the sim-
ilarity intersection of the three tables P , Q, and R. Level 1 performs the
similarity intersect between Q and P , and the result is intersected with R
in Level 2. The threshold is usually determined by the application require-
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ments. For this example, we select a threshold around 10% of the attribute
range of values, i.e., list={0.5,5}. Initially, the outer points to Tuple (0.9,10)
and the inner points to Tuple (0.1,5). Based on the value of the first at-
tribute, the outer and the inner are advanced until the outer reaches (2,30)
and the inner reaches (1.5,15). Then, the inner position is marked because
both tuples match on their first attribute values. Lines 14-23 are executed
to report only the matching tuples while advancing the inner because the
first attribute’s value is within the outer’s corresponding value and assign
to prevInner a copy of the current inner location before advancing the in-
ner cursor. Notice that the matching tuples are reported consecutively, i.e.,
tuple(s) from the outer then tuples from the inner. The reason is that in
the next level, the consecutive tuples will be reported if a tuple of the next
relation is similar to these consecutive similar tuples. This loop finishes when
the inner reaches (5,50) as dist(2, 5) > 0.5. Then, the outer is advanced and
is compared to the previous inner, and if both match on the first attribute,
the inner cursor is restored to the marked position (as in Lines 25-28). In the
running example, this happens when the outer is advanced to tuple (2.5,20)
and is compared to the prevInner’s tuple (2.3,25). The inner is restored to
the marked tuple because dist(2.5, 2.3) ≤ 0.5. The process repeats the search
for other matching tuples.

The functions ADVANCEOUTER, COMPARE, and REPORTMATCH-
INGTUPLES, as presented in Algorithms 1, 3 and 4, respectively, work
based on the level of the similarity intersection operator. In Level1, the outer
is advanced once to perform any processing, while in Level2, the outer is ad-
vanced twice and so on for next levels. When comparing the inner tuple to
the outer, if the process is in Level1, the inner is only compared to the current
outer whereas if the process is in Level2 the inner is compared to the current
and the next outer tuples (i.e., the consecutive similar tuples). Referring
to our example, the inner tuple (2.1,33) is similar to the outer consecutive
tuples (2,30) and (2.2,35) in Level2. Then, REPORTMATCHINGTUPLES
reports them by first reporting the two consecutive outer tuples (2,30) and
(2.2,35), because both are in Level2, this function will report the current
two consecutive tuples, then it will report the current matching inner tuple,
which is (2.1,33).
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Algorithm 3 Compare Tuples

1: function compare(inner,outer,level)
2: mark outer position
3: count← 0
4: while level 6= 0 do
5: if outer ∼ inner then
6: count← count+ 1
7: level← level − 1
8: advance outer
9: else

10: break
11: end if
12: end while
13: restore outer
14: return count
15: end function

Algorithm 4 Report Matching Tuples

1: function ReportMatchingTuples(inner,outer,level)
2: while level 6= 0 do
3: report outer
4: advance outer
5: level← level − 1
6: end while
7: report inner
8: restore outer
9: end function

4.2. Similarity-aware Set Difference Algorithm

Similar to the mechanism for the similarity-aware set intersection, Algo-
rithm 5 applies a Mark/Restore method and uses the first attribute value
as a filter that indicates if there is a possibility of tuples to match. The in-
put is assumed to be two sorted relations, i.e., the outer and inner relations.
Lines 1-2 initialize the outer and inner tuples. The comparison between the
inner and outer tuples starts at Line 4. If initially, the first attribute of
the outer tuple has a greater value than that of the inner’s first attribute,
then the inner is repeatedly advanced until this inner’s first attribute has a
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similar or greater value. If the inner has a greater value, then the outer is
reported since the relation is sorted and definitely there are no similar next
inner tuples as indicated in Lines 19-21.

The other case is presented in Lines 7-17, when the values of the outer first
attribute and the inner first attribute are similar. In this case, the algorithm
marks the inner because if this inner is advanced, there may exist a next
outer tuple that matches the marked inner tuple or next skipped inner tuple.
Therefore, no outer tuple is going to be mistakenly reported. After marking
the inner position, the outer and current inner tuples are compared; if they
do not match on all attributes then the inner is advanced. As the inner’s
first attribute value is similar to that of the outer’s and as they do not fully
match, this procedure will be repeated. As the inner cursor is advanced, it
has to eventually reach one of two cases (1) having the outer matches the
inner; the outer is advanced (outer is skipped since it has a similar tuple) and
the algorithm breaks out of the loop; or (2) having the inner’s first attribute
with a greater value; the outer tuple is reported because no next inner tuple
is going to match. When the loop finishes, Line 22 tests if the algorithm
passes the previous loop (advancing inner and keeping a copy of the previous
inner) by testing the previous inner value. If the algorithm passes this loop
(previous inner is not NULL), then it executes Lines 23-30. First, it has to
check the outer with the current inner as presented in Line 23, if they match,
the outer is advanced. Otherwise, if the outer matches the previous inner,
then the outer gets also advanced. If both cases are not true, the current
outer’s first attribute is compared to the previous inner’s first attribute and
if they are within the assigned threshold, the inner is restored (there is a
possibility that a skipped inner matches the current outer). The process is
repeated looking for other non-matching tuples.

4.3. Complexity Analysis

As mentioned in the previous section, the proposed algorithms assume
sorted inputs, and are based on a Mark/Restore mechanism that may lead
to having a nested loop in the worst case. The complexity is computed as
follows:

• Sorting the input relations: Assume that the outer and inner relations
have n tuples, then the complexity is O(nlogn).

• Processing the similarity set operator: Assume that the n outer tu-
ples each iterates on average over c tuples of the inner relation, then
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Algorithm 5 SimDiff(outer,inner)
Input: outer and inner relations.
Output: similarity set difference result.

1: get initial outer tuple
2: get initial inner tuple
3: do forever {
4: while outer[0] > inner[0] do
5: advance inner
6: end while
7: if outer[0] ∼ inner[0] then
8: mark inner position
9: while outer[0] ∼ inner[0] do

10: if outer ∼ inner then
11: advance outer
12: break
13: else
14: prevInner ← inner
15: advance inner
16: end if
17: end while
18: else
19: report outer
20: advance outer
21: end if
22: if prevInner !=NULL then
23: if outer ∼ inner ‖ outer ∼ prevInner then
24: advance outer
25: else if outer[0] ∼ prevInner[0] then
26: restore inner position
27: end if
28: prevInner ← NULL
29: end if
30: }

the complexity is O(n ∗ c). The best-case scenario happens if c = 1,
the average case is achieved when c is small with respect to the num-
ber of the inner tuples, and the worst case occurs when c = n. The
worst-case scenario typically happens when applying a large similarity
threshold (e.g., a big fraction of the domain range). In our algorithms,
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Figure 4: Example2: Sim-Diff. Threshold list={0.5,5}

the threshold assigned to the first attribute is the one influencing the
performance the most.

• Filtering the output: Filtering is performed by sorting the output from
the previous step, namely the similarity-aware set operation, and then
grouping the duplicates. Assuming that there are k output tuples, then
the complexity is O(klogk + k) or equivalently O(klogk).

Adding the time complexities of the three steps shows that the average case
complexity is O(nlogn), while the worst case complexity is O(n2). Typi-
cally, a threshold value is expected to be small compared to the domain size.
Therefore, the complexity of our algorithms is closer to the average case. In
our experiments, we evaluate the performance on average-case scenarios by
using reasonably small threshold values.
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5. Implementation and Experiments

5.1. Implementation in PostgreSQL

We have modified PostgresSQL to support the similarity set operators.
The changes we made are in the Parser, Optimizer, and Executor modules
of PostgreSQL so they can consume our proposed operators and their corre-
sponding algorithms discussed earlier.

5.1.1. The Parser

We extend the grammar rules to include the defined similarity predicate.
The parse-tree and query-tree data structures are extended to include the
type and parameters, e.g., setOpType, thresholdList, and level. Accord-
ingly, the routines that are responsible for transforming the parse tree into
the query tree are updated to process the new fields in the parse tree.

5.1.2. The Optimizer

The plan for a tree of similarity set operator is given in Figure 5. The set
operation plan node, SetOp node, is modified to have a parameter named
type that indicates if the set operation node is a standard or similarity-based
node, and to accept right and left sub-plans. As the planner finds that the
query node is a similarity-aware set operator node, it determines its position
by checking the operator type (SetOpStartAndEnd, SetOpStart, SetOpIn
or SetOpEnd). Based on the type, the planner decides how the sub-nodes or
upper-nodes should be planned. If the current processed query tree consists
only of one set operator (type=SetOpStartAndEnd), the input relations
have to be sorted. Therefore, the planner plans this part of the query by first
adding a sort node on top of each sub-plan, which are actually sequential
plans that scan the input relations.

Notice that the applied sort node attempts to perform sorting based on
the first attribute of the input relation. These two sort plans are attached as
the left and right child plans of the similarity set operation plan node. On
the top of the similarity set operation plan node, a sort node and a Unique
node are added to produce unique output. The Unique node assumes an
input relation that is sorted on all its attributes, therefore, we apply this
type of sort (Sort All).
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Figure 5: Similarity-aware set operator plan

In the case of a query tree with two set operations, the lower-level set
operator node (that is assigned a SetOpStart type) has the same sub-plans
as the SetOpStartAndEnd. However, since the first set operator sends its
output to another set operator (in this case, SetOpEnd node), it is followed
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by a materialize-plan node that stores the output to be read later by the
next set operation node. Notice that we use a materialize node, not a sort
node, because we need the output order to be preserved to be able to perform
the multi-way similarity-aware intersection. For the node (SetOpEnd), the
planner sorts only its right input (sort node on top of sequential scan node)
and its left plan is already planned (the materialize node that is on top of
the SetOpStart node). Then, the upper node is planned to be a sort node
followed by a Unique node as in the SetOpStartAndEnd node. When having
more than two set operators, the SetOpIn (internal) node exists in the tree.
In this case, the planner sorts only the right input of this node, the same
as the SetOpEnd, the output is materialized to be processed by the next
set operator and finally the left node is planned in a previous stage to be a
materialize node.

5.1.3. The Executor

In contrast to the standard set operator execution node that accepts only
one tuple at a time, we extend the execution node structure SetOpState
to hold references to the outer and inner tuples returned by the left and
right nodes. Other extensions are performed to hold the pointers to previous
inner, marked inner, marked outer, and other parameters. To implement
the similarity-aware set operator in an efficient way, we build a finite state
machine that expresses the states of a similarity set node and their transitions
as given in Figure 6 for similarity set intersection.

5.2. Experiments

In this section, we evaluate the performance of the proposed similarity set
operators and discuss the experimental results. We run the experiments on an
Ubuntu Linux machine with a 2.4GHz Intel Core i5 CPU and 4GB memory.
Experiments are performed on real data sets (Intel Berkeley Research lab,
2015), synthetic data, as well as using the TPC-H benchmark data (TPC,
2015). We first show the effect of varying the number of attributes using
a real dataset. Then, we compare the proposed operator against (i) the
standard set operators to show that the overhead introduced by the operator
is acceptable, and (ii) the equivalent queries that use regular SQL operations
to produce the same results as the corresponding similarity-aware query to
show that our proposed algorithm yields much better performance. The
equivalent queries are presented in Table 1
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Figure 6: Finite state machine for similarity-aware set intersection.

Similarity-aware Set Operator Equivalent Query using Regular Operations
(SELECT a1, . . . , an
FROM tab1
INTERSECT
SELECT a1, . . . , an
FROM tab2)
WITHIN VALUES
(ε1, . . . , εn);

SELECT tab1.a1, . . . , tab1.an
FROM tab1, tab2
WHERE abs(tab1.a1−tab2.a2)≤ε1 . . . and abs(tab1.an−tab2.an)≤εn
UNION
SELECT tab2.a1, . . . , tab2.an
FROM tab1, tab2
WHERE abs(tab1.a1−tab2.a2)≤ε1 . . . and abs(tab1.an−tab2.an)≤εn

(SELECT a1, . . . , an
FROM tab1
EXCEPT
SELECT a1, a2, . . . , an
FROM tab2)
WITHIN VALUES
(ε1, . . . , εn);

SELECT ta1, . . . , tab1.an
FROM tab1
EXCEPT
SELECT tab1.a1, . . . , tab1.an
FROM tab1, tab2
WHERE abs(tab1.a1−tab2.a2)≤ε1 . . . and abs(tab1.an−tab2.an)≤εn

Table 1: Equivalent regular operations.

5.2.1. Impact of the Number of Attributes
We use a public dataset (Intel Berkeley Research lab, 2015) that contains

around 2.3 million readings gathered from 54 sensors deployed in the Intel
Berkeley Research lab. The purpose of this experiment is to study the perfor-
mance of the similarity set intersection and the similarity set difference as the
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number of attributes increases. We conduct this experiment by processing
the following query:

(SELECT epoch, temp, humidity, voltage FROM sensors WHERE moteid=1
INTERSECT/EXCEPT
SELECT epoch, temp, humidity, voltage FROM sensors WHERE moteid=2)
WITHIN VALUES (10,0.1,0.1,0.1);

This query returns the similar readings from mote1 and mote2 in case of
similarity-aware intersection; and the readings from mote1 that do not have
similar readings gathered by mote2 in the case of similarity-aware difference.
We start by querying based on one attribute, namely epoch. Then, we repeat
the experiment by adding one attribute at a time. From Figure 7, we observe
that the execution time is the highest when intersecting two datasets con-
sisting of multiple attributes on their first attribute only and the execution
time decreases as we increase the input attributes of these datasets. The
reasons for this behavior are as follows. Referring to the algorithm for the
similarity-aware set intersection, the number of internal comparison loops is
the same for one or more attributes because the algorithm is based on the
first attribute value. What differs here is the number of the returned match-
ing tuples. When intersecting on one attribute, it is more likely to have more
matching output tuples than when intersecting on two or more attributes.
As the number of the output matching tuples increases, the time spent by
the sort and the duplicate elimination processes increases. The similarity-
aware set difference performs better for one attribute due to the following
reason. If the current outer has a similar value as the current inner (or pre-
vious inner), this outer is skipped. However, if the outer matches only the
first attribute, the algorithm restores the inner position to ensure not having
a previous matching tuple. Though, this procedure is not followed if there
is only one attribute, which represents the entire tuple, because this tuple
either matches or not, so no restoring is performed in this case. Whereas this
procedure is increasingly followed when the tuple consists of a larger number
of attributes.

5.2.2. Similarity with Standard Operators

In this experiment, we study the performance of the proposed similarity
operators against equivalent queries that perform the same functionality and
that produce the same output but that use only standard SQL operators. We
vary the data size and the similarity threshold value and use the TPC-H data
set (TPC, 2015). We run the queries presented in Tables 2 and 3. Through
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Figure 8: Sim-Intersect: Effect of Data Size.
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(a) data size: 4(G) (b) data size: 8(G)

Figure 9: Sim-Intersect: Effect of Similarity Threshold: ε.
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Figure 10: Sim-Difference: Effect of Data Size.

(a) data size: 4(G) (b) data size: 8(G)

Figure 11: Sim-Difference: Effect of Similarity Threshold: ε.
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these queries, we can identify similar/different customer profiles from two
countries. We may consider customer profiles to be defined by the amount
of money spent. For this case, we can run queries that use one attribute
(total price). However, some customers may spend a huge amount of money
on a small quantity of items or may spend a small amount of money on a
large quantity of items. Therefore, we run a more precise query that uses two
attributes (total price and total quantity) to represent the customer profile.
Notice that the assigned threshold to custkey attribute is -1. This value is
used to express the infinity value because we want to count the customers
with similar profiles regardless of whether their customer keys match or not.

We study the similarity set intersection and similarity set difference per-
formance by varying the threshold value from 0.01% of the attribute domain
range to a reasonable value, which is 10% of the domain range. We vary
the threshold of the first attribute only because the algorithm is influenced
highly by its value. The threshold assigned to the second attribute is fixed
to be 0.1% of the attribute domain range. Specifically, the customer total
price domain and total quantity domain use values in the ranges [11020,
6289000] and [10, 4000], respectively. We vary the input size by repeating
the experiment using different TPCH scale factors (from SF=1 to SF=8).

The results are given in Figures 8, 9, 10 and 11. They demonstrate
a substantial query processing speedup of the similarity set intersection and
similarity set difference queries over the equivalent queries that only employ
regular operators. The speedup ranges between 1000 and 4 times for the
similarity set intersection and ranges between 3000 to 47 for the similarity
set difference for similarity threshold values ranging between 0.01% and 10%
of the attribute domain range.

5.2.3. Comparison with Standard Queries

This section evaluates the performance of the similarity set intersection
and similarity set difference operators as compared to the standard SQL set
operators. We compare queries that have similar selectivities (i.e., queries
that produce similar output size for a given input size). We control the
output size by careful generation of synthetic input data. For each operator,
at a specified output size, we generate two tables of 1,000,000 tuples with
uniformly distributed values. We initially fix the output size to 16k and
repeat the experiment by doubling the output size until we reach around
10% of the table size. We start with tables of one attribute and repeat the
experiments with two attributes. The generated tuples in the two tables are
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Operator Type Syntax
Similarity-aware
SetOp, one at-
tribute

(SELECT c acctbal
FROM customer
WHERE c nation=1
INTERSECT/EXCEPT
SELECT c acctbal
FROM customer
WHERE c nation=2)
WITHIN VALUES (ε)

Regular Opera-
tions, one attribute
for sim-intersect

SELECT c1.c acctbal
FROM (SELECT c acctbal FROM customer WHERE c nation=1) c1, (SELECT
c acctbal FROM customer WHERE c nation=2) c2
WHERE abs(c1.c acctbal-c2.c acctbal)≤ ε
UNION
SELECT c2.c acctbal
FROM (SELECT c acctbal FROM customer WHERE c nation=1) c1, (SELECT
c acctbal FROM customer WHERE c nation=2) c2
WHERE abs(c1.c acctbal-c2.c acctbal)≤ ε

Regular Opera-
tions one attribute
for sim-diff

SELECT c acctbal
FROM customer
WHERE c nation=1
EXCEPT
SELECT c1.c acctbal
FROM (SELECT c acctbal FROM customer WHERE c nation=1) c1, (SELECT
c acctbal FROM customer WHERE c nation=2) c2
WHERE abs(c1.c acctbal-c2.c acctbal)≤ ε

Similarity-aware
SetOp, two at-
tributes

SELECT count(*) FROM ((
SELECT p1.priceSum, p1.qtySum, p1.custkey FROM (SELECT
sum(o.o totalprice) as priceSum, sum(q.qty) as qtySum, o.o custkey as custkey
FROM orders o, customer c, (SELECT l orderkey as o key, sum(l quantity) as
qty FROM lineitem GROUP BY l orderkey) q where o.o orderkey=q.o key and
c.c custkey=o.o custkey and c.c nationkey=1 GROUP BY o.o custkey) p1
INTERSECT/EXCEPT
SELECT p2.priceSum,p2.qtySum,p2.custkey
FROM (SELECT sum(o.o totalprice) as priceSum, sum(q.qty) as qtySum,
o.o custkey as custkey FROM orders o, customer c, (SELECT l orderkey as
o key, sum(l quantity) as qty FROM lineitem GROUP BY l orderkey) q where
o.o orderkey=q.o key and c.c custkey=o.o custkey and c.c nationkey=2 GROUP
BY o.o custkey) p2)
WITHIN VALUES (ε1,ε2,-1) ) as result;

Table 2: Queries to evaluate on TPC-H data.

either:

• Matching: To be reported in case of similarity intersection or excluded
in case of similarity difference.

• Non-Matching: To be reported in case of similarity difference and ex-
cluded in case of similarity intersection.

• Overlapping: For these tuples, there exist tuples in the other relation
such that they either match on first attribute or second attribute. These
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Operator Type Syntax
Equivalent Regular
Operations to sim-
intersect

SELECT count(*) FROM
(SELECT p1.priceSum, p1.qtySum, p1.custkey FROM
(SELECT sum(o.o totalprice) as priceSum, sum(q.qty) as qtySum, o.o custkey
as custkey FROM orders o, customer c, (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey) q where
o.o orderkey=q.o key and c.c custkey=o.o custkey and c.c nationkey=1 GROUP
BY o.o custkey) p1,
(SELECT sum(o.o totalprice) as priceSum, sum(q.qty) as qtySum, o.o custkey
as custkey FROM orders o, customer c, (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey) q where
o.o orderkey=q.o key and c.c custkey=o.o custkey and c.c nationkey=2 GROUP
BY o.o custkey) p2
WHERE abs(p1.priceSum-p2.priceSum)≤ ε1 AND abs(p1.qtySum-p2.qtySum)≤
ε2
UNION
SELECT p2.priceSum, p2.qtySum, p2.custkey FROM
(SELECT sum(o.o totalprice) as priceSum, sum(q.qty) as qtySum, o.o custkey
as custkey FROM orders o, customer c, (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey) q where
o.o orderkey=q.o key and c.c custkey=o.o custkey and c.c nationkey=1 GROUP
BY o.o custkey) p1,
(SELECT sum(o.o totalprice) as priceSum, sum(q.qty) as qtySum, o.o custkey
as custkey FROM orders o, customer c, (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey) q where
o.o orderkey=q.o key and c.c custkey=o.o custkey and c.c nationkey=2 GROUP
BY o.o custkey) p2
WHERE abs(p1.priceSum-p2.priceSum)≤ ε1 AND abs(p1.qtySum-p2.qtySum)≤
ε2 ) as result;

Equivalent Regular
Operations to sim-
diff

SELECT count(*) FROM
(SELECT p1.priceSum, p1.qtySum ,p1.custkey
FROM
(SELECT sum(o.o totalprice) as priceSum ,sum(q.qty) as qtySum, o.o custkey
as custkey FROM orders o, customer c , (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey) q where
o.o orderkey=q.o key and c.c custkey=o.o custkey and c.c nationkey=1 GROUP
BY o.o custkey) p1
EXCEPT
SELECT p1.priceSum, p1.qtySum ,p1.custkey FROM
(SELECT sum(o.o totalprice) as priceSum ,sum(q.qty) as qtySum, o.o custkey
as custkey FROM orders o, customer c , (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey) q where
o.o orderkey=q.o key and c.c custkey=o.o custkey and c.c nationkey=1 GROUP
BY o.o custkey) p1,
(SELECT sum(o.o totalprice) as priceSum ,sum(q.qty) as qtySum, o.o custkey
as custkey FROM orders o, customer c , (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey) q where
o.o orderkey=q.o key and c.c custkey=o.o custkey and c.c nationkey=2 GROUP
BY o.o custkey) p2
WHERE abs(p1.priceSum-p2.priceSum)≤ ε1 AND abs(p1.qtySum-p2.qtySum)≤
ε2 ) as result;

Table 3: Queries to evaluate on TPC-H data (cont’d).
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tuples are excluded in case of similarity intersection and reported in
case of similarity difference. The purpose from generating these tuples
is to include the case of having nested loops.

Results are illustrated in Figure 12. The similarity set intersection adds
a 20% overhead in the one-attribute tables experiment. The overhead varies
from 20% to 44% when increasing the output size from 16k to 128k in the
two-attribute experiment. However, the similarity set difference may execute
faster than the standard set difference, and this behavior can be explained
as follows:

• Sorting two lists each of size N/2 is faster than sorting a list of size N.
Here, the standard set difference performs the sorting after combining
the two tables while the similarity set difference performs the sort on
each table separately.

• The similarity difference has a lower probability of performing multiple
inner loops compared to the similarity set intersection. The similarity
set intersection restores the pointer as first attributes match regard-
less of whether the tuples fully match or not. Whereas the similarity
set difference compares the current tuple to the current inner or the
previous inner and if one matches it skips the current outer tuple.

6. Conclusion

In this paper, we introduced the semantics and extended SQL syntax of
the similarity-based set operators. We developed algorithms that are based
on the Mark/Restore mechanism. We implemented these algorithms inside
PostgreSQL and evaluated their performance. Our implementation outper-
forms the queries that produce the same result using only regular operations.
The speedup ranges between 1000 and 4 times for similarity threshold values
ranging between 0.01% and 10% of the attribute domain range. Experimen-
tal results have also demonstrated that the added functionality introduced
by the proposed similarity operators is achieved without a big overhead when
compared to standard operators.
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