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Abstract—The use of large-scale machine learning and data
mining methods is becoming ubiquitous in many application
domains ranging from business intelligence and bioinformatics
to self-driving cars. These methods heavily rely on matrix
computations, and it is hence critical to make these compu-
tations scalable and efficient. These matrix computations are
often complex and involve multiple steps that need to be
optimized and sequenced properly for efficient execution. This
paper presents new efficient and scalable matrix processing
and optimization techniques for in-memory distributed clusters.
The proposed techniques estimate the sparsity of intermediate
matrix-computation results and optimize communication costs.
An evaluation plan generator for complex matrix computations
is introduced as well as a distributed plan optimizer that
exploits dynamic cost-based analysis and rule-based heuristics
to optimize the cost of matrix computations in an in-memory
distributed environment. The result of a matrix operation will
often serve as an input to another matrix operation, thus defining
the matrix data dependencies within a matrix program. The
matrix query plan generator produces query execution plans
that minimize memory usage and communication overhead by
partitioning the matrix based on the data dependencies in the
execution plan. We implemented the proposed matrix processing
and optimization techniques in Spark, a distributed in-memory
computing platform. Experiments on both real and synthetic
data demonstrate that our proposed techniques achieve up to
an order-of-magnitude performance improvement over state-of-
the-art distributed matrix computation systems on a wide range
of applications.

Index Terms—Matrix computation; query optimization; dis-
tributed computing

I. INTRODUCTION

In the era of big data, data scientists and analysts often need
to analyze large volumes of data in a diverse array of appli-
cation such as business intelligence applications, self-driving
cars, social network analysis, web-search, online advertise-
ment bidding, and recommender systems. Most of the algo-
rithms in these applications are expressed using machine learn-
ing (ML) models, e.g., principle component analysis (PCA),
collaborative filtering (CF) and linear regression (LR), that
involve linear algebra operations and heavy matrix compu-
tations as building blocks. Furthermore, many network anal-
ysis algorithms are expressed using matrix operations, e.g.,
PageRank, betweenness centrality, and spectral clustering [21].
Recently, tensor factorization [35] has become a popular
model to capture relationships among multiple entities, which
also extensively relies on matrix computations. Thus, it is
important for these models to have access to an efficient and

scalable execution engine for matrix computations. The advent
of MapReduce [16] has spurred numerous distributed matrix
computation systems, e.g., HAMA [29], Mahout [4], and
SystemML [18]. These systems not only provide comparable
compute efficiency to widely used scientific platforms [18],
e.g., R [6], but also offer better scalability and fault-tolerance.
However, these systems suffer from two main shortcomings.
First, they are unable to reuse intermediate data [33]. The
inability to efficiently leverage intermediate data greatly im-
pedes the performance of further data analysis with matrix
computations. In addition, these systems do not leverage the
power of distributed memory offered by modern hardware.

One promising way to address the above challenges is to
develop an efficient execution engine for large-scale matrix
computations based on an in-memory distributed cluster of
computers. Spark [33] is a computation framework that allows
users to work on distributed in-memory data without worrying
about the data distribution or fault-tolerance. Recently, a
variety of Spark-based systems for matrix computations have
been proposed, e.g., MLI [30], MLlib [5], and DMac [32].
Although addressing several challenges in distributed matrix
computation processing, none of the existing systems leverage
some of the special features of matrix programs to generate
efficient partitioning schemes for matrix data at both the input
and intermediate stages. The special features we are referring
to, and which are prevalent in ML algorithms, include sparse
matrix chain multiplications, low-rank matrix updates, and
invariant expressions in loop structures. Since matrix compu-
tations are inherently memory intensive, an execution engine
that cannot leverage these special features will overwhelm the
hardware capacity.

For illustration, consider Gaussian Non-negative Matrix
Factorization (GNMF) [24], a widely used ML model for
clustering documents and modeling topics of massive text data.
The input to GNMF is a d×w document-term Matrix V, where
d corresponds to the number of documents, and w corresponds
to the number of terms. Each cell Vij records the frequency of
term j in document i. GNMF assumes that Matrix V can be
characterized by p hidden topics such that V can be factorized
into the multiplication of two hidden factor Matrices Wd×p
and Hp×w, i.e., V ≈W×H. In real-world applications, the
number of topics p is chosen between 50 and 200. Typically,
d and w are much larger than p. For example, in the Netflix
contest dataset, d = 480, 189 and w = 17, 770.



Code 1 shows the compute steps of GNMF1. There are
two updates for Matrix H and W during each iteration.
The common matrix multiplication of W ×H is not shared
between the two compute steps (in Lines 7 and 8), because
H is updated during the execution. Observe that the matrix
chain multiplications WT ×W × H and W × H × HT

involve more than one matrix multiplication. The order of
execution on multiple matrix multiplications should be chosen
carefully to avoid generating intermediate matrices of large
sizes. The matrix metadata records several properties, e.g.,
the dimension, the sparsity (dense or sparse), and the storage
format. From the metadata of the input matrices, it should
be possible to infer the dimensions of intermediate matrices.
For computing W ×H×HT , there are two possible execu-
tion orders, i.e., computing W × H first and producing an
intermediate result with 480, 189 × 200 × 17, 770 arithmetic
multiplications; or computing H × HT first and producing
an intermediate result with 200 × 17, 770 × 200 arithmetic
multiplications; assuming the Netflix contest dataset when
p is set to 200. The two execution plans differ greatly in
the dimensions of the intermediate matrices, and result in
different computation costs. The plan generation becomes
even more intricate when sparse matrices are involved. It is
usually difficult to obtain accurate estimates on the sparsity of
the computed intermediate matrices, which is directly related
to the computation cost. Another common feature of matrix
programs is the mix between element-wise operations and
matrix-matrix multiplications. An eager plan generator that
arranges a sequential execution incurs unnecessary memory
overhead for intermediate matrices. An optimizer for matrix
computation is needed to leverage features of matrix programs
that reduce computation and memory overhead.

1 val p = 200 // number of topics
2 val V = loadMatrix("in/V") // read matrix
3 var W = RandomMatrix(V.nrows, p)
4 var H = RandomMatrix(p, V.ncols)
5 val max_iteration = 10
6 for (i <- 0 until max_iteration) {
7 H = H * (W.t %*% V) / (W.t %*% W %*% H)
8 W = W * (V %*% H.t) / (W %*% H %*% H.t)
9 }

10 W.saveAsTextFile("out/W")
11 H.saveAsTextFile("out/H")

Code 1: GNMF algorithm in Scala

In a distributed setup, the communication overhead may
become a bottleneck in matrix computations. Load-balanced
data partitioning schemes, e.g., hash-based schemes, where a
hash function distributes rows evenly across the partitions, may
not be efficient for matrix operations with data dependencies.
Data dependencies between compute steps in a matrix program
are prevalent, e.g., an update of Matrix H (Line 7) is fed to
compute a new update of Matrix W (Line 8). The matrix

1In the script, %∗% denotes matrix-matrix multiplications, and ∗ (/) denotes
element-wise multiplication (division) between two matrices, respectively. W.t
denotes the transpose of Matrix W.

multiplication H×HT will requires re-partitioning if a hash-
based scheme is used for H. Thus, optimizing the data
partitioning of input and intermediate matrices is also a critical
step for efficiently executing matrix programs.

In this paper, we introduce MATFAST, an in-memory dis-
tributed matrix computation processing system. MATFAST has
(1) a matrix program optimizer to identify and leverage special
features of the input matrices to reduce computation cost and
memory footprint, and (2) a matrix data partitioner to mitigate
communication overhead. The matrix program optimizer uses
a cost model and heuristic rules to dynamically generate
an execution plan. MATFAST uses a second cost model to
partition the input and intermediate matrices to minimize com-
munication overhead. To improve compute performance on
local matrices, MATFAST leverages a block-based strategy for
efficient local matrix computations. MATFAST is designed as
a Spark library that uses Spark’s standard dataflow operators.

The main contributions of this paper are as follows:

• We develop MATFAST, a matrix computation system for
efficiently processing and optimizing matrix programs in
a distributed in-memory environment (Section II).

• We introduce a cost model to accurately estimate the
sparsity of sparse matrix multiplications, and propose
heuristic rules to rewrite special features of a matrix
program for mitigating memory footprint (Section III).

• We introduce a second cost model to distribute the
matrix data partitions among various workers for a
communication-efficient execution (Section IV).

• We evaluate MATFAST against state-of-the-art distributed
matrix computation systems using real and synthetic
datasets. Experimental results illustrate up to an order
of magnitude enhancement in performance (Section V).

II. PRELIMINARIES

Notation. We follow the convention that a bold, upper-case
Roman letter, e.g., A, denotes a matrix and regular Roman
letter with subscripts, e.g., Aij represent single elements in a
matrix. A column vector is written in bold, lower-case Roman
letter, e.g., x. A scalar is written in lower-case Greek letter,
e.g., β. A block matrix is written as Aij , where i and j are the
row-block index and column-block index. (Xij) represents a
matrix with element Xij at the i-th row and the j-th column.

Matrix Operators. MATFAST supports a variety of unary
and binary matrix operators. MATFAST supports the unary
matrix transpose B = AT , Bij = Aji,∀i, j. Binary operators
includes matrix-scalar addition, B = A+ β, Bij = Aij + β;
matrix-scalar multiplication, B = A ∗ β, Bij = β ∗ Aij ;
matrix-matrix addition, matrix-matrix element-wise multipli-
cation, matrix-matrix element-wise division, C = A ? B,
Cij = Aij ? Bij , where ? ∈ {+, ∗, /}; and matrix-matrix
multiplication, C = A × B, Cij =

∑
k Aik ∗ Bkj . In

addition, MATFAST supports the following matrix functions:
abs(A) = (|Aij |); max(A) = max{Aij}; min(A) =
min{Aij}; rowSum(A) =

∑
j Aij ; colSum(A) =

∑
iAij ;

and pow(A, p) =
(
Ap

ij

)
∀i, j. By default, matrix transpose
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Fig. 1: An Overview of MATFAST

has the highest precedence, and matrix-matrix multiplication
has a higher precedence over element-wise operators.

A. Overview of Distributed Matrix Computation Processing

To facilitate matrix computation, we realize an execution
plan generator for evaluating matrix expressions over in-
memory matrix data. Given an analytic task, e.g., an ML
algorithm, that involves multiple matrix expressions, these
expressions are extracted and are optimized to generate a
compute- and memory-efficient logical evaluation plan. Then,
we develop a cost model to decide on how the input and
intermediate matrix data are partitioned based on data de-
pendencies. Finally, each worker adopts a block-based matrix
storage to execute computations locally.

Refer to Figure 1 for illustration. MATFAST consists of
three major components: a plan generator for executing matrix
programs, a query optimizer, and a data partitioner. These
components leverage rules to transform a matrix expression
(that is extracted from a high-level application) to an optimized
execution plan in a distributed environment. Figure 1b gives
the workflow among the various components. For each matrix
expression or query (a matrix expression is a query for
MATFAST), the execution plan generator produces an initial
query evaluation plan tree that is pipelined into the query
optimizer to apply cost-based dynamic analysis and rule-based
rewriting heuristics. The matrix data partitioner assigns parti-
tioning schemes to input and intermediate matrices based on a
cost model. For matrix expressions that involve sparse matrix
multiplications, a globally optimal execution plan cannot be
determined by a single pass on the plan tree due to inaccurate
estimates on the computation cost of the intermediate matrices.
MATFAST adopts a greedy approach to progressively generate
an execution order for sparse matrix chain multiplications. The
dashed arrow in Figure 1b refers to the dynamic optimizations
of these cases.

III. EXECUTION PLAN GENERATION

We present how to generate a computation- and
communication-efficient execution plan for a matrix expres-
sion. First, we present a sampling-based technique to estimate
the computation cost for sparse matrix chain multiplications
in a single statement. Next, we introduce rule-based heuristics
to identify special features of a matrix expression for memory
efficiency. Finally, we present a cost model to estimate the
communication overhead for optimizing the data partitioning
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Fig. 2: Computation costs of different plans

of individual input and intermediate matrices in the matrix
expression.

A. Cost-based Dynamic Optimization
Matrix chain multiplication is commonly found in random

walk [23] and matrix factorization [24] applications. We distin-
guish between dense and sparse matrix chain multiplications.
For dense matrix chain multiplications, MATFAST exploits the
classical dynamic programming approach [14] to determine
the optimal order of the matrix pair multiplications. The cost
of multiplying two dense matrices is defined as the number of
arithmetic floating point multiplications. The computation cost
of Am×q×Bq×n can be estimated by mqn floating point mul-
tiplications. However, for sparse matrix chain multiplications,
we cannot apply the same dynamic programming approach,
because the computation cost of intermediate product matrices
would be over-estimated. This cost depends not only on the
dimensions of the input matrices but also on several other
factors, e.g., matrix sparsity and the locations of non-zero
entries. Figure 2 gives the average runtime of various plans
for a sparse matrix chain multiplication of length 4. The
cost varies significantly between the best and the worst plan.
To better estimate this computation cost, various sparsity
estimation methods, e.g., average-case estimation [22] and
worst-case estimation [11], [32], can be used and are explained
below.

Given a sparse matrix, the associated metadata contains the
dimension and sparsity information, i.e., the number of rows
m, columns n, and the sparsity ρ, where ρ = Nnz/(mn),
Nnz is the number of non-zero entries. For matrix-matrix
multiplication Cm×n = Am×q×Bq×n, estimating the sparsity
ρC of Matrix C is difficult, and is usually interpreted as the
probability of non-zero entries in a matrix, under the uniform
distribution assumption. Thus, the average- and worst-case
estimations predict sparsity as ρC = 1 − (1 − ρAρB)

q, and
ρC = min(1, ρAq)×min(1, ρBq), respectively.

For matrices derived from real-world applications, e.g.,
online social networks, non-zero entries usually follow non-
uniform distributions. Average-case estimation works poorly
for these matrices. The node degrees follow a power law
distribution [25], where certain rows and columns contain
substantially more non-zero entries than others. Worst-case
estimation is pessimistic, and leaves little opportunity for
optimization, i.e., it generates a sequential execution plan of
the multiplication chain since the sparsity is estimated to



1 when ρAq ≥ 1 and ρBq ≥ 1. Average- and worst-case
estimations are static because they predict sparsity without
touching the underlying matrices.

Thus, cost estimation for sparse matrix chain multiplications
should conservatively consider data skew. Matrix-matrix mul-
tiplication A×B can be interpreted as the summation of the
vector outer products between corresponding columns from A
and rows from B, i.e.,

A×B =
[
a1 a2 · · · ak

]
×


bT
1

bT
2
...

bT
k

 =

k∑
i=1

aib
T
i .

This matrix multiplication rule also works for block parti-
tioned matrices, where A and B are partitioned into com-
patible blocks, i.e., the number of columns in block Aik

equals the number of rows in block Bkj . The outer-product
perspective provides a different way to estimate the cost
of sparse matrix multiplications. Intuitively, a larger product
value of nnz(ai)×nnz(bT

i ) leads to a denser multiplication
matrix, where nnz(A) denotes the number of non-zero entries
in Matrix A. However, it is unaffordable to calculate each
nnz(ai)× nnz(bT

i ) for large matrices with millions of rows
or columns. The optimizer needs a sketch about the exact cost.

To obtain an accurate cost estimation of sparse matrix chain
multiplications, MATFAST adopts a sampling-based approach
to sketch the positions of the non-zero entries. A good
sampling method needs to capture the densest columns and
rows. If the number of non-zero entries in a row (column)
of a sparse matrix follows a power law distribution, and the
rows (columns) are in the descending order with respect to the
number of nonzero entries, then it is ideal to select the first
few rows and columns for estimating the computation cost of
multiplying the matrices. If no prior knowledge is available
for the input, MATFAST adopts a simple random-sampling
method, e.g., systematic sampling [31], to estimate the com-
putation cost of the multiplication. This cost estimation can be
generalized to block partitioned sparse matrix multiplication
as follows,

Ccomp(A×B) = max
k∈S
{ck ∗ rk},

where ck =
∑
i

nnz(Aik), rk =
∑
j

nnz(Bkj),

where Ccomp(X) denotes the computation cost of calculating
Matrix X, and S is the set of the sampled column (row) block
indices, and ck (rk) is the number of non-zero entries in the k-
th column (row) block. The maximum operator is used because
a larger value of ck ∗ rk indicates a denser product matrix.

Analysis of Cost Estimation with Sampling. If the dis-
tribution of the non-zero entries is provided by a user, MAT-
FAST samples rows (columns) according to the distribution.
If MATFAST samples input matrices with a random sampling
method, the probability of accurately estimating the cost can
be modeled as follows. Suppose there are n columns in Matrix
A, n rows in Matrix B, and w column-row pairs, whose
products achieve the maximum product. The probability that

the maximum product is chosen in s samples is,

P = 1−
(
n− w
s

)(
n

s

)−1
.

By sampling s row-column pairs, there are totally
(
n
s

)
possible

combinations. The chance that the maximum pair is not chosen
among w pairs is

(
n−w
s

)(
n
s

)−1
. Thus, P can be computed by

the complementary event. Similarly, for a block partitioned
matrix, this probability is as follows:

P̂ = 1−
(
n̂− ŵ
s

)(
n̂

s

)−1
,

where n̂ is the number of column (row) blocks of matrix
A (B), n̂ = n/` (` is the block size), ŵ is the number of blocks
that achieves the maximum product value. In practice, P̂ ≥ P
and the probability of accurate cost estimation is improved.

Running Example. Given a sparse matrix chain multipli-
cation A1×A2×A3×A4, MATFAST dynamically generates
an execution plan. Initially, the sampling index set S is de-
termined by a random sampling method. The number of non-
zero entries are collected for the sampled rows and columns.
Next, the costs for pair-wise adjacent matrix multiplications
are computed, i.e., c1 = Ccomp(A1 ×A2), and similarly for
c2 and c3. Say, c2 is the cheapest. The multiplication chain is
computed a step further and is reduced to A1 ×M23 ×A4,
where Mij is the intermediate product matrix of Ai and Aj .
Then, the sampling is conducted again on Mij . Notice that
the sampled statistics can be reused for the existing matrices,
e.g., A1 and A4. The sampling-based cost estimation repeats
until the chain is reduced to a single matrix.

B. Rule-based Heuristics
Matrix expressions have various features that may induce

heavy memory footprints. We identify the following features:
(1) low-rank matrix updates, (2) chains of multiple element-
wise matrix operators, and (3) loop structures that reflect
iterative executions. MATFAST handles these features by using
heuristics to generate a memory-efficient execution plan.

Identifying and Preserving Low-rank Matrix Updates.
Low-rank matrix updates are widely used in ML models due
to the popularity of latent variables [19]. For example, the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [26]
and its variant limited memory BFGS (`-BFGS) are widely
used quasi-Newton methods for solving unconstrained nonlin-
ear optimization problems. Low-rank matrix update is a critical
step of BFGS and is stated as follows:

Bk+1 = Bk +
yk × yT

k

yT
k × sk

− Bk × sk × sTk ×Bk

sTk ×Bk × sk
,

where Bk is the approximate Hessian matrix, sk is the line
search step, and yk is the difference of the gradient. yT

k × sk
and sTk ×Bk× sk are two scalars that can be easily computed
and shared among workers. Notice that there are two low-
rank (rank-1) matrix updates in each iteration, i.e., yk × yT

k

and Bk×sk×sTk ×Bk. An ignorant query optimizer generates
a sequential execution plan for each intermediate matrix, i.e.,
both low-rank update matrices have to be explicitly computed
and materialized during the execution. However, multiplying
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low-rank matrices usually produces dense matrices of very
high dimensions, and incurs heavy memory overhead.

Given a matrix expression, MATFAST analyzes the dimen-
sions of the input matrices, and identifies low-rank matrix
updates. It defers the evaluation of low-rank matrix updates to
reduce the memory footprint. Low-rank matrix updates usually
involve matrix components of low dimensions. Thus, storing
and transmitting the low-rank matrix components are more
efficient than materializing the matrix product. For example,
matrix yk and Bk×sk are two vectors but their corresponding
rank-1 updates yk×yT

k and Bk×sk×sTk ×Bk are dense. To
evaluate the updated Hessian matrix Bk+1, first, we broadcast
vector yk and Bk×sk to all workers. Then, each element of the
low-rank matrix multiplication is computed from the vectors
on the fly without storing the matrix product explicitly.

Folding of Matrix Operators. Matrix element-wise opera-
tions are prevalent in ML algorithms. For GNMF (Code 1), the
algorithm updates Matrix W with element-wise multiplica-
tions and divisions, i.e., W = W∗(V×HT )/(W×H×HT ).
These expressions are generalized as A1 ? A2 ? · · · ? Ak,
where all Ai’s have the same dimension and ?’s are element-
wise operators, i.e., ? ∈ {+, ∗, /}. For the update of W,
A1 = W,A2 = V × HT , and A3 = W × H × HT . To
generate an execution plan for this expression, a naive query
optimizer generates a “left-deep tree” plan. The left part of
Figure 3 shows the left-deep tree plan for updating Matrix
W, where the dashed rectangles represent the subtrees for
A2 and A3. The problem is that the inner nodes of the left-
deep tree plan must be materialized, e.g., W ∗ (V × HT ),
before the element-wise division. A left-deep tree plan induces
multiple compute steps and memory overhead for storing the
intermediate matrices.

Given a matrix expression, MATFAST identifies element-
wise matrix operations and then organizes them in a “bushy
tree” execution plan. A bushy tree plan benefits from circum-
venting materializing the intermediate matrices. The right part
of Figure 3 illustrates the bushy tree plan for updating Matrix
W. To facilitate low-level executions, MATFAST’s optimizer
generates a tree node of a new compound operator in the form
“op<binop_list>”. The compound operator records each
element-wise operator and the corresponding input matrices.
For example, “op<*,/>” in Figure 3 encodes the chain of
matrix element-wise multiplication and division operations
among W, A2, and A3. Notice that the dashed rectangle
also gives an optimized plan for intermediate Matrix A3. The
optimization reflects the execution plan of W ×H×HT .

Eliminating Common and Invariant Expressions. MAT-
FAST identifies and eliminates recurring common subexpres-
sions (CSE) [8]. It recognizes loop-constant subexpressions,
moves them out of the loop, and saves them for reuse. Thus,
redundant computation and memory footprint are mitigated.

C. Plan Generation with Matrix Data Partitioning

When an optimized plan is distributed among a set of
workers, its execution may suffer from heavy communica-
tion overhead due to inconsistent data partitioning schemes
between dependent matrices. For GNMF (Code 1), the com-
putation of H × HT relies on the previous step. If H is
partitioned in the default hash-based scheme, then we need to
repartition H before the actual execution, and hence inducing
extra communication cost. Thus, choosing a consistent matrix
partitioning scheme for an intermediate matrix is essential to
reduce communication overhead. In this section, we intro-
duce MATFAST’s matrix data partitioning schemes. Then, we
present a cost model to efficiently partition matrix data.

Partitioning Schemes. MATFAST supports the following
three matrix data partitioning schemes: Row (“r”), Col-
umn (“c”), and Block-Cyclic (“b-c”). Moreover, the Broad-
cast (“b”) scheme is supported for sharing a matrix of low
dimensions or a single vector. The Row and Column schemes
place all the elements in the same row and column on a worker,
respectively. The Block-Cyclic scheme partitions a matrix into
many more blocks than the number of available workers, and
assigns blocks to workers in a round-robin manner so that
each worker receives several non-adjacent blocks. Different
schemes introduce different communication costs for various
matrix operators. They should be assigned to input matrices
on their own merits. For example, for matrix-matrix mul-
tiplications with cross product plans [18], the Block-Cyclic
scheme incurs extra shuffle cost to aggregate rows (columns)
together. Therefore, we introduce a cost model to evaluate the
communication costs of different partitioning schemes for the
various matrix operators.

Cost Model for Communication. The communication cost
incurred by a matrix expression can be modeled by,

Ccomm(expri) =

m∑
j=1

Ccomm(opj , sji1 [, sji2 ], sjo),

where matrix expression expri contains j matrix operators,
and each operator takes some inputs in schemes sji1 [, sji2 ],
and produces an output in scheme sjo . [, sji2 ] represents
an optional argument as we support both unary and binary
operators. For the unary operator op, Ccomm(op, si, so) is
characterized by the input matrix and partitioning schemes
in Table I, where A is the input matrix, si and so are the
partitioning schemes of the input and the output, respectively,
and N is the number of the workers in the cluster. |A| refers to
the size of Matrix A, i.e., |A| = mn if A is an m-by-n dense
matrix; and it means nnz(A) if A is sparse. If the input matrix
is partitioned in the Row scheme, then the transposed matrix
is naturally partitioned in the Column scheme. Therefore, no
communication cost is introduced. However, if the input matrix



so \ si r c b b-c
r |A| 0 0 |A|
c 0 |A| 0 |A|
b N |A| N |A| 0 N |A|

b-c |A| |A| 0 |A|

TABLE I: Communication cost of matrix transpose

so \ si r c b b-c
r 0 |A| 0 |A|
c |A| 0 0 |A|
b N |A| N |A| 0 N |A|

b-c |A| |A| 0 0

TABLE II: Communication cost of matrix-scalar operators

is partitioned in the Row scheme and the output matrix is also
required to be partitioned in the Row scheme, then the matrix
data must be shuffled to satisfy the requirement. This results
in shuffling the whole matrix. Similarly, for matrix-scalar
operators (e.g., multiplying a matrix by a constant), Table II
gives the communication costs for the various schemes. If the
input and the output are partitioned in the same scheme, then
there is no communication. Notice that no communication is
incurred if the inputs are partitioned in the Broadcast scheme.

Let Ccomm(op, si1, si2, so) be the cost function for a matrix
element-wise operator that is illustrated in Table III. From
the table, the matrix element-wise operators introduce no
communication overhead if both input matrices are partitioned
(1) in the same scheme as the output, (2) at least one of the
inputs is partitioned in the Broadcast scheme and the other
one has the same scheme as the output.

Matrix-matrix multiplication is a bit more complicated. We
do not use the Block-Cyclic scheme as it incurs more overhead
than the other schemes. The cost function is given in Table IV.
Notice that the cells with 0’s in the table indicate no cost,
e.g., when the inputs are partitioned in the Row scheme, the
Broadcast scheme, and the output is in the Row scheme.

With the cost functions introduced above, MATFAST assigns
the partitioning schemes having minimum costs to the input
and intermediate matrices, i.e.,

si1(i2) ← argmin
si1(i2)

Ccomm(op, si1[, si2], so).

MATFAST optimizes the communication cost for a single
operator, and assigns the associated scheme to the input. For
a matrix expression consisting of several operators, the entire
expression is greedily optimized by tuning each operator.

Algorithm for Plan Generation and Partitioning Scheme
Assignment. Algorithm 1 describes plan generation in MAT-
FAST. The input is a matrix program P , and the output
is an optimized execution plan tree T with an optimized
partitioning scheme at each node. MATFAST applies the rule-
based heuristics to each expression of P . If the expression
contains no matrix operator, then the variable is parsed and
associated with the corresponding metadata (Line 30), e.g.,
loading matrix data or storing results to HDFS. If an ex-
pression contains matrix chain multiplications, the execution
plan is determined by the matrix types (Lines 19-26), i.e., a
classical dynamic programming approach is invoked for dense
matrix chains; otherwise, dynamic cost-estimation is triggered

so
(si1, si2)

Communication Cost

r {(r, r), (r, b), (b, r), (b, b)} else
0 |A|

c {(c, c), (c, b), (b, c), (b, b)} else
0 |A|

b (b, b) si1 = si2 or {(b, *), (*, b)} else
0 N |A| (N + 1)|A|

b-c
{(b-c, b-c), (b, b), {(b-c, *), (*, b-c)} else
(b-c, b), (b, b-c)}

0 |A| 2|A|

TABLE III: Communication cost of element-wise operators

for sparse matrix chain multiplications (Line 24). Then, the
optimized expression is inserted into the plan tree T (Line 27).
Finally, Procedure ASSIGNPARITIONSCHEME (Algorithm 2)
assigns partitioning schemes to matrices based on the cost
model. The scheme assignment starts from the root of the
plan tree T . For the root node, the scheme is determined by
the nature of the output, i.e., recurring in a loop, participating
in matrix-matrix multiplications, or only involving in element-
wise operations. For an internal node, the Broadcast scheme is
assigned if it consists of low-rank matrix updates. Otherwise,
an internal node is assigned with a scheme such that it
introduces minimum communication cost (Lines 17 and 20).
After scheme assignment, the execution is organized into
several stages, where the operations are packed together such
that no communication is introduced in the same stage.

GNMF Running Example. The optimized execution plan
tree is given in Figure 4a. Procedure ASSIGNPARTITION-
SCHEME traverses from the root node to all leaf nodes, and
assigns a partitioning scheme to each input and intermediate
matrix. The left and right subtrees are the execution plans for
updating Matrices H, and W, respectively. The dashed arrows
indicate loop execution. The root node Wi participates in
matrix-matrix multiplication and loop execution. The number
of rows in Wi is significantly bigger than that of columns.
Thus, the Row scheme leads to a more balanced data distri-
bution. The cost model for the element-wise operator aids in
assigning the Row schemes to Wi’s child nodes. To determine
the partitioning schemes for V and HT , the procedure checks
the cost model table for matrix-matrix multiplication. The
dimension of V is larger than that of the product V ×HT .
Thus, partitioning both matrices in the Row scheme is cheaper
than other strategies, i.e., 17, 770×200×N . Matrix H×HT is
partitioned in the Broadcast scheme due to its tiny dimension
(200 × 200). Similarly, H uses the Column scheme and HT

uses the Row scheme with no cost. Hi’s subtree is processed
similarly. Figure 4b gives the physical execution in the cluster.
The dashed boxes indicate the execution stages.

IV. LOCAL EXECUTION AND SYSTEM IMPLEMENTATION

Once the query execution with matrix partitioning schemes
is generated, each compute node locally performs matrix
computations. We use block matrices as a basic unit for
manipulation to store matrix data in the distributed memory.
We discuss briefly the system implementation on top of Spark.



(si1, si2)
so (r, r) (r, c) (r, b) (c, r) (c, c) (c, b) (b, r) (b, c) (b, b)
r N |B| N |B| 0 N |AB| N(|A|+ |B|) |A| N |AB| |AB| 0
c N(|A|+ |B|) N |A| |AB| N |AB| N |A| N |AB| |B| 0 0

b min{N |A|+ C(b, r), Nmin{|A|, |B|} N |AB| 2(N − 1)|AB| min{N |A|+ C(b, c), min{|A|+ N |AB|, min{|B|+ N |AB|, N |AB| 0
N |B|+ C(r, b)} +N |AB| N |B|+ C(c, b)} 2(N − 1)|AB|} 2(N − 1)|AB|}

TABLE IV: Communication cost of matrix-matrix multiplications. C(si1, si2) is the cost when the 2 matrices are partitioned
in schemes si1 and si2.
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Fig. 4: Execution plan with matrix data partitioning scheme of GNMF. In the physical plan, the blue lines denote the data
shuffle among different data partitions. The dashed red rectangles denote different stages for the execution on Spark.

A. Physical Storage of a Local Matrix

To better utilize spatial locality of nearby entries in a matrix,
we use block matrices to store matrix data in the distributed
memory. A matrix block is the basic unit for storage and
computation. Figure 5 illustrates that Matrix A is partitioned
into blocks of size 3 × 3, where each block is stored as a
local matrix. For the sake of simplicity, we only consider
square blocks. Figure 5 illustrates an example storage layout
of a block matrix. The block size may not be applicable
to the last row (column) block, e.g., the row block with
ID = 2. To fully exploit the compute power of CPU cores,
MATFAST assigns each core 4 matrix blocks to each worker,
i.e., MN = 4WP`2, where M and N are the dimensions of
the matrix, W is the number of workers, P is the number of
cores per worker, and ` is the block size. To avoid performance
degeneration, MATFAST limits the smallest block size to be
1000, i.e., ` = max

{√
MN
4WP , 1000

}
.
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Fig. 5: Block matrix storage

Each local matrix block consists of two components; a
block ID and matrix data. A block ID is an ordered pair,
i.e., (row-block-ID, column-block-ID). The matrix data field
is a quadruple, 〈matrix format, number of rows, number of
columns, data storage〉. A local matrix block supports dense
and sparse matrix storage formats. For the dense format, an
array of double precision floating point numbers stores all
block entries. For the sparse format, the non-zero entries are
stored in Compressed Sparse Column (CSC), and Compressed
Sparse Row (CSR) format [15]. The compressed format, say
CSC, requires three arrays to store all the data. Array values
stores all the non-zero entries, and Array row index records
the row index for the corresponding entry. Array column
pointers keeps the starting position of each column, and the
last entry records the total number of non-zero entries. Figure 5
illustrates the dense representation of Block A0,1, and the
compressed representation (CSC) of Block A1,1. An m × n
sparse matrix in CSC format requires (2Nnz+n+1)×8 bytes.

For dense matrices, we leverage high-performance dense
matrix kernels to conduct matrix operations locally, e.g., the
LAPACK kernel. Unlike existing systems, e.g., MLlib [5],
MATFAST operates on sparse matrices in compressed for-
mats directly, without converting to their dense counterparts.
Performing local matrix computations in compressed format
mitigates the memory footprint for operations among large
sparse matrices. This is confirmed by our experiments in the
PageRank and sparse matrix chain multiplications case studies.

B. System Design and Implementation

MATFAST is implemented as a library in Spark, and pro-
vides Scala API for conducting distributed matrix computa-



Algorithm 1: Execution plan generation
Input: Matrix program P
Output: Execution plan tree T

1 T ← ∅
2 L← P.getExprList() // expressions in sequential order
3 for expr in L do
4 currExpr ← expr
5 if expr.containsMatrixOperator() then
6 // low-rank matrix preservation
7 if expr.containsLowRankMatrix() then
8 currExpr ← preserveLowRank(currExpr)
9 end

10 // operator folding
11 if expr.elementOperator() > 1 then
12 currExpr ← createCompound(currExpr)
13 end
14 // loop invariant extraction
15 if expr.isLoop() && expr.containsConst() then
16 currExpr ← extractConst(currExpr)
17 end
18 // matrix chain multiplications
19 if expr.containsMatrixChainMult() then
20 if isDenseChain(expr) then
21 currExpr ← denseP lan(currExpr)
22 end
23 else
24 currExpr ← sparseP lan(currExpr)
25 end
26 end
27 T.add(currExpr)
28 end
29 else
30 load data into memory and extract metadata
31 end
32 end
33 assignPartitionScheme(T, null)
34 return T

tions. It uses RDD (Resilient Distributed Datasets) [34] to
represent matrix blocks. A driver program orchestrates the
executions of the various workers in the cluster. The dimension
and sparsity statistics are computed and maintained at the
driver program when a matrix is loaded into memory. The
optimized execution plan and data partitioning schemes are
generated at the driver program as well. The matrix operators
are realized via RDD’s transformation operations, e.g., map,
flatMap, zipPartitions, and reduceByKey. Each local matrix
has a block ID, and is stored as either a DenseMatrix or
a SparseMatrix. Local matrix operations are optimized by
the LAPACK kernel when conducting dense matrix com-
putations. Sparse matrix computations, e.g., multiplication,
are conducted in compressed format. The RDD Partitioner
class is extended with the four Row, Column, Broadcast, and
Block-Cyclic partitioning schemes for distributed matrices.
MATFAST utilizes the caching mechanism of Spark to buffer a
computed matrix when it repeatedly appears in the execution
plan. Spark’s fault tolerance mechanism applies naturally to
MATFAST. The Spark cluster is managed by YARN, and
a failure in the master node is detected and managed by
ZooKeeper. In the case of master node failure, the lost master
node is evicted and a standby node is chosen to recover the

Algorithm 2: ASSIGNPARTITIONSCHEME(T, q)
1 // Plan tree T , output matrix partitioning scheme q
2 // for root node
3 if q = null then
4 if T.type = ‘compound’ && ((isInLoop(T ) &&

!inMatMult(T )) || !isInLoop(T )) then
5 T.scheme← ‘b-c’
6 end
7 else
8 Choose p ∈ {‘r’, ‘c’} based on the metadata of T , and

T.scheme← p
9 end

10 end
11 // for an internal node
12 else if T.scheme = null then
13 if isLowRankMult(T ) || isT inySize(T ) then
14 T.scheme← ‘b’
15 end
16 if op is unary then
17 T.scheme← argmin

si

Ccomm(op, si, q)

18 end
19 else
20 T.scheme← argmin

si1 or si2
Ccomm(op, si1, si2, q), with

respect to the position of T
21 end
22 end
23 for R in T.children do
24 assignPartitionScheme(R, T.scheme)
25 end

master. An open-source version of MATFAST is available at
https://github.com/yuyongyang800/SparkDistributedMatrix.

V. CASE STUDIES AND EXPERIMENTS

We study the performance of the optimized execution plans
by performing matrix operations from various ML applica-
tions. The performance is measured by the average execution
time and communication (shuffle) cost. The experiments are
conducted on two clusters: (1) a 4-node cluster, where one
node has an Intel Xeon(R) E5-2690 CPU, 128GB memory,
and a 2TB disk; the other 3, each has an Intel Xeon(R) E5-
2640 CPU, 64GB memory, and a 2TB disk. The maximal
memory allocation for JVM is 48GB, (2) Hathi cluster has 6
Dell compute nodes. Each has 2 8-core Intel E5-2650v2 CPUs,
32 GB memory, and 48TB of local storage. Spark 1.5.2 runs
on YARN with the default configuration.

Case Studies. We conduct case studies on a series of
ML models and matrix computations with special features on
different datasets. These are PageRank, GNMF, BFGS, sparse
matrix chain multiplications, and a biological data analysis.

Datasets. Our experiments are performed on both real-
world and synthetic datasets. The six real-world datasets
are: soc-pokec2, cit-Patents2, LiveJournal2, Twitter20103, Net-
flix [9], and 1000 Genomes Project sample4. The synthetic
datasets are generated by a sparse matrix generator by varying

2https://snap.stanford.edu/data/
3http://law.di.unimi.it/webdata/twitter-2010/
4http://www.1000genomes.org/

https://github.com/yuyongyang800/SparkDistributedMatrix
https://snap.stanford.edu/data/
http://law.di.unimi.it/webdata/twitter-2010/
http://www.1000genomes.org/


the dimensions, sparsity, skew type, and skew. The skew con-
trols whether non-zero entries distribute in a row- or column-
major way. To generate an m× n matrix with sparsity ρ and
skew s in the column-major fashion, the generator produces
mnρ values in a given range. The mnρ(1−s)j−1’s remaining
elements are assigned randomly to the j-th column, until
all the mnρ values are assigned. The PageRank experiments
on soc-pokec, cit-Patents, LiveJournal, and synthetic sparse
matrix chain multiplications are performed on Hathi. The rest
are conducted on the first cluster as larger datesets require
more memory on each worker node.

Baseline Comparison. Various matrix computation plat-
forms have been recently proposed on Spark. In par-
ticular, we compare MATFAST with MLlib [5] and
SystemML (https://github.com/apache/incubator-systemml,0.
9)[18] in Spark batch mode. To validate the proposed op-
timizations, the results are presented in 2 modes, MatFast
and MatFast(opt), where the optimizations for special matrix
program features and data partitioning schemes are turned off
in MatFast. MatFast partitions matrix data with the default
hash partitioner in Spark. Moreover, the open-source library
ScaLAPACK [7] and the array-based database SciDB [12] are
used for performance evaluation.

Graph #nodes #edges

soc-pokec 1,632,803 30,622,564
cit-Patents 3,774,768 16,518,978

LiveJournal 4,847,571 68,993,773
Twitter2010 41,652,230 1,468,365,182

TABLE V: Statistics of the social network datasets

A. Case Studies

PageRank. The most expensive compute step of PageR-
ank [23] is updating the vector, i.e., xk+1 = αPxk+(1−α)v,
where α is a constant scalar, P the stochastic link matrix, v the
constant restart vector. The computation can be improved by
eliminating constant sub-expressions from the loop, e.g., αP
and (1−α)v. Matrix P is partitioned in the Row scheme and
Vector x and v are partitioned in the Broadcast scheme (from
Table IV) because x and v are matrices of small sizes (two
vectors). Table V lists all the statistics of the social network
datasets used for the PageRank computation. All the graphs
are sparse, and both MatFast(opt) and MatFast compute sparse
matrix multiplications in compressed format. Figure 6a gives
the average execution time for one iteration of PageRank on
various social graph datasets. MATFAST consistently performs
the best. MatFast(opt) outperforms MatFast when rule-based
heuristics are turned on and optimized matrix data partitioning
schemes are adopted. For Dataset Twitter2010, the average ex-
ecution time per iteration in MatFast(opt) is about 340s, while
it needs more than 1000s for MatFast, 1800s for MLlib and
26000s for SystemML in Spark mode. MatFast(opt) caches the
invariant matrices in the distributed memory without repetitive
computations. Figure 6b shows that MatFast(opt) incurs lowest
shuffle costs during each iteration. MatFast(opt) outperforms
the MLlib and SystemML due to the following reasons:
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E
x
e
c
u
ti
o
n
 T

im
e
(s

) 
lo

g
-s

c
a
le

100

101

102

103

104

105

MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(a) Execution time

soc-pokec cit-Patents LiveJournal Twitter2010

A
m

o
u
n
t 
o
f 
D

a
ta

(G
B

) 
lo

g
-s

c
a
le

10-1

100

101

102

MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(b) Communication cost
Fig. 6: PageRank on different real-world datasets
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Fig. 7: GNMF on the Netflix dataset

(1) it identifies and extracts the loop invariant expressions,
and caches the invariants without recomputing, and (2) it
broadcasts the updated PageRank vector based on the cost-
efficient partitioning scheme.

GNMF. The Netflix dataset consists of 100,480,507 ratings
on 17,770 movies from 480,189 customers. In the experiment,
the number of topics p is set to 200. The performance of
GNMF is optimized by folding element-wise matrix operators
and choosing a cost-efficient order for matrix chain multi-
plications. Figure 7a gives the accumulated execution time
for the Netflix dataset over different systems. MatFast(opt)
consistently performs the best, followed by SystemML and
MLlib. The accumulated execution time of MatFast is very
close to that of MLlib. When all the optimization strategies are
turned off, MatFast computes a matrix chain multiplication in
the sequential order that is exactly the same order adopted by
MLlib. The slight performance improvement is due to MatFast
using replication-based matrix multiplications for tiny matrices
and cross-product based matrix multiplications for other input
matrix types. Both MatFast(opt) and SystemML optimize
the dense matrix chain multiplications. MatFast(opt)’s extra
speedup is due to its optimized matrix data partitioning
schemes.

Figure 7b gives the accumulated communication costs for
the Netflix dataset over various systems. MatFast(opt) has
minimal communication overhead due to its effective data
partitioning schemes. SystemML does not capture data de-
pendencies among different matrix operators. Thus, it incurs
high communication overhead. MLlib fails to identify a good
execution plan for matrix chain multiplications, and lacks
efficient data partitioning schemes for matrix data. When
the data partitioning scheme assignment is turned off for
MatFast, the communication overhead is similar to that of

https://github.com/apache/incubator-systemml, 0.9
https://github.com/apache/incubator-systemml, 0.9
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Fig. 8: BFGS on the Netflix dataset

SystemML. The reason is that MatFast adopts similar matrix
multiplications strategies as SystemML.

BFGS. BFGS is widely used for solving unconstrained
nonlinear optimization problems. For the Netflix problem, to
obtain a good approximation of V ≈W ×H, we can define
an objective function as,

f(W,H) = ||V −W ×H||2F + ||W||2F + ||H||2F ,
where ||A||2F =

∑m
i=1

∑n
j=1A

2
ij . The gradient of f(W,H)

is computed by the partial derivatives w.r.t. W and H, i.e.,
∂

∂W
f(W,H) = 2W − 2(V −W ×H)×HT ,

∂

∂H
f(W,H) = 2H− 2WT × (V −W ×H).

A complete gradient for all the variables is derived by concate-
nating the two vectorized partial derivatives. We implement the
key update computation for BFGS on the Netflix dataset.

Figure 8a shows the accumulated execution time for BFGS
update on the various systems. MatFast(opt) spends about 168s
for each iteration using the low-rank matrix update heuris-
tic. By turning off the optimization, MatFast spends about
372s for each iteration by storing the intermediate product
matrices. SystemML performs slightly better than MatFast,
and spends about 292s for each iteration. MLlib performs the
worst and spends more than 2000s for a single iteration. The
reason is that MLlib uses an inefficient strategy for matrix
multiplications by duplicating copies of the input matrices.
Figure 8b gives the communication overhead for each system.
MatFast(opt) shuffles about 2.4GB data during each iteration
to broadcast the updated gradient. Without the optimization for
low-rank matrix update, MatFast shuffles about 14.4GB data
to store intermediate results. SystemML and MatFast generate
a similar amount of data shuffle. MLlib performs the worst
due to its inefficient implementation of matrix multiplications.

Sparse Matrix Chain Multiplications. We generate ran-
dom matrices with the same dimensions to study the effec-
tiveness of the dynamic cost-based optimization strategy. We
generate matrix chains of length 4 (A1 × A2 × A3 × A4).
Each matrix is of size 30,000 × 30,000. The skew type of
input Matrix A1 and A3 are set for column-major fashion,
and those of Matrix A2 and A4 are set for row-major fashion.

We fix the sparsity at ρ = 0.01 and vary the skew
of the generated matrix data. Figure 9 gives the execution
time and communication cost with median, minimum, and
maximum w.r.t. various skew values. OPT is the optimal plan
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Fig. 9: Costs of various skews for sparse matrix multiplication
chain of length 4 with fixed sparsity ρ = 0.01

Sparsity
1e-6 1e-5 1e-4 1e-3

E
x
e
c
u
ti
o
n
 t
im

e
(s

)

0

200

400

600

800

1000

1200

1400

1600

1800

OPT
MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(a) Execution time

Sparsity
1e-6 1e-5 1e-4 1e-3

A
m

o
u
n
t 
o
f 
D

a
ta

(G
B

)

0

20

40

60

80

100

OPT
MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(b) Communication cost
Fig. 10: Costs of different sparsity values for matrix multipli-
cation chains of length 4 with fixed skew s = 0.5

by enumerating all possible execution plans. MLlib evaluates
the sparse matrix chain multiplication in a sequential order.
It incurs high compute time and communication overheads
due to its inability to perform sparse matrix multiplications in
compressed format. MatFast with the optimizations turned off
conducts sparse matrix chain multiplications in a sequential
order. It outperforms MLlib because all the sparse matrix op-
erations are executed over the compressed format. SystemML
exploits worst-case estimation to predict the sparsity of the
intermediate results. When the skew is small, i.e., s = 5e-
4, the non-zero entries follow almost uniform distribution in
the input matrices. The cost of the sequential execution plan is
very close to the optimal. It takes MatFast(opt) extra overhead
to collect the sampling statistics. Thus, MatFast(opt) performs
worse than SystemML for extremely small skew values. How-
ever, dynamic cost estimation pays off as the skew becomes
prominent. When the skew s ≥ 5e-3, the optimal execution is
no longer sequential. MatFast(opt) executes the multiplications
in a nearly optimal order with negligible sampling costs.

Next, we fix the skew at s = 0.5 and vary the sparsity
values. Figure 10 illustrates that when the sparsity value is very
small, i.e., ρ = 1e-6, different plans have similar execution
costs due to the extremely low sparsity in the matrices.
MLlib performs the worst because it does not support sparse
matrix multiplications in compressed format. As the sparsity
increases, MatFast(opt) consistently outperforms SystemML
with less execution time and communication cost. MatFast
with the optimizations turned off performs slightly worse than
SystemML when ρ < 1e-4. The sequential execution order
adopted by MatFast incurs extensive computation costs when
ρ > 1e-4 compared to SystemML.
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Fig. 11: kruX algorithm for eQTL over multiple platforms

Biological Data Analysis. We evaluate matrix computations
in a complex biological data analysis (Expression Quantitative
Trait Loci (eQTL)) using the kruX technique [27]. The inputs
are a genotype matrix (38,187,570 × 462) and an mRNA
expression matrix (23,722 × 462). The output is a dense
matrix (23,722 × 38,187,570) that takes about 7,250 GB of
memory. This is far beyond our clusters’ hardware. Thus, the
whole genotype matrix is partitioned into chunks of size of
170, 000× 462, and the result takes about 32GB per chunk.

The kruX library provides serial implementations on pop-
ular platforms, e.g., Python and R. Figure 11 gives a per-
formance comparison between the different platforms. We
measure performance in terms of execution time per 1K rows
of the result matrix. This metric is an important parameter for
kruX to produce human checkable results. Both Python and
R implementations run in a single node and do not leverage
parallel compute resources. Python and R take 158s and 278s
to produce 1K rows, respectively. In contrast, MatFast(opt)
takes about 4.6s to compute 1K rows, while MatFast, MLlib
and SystemML take 33s, 38.5s, and 20s, respectively, to
compute 1K rows. The kruX algorithm involves various matrix
operators, e.g., dense matrix multiplication with sparse matrix,
matrix transpose, and element-wise operations. With an op-
timized execution plan and matrix data partitioning schemes,
MatFast(opt) outperforms MLlib by 9 times and SystemML by
5 times for computing eQTL. MatFast(opt)’s communication
cost is less than 10% of those for MLlib and SystemML.

Comparison with non-MapReduce-based Systems. To
complete the performance study, we also compare MAT-
FAST with non-MapReduce-based systems, i.e., ScaLA-
PACK and SciDB. ScaLAPACK [13] is a library for high-
performance linear algebra routines on distributed-memory
message-passing computers. It provides interfaces for dis-
tributed matrix computation. SciDB [12] is a scalable database
management system designed for advanced analytics on multi-
dimensional array data model. SciDB provides SQL-like query
interfaces for performing matrix operations, e.g., matrix mul-
tiplication and transpose.

Operation ScaLAPACK SciDB MatFast(opt)

MG-dense 103s 706s 118s
MG-sparse 86s 566s 19s

TABLE VI: Comparison with ScaLAPACK and SciDB

We use matrix-matrix multiplications for comparing the per-
formance of the various systems. We select a dense partition G

from the genotype matrix with dimension 10,000 × 462, and
the whole mRNA sampling Matrix M with dimension 23,722
× 462. To generate a sparse Matrix Gs, we fix the sparsity to
0.01 and randomly select each entry in G with probability of
0.01 to fill out the corresponding position in Gs. For SciDB,
the sparse matrix multiplication is computed with the spgemm
operator. ScaLAPACK, SciDB, and MATFAST all run on the
Hathi cluster, where each node launches eight processes.

Row “MG-dense” in Table VI gives the execution time
for computing M × GT . ScaLAPACK and MatFast(opt)’s
performance are comparable for dense matrix multiplications.
However, ScaLAPACK does not provide any fault tolerance
guarantees for big data computations. MATFAST is built on
top of Spark that naturally supports fault tolerance. SciDB
is slower than the other two systems because it takes care
of data placement on disk. SciDB redistributes the data on
the compute workers to satisfy the requirement of ScaLA-
PACK. SciDB also incurs extra overhead for maintaining
failure handling during execution. Row “MG-sparse” gives
the execution time for computing M × GT

s . MatFast(opt)
performs significantly better than ScaLAPACK and SciDB as
it performs sparse matrix multiplication in compressed format.
Both ScaLAPACK and SciDB are not well tuned for sparse
matrix operations and they treat sparse matrices as dense ones.

VI. RELATED WORK

Matrix computation has been an active research topic for
many years in the high-performance computing (HPC) com-
munity. Existing libraries, e.g., BLAS [1] and LAPACK [3],
provide efficient matrix operators. ScaLAPACK [7] is a
distributed variant of LAPACK built on the SPMD (single
program, multiple data) model, but it lacks support for sparse
matrices, and is prone to machine failures. SPMACHO [22]
optimizes computation costs for sparse matrix chain multipli-
cations in a single machine setting.

Many systems have been proposed to support efficient
matrix computations using Hadoop [2] and Spark [34]. PE-
GASUS [20], a Hadoop-based library, implements a special
class of graph algorithms expressed in repeated matrix-vector
multiplications. However, optimizing a single operation is re-
strictive for various matrix applications. Many systems provide
interfaces for multiple matrix operations, e.g., HAMA [29],
Mahout [4], MLI [30], MadLINQ [28], SystemML [18], and
DMac [32]. HAMA and Mahout provide matrix algorithm im-
plementations using the low-level MapReduce APIs that makes
it hard to realize new algorithms and tune for performance.
MLI is a programming interface built on top of Spark for ML
applications. However, MLI does not provide optimizations
for sequences of matrix computations.

MadLINQ [28] exploits fine-grained pipelining to explore
inter-vertex parallelism. However, it lacks support for efficient
sparse matrix operations. SystemML provides an R-like in-
terface for matrix primitives, and translates the script into a
series of optimized MapReduce jobs on Hadoop. However,
SystemML lacks optimized data partitioning of input and
intermediate matrices. A hybrid parallelization strategy [10]



of combining task and data parallelism is proposed for Sys-
temML to achieve comparable performance to in-memory
computations. Column encoding schemes and operations over
compressed matrices are proposed for SystemML [17] when
data does not fit in memory. DMac [32] leverages matrix
dependencies, but it does not identify the special features of
a matrix program to reduce computation costs and memory
footprints. SciDB [12] supports the array data model, but it
treats each operator individually without tuning for a series
of matrix operators. MATFAST differs from these platforms
in that (1) MATFAST’s optimized execution plan is generated
progressively by leveraging dynamic sampling-based order se-
lection for sparse matrix chain multiplications and rule-based
heuristics for special features of a matrix program, (2) sparse
matrix computations are conducted in the compressed formats,
and (3) matrix data partitioning scheme assignment based on
the optimized plan mitigates communication overhead in the
distributed computing environment.

VII. CONCLUSIONS

MATFAST is an in-memory distributed platform that opti-
mizes query pipelines of matrix operations. MATFAST takes
advantage of both dynamic cost-based analysis and rule-based
heuristics to generate an optimized query execution plan. The
dynamic cost-based analysis leverages a sampling-based tech-
nique to estimate the sparsity of matrix chain multiplications.
The rule-based heuristics explore the special features of a
matrix program and these features are organized in a memory-
efficient way. Furthermore, communication-efficient data parti-
tioning schemes are applied to input and intermediate matrices
based on a cost function for matrix programs. MATFAST has
been implemented as a Spark library. The case studies and
experiments on various matrix programs demonstrate that
MATFAST achieves an order of magnitude performance gain
compared to state-of-the-art systems.
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