Space-partitioning Trees in PostgreSQL.: Realization and Brformance *

Mohamed Y. Eltabakh Ramy Eltarras Walid G. Aref
Computer Science Department, Purdue University
{meltabak, rhassan, ate®cs.purdue.edu

Abstract balanced trees (B+-tree-like trees), e.g., R-trees [732]),
SR-trees [25], and RD-trees [22], while SP-GIiST supports
Many evolving database applications warrant the use the class of space-partitioning trees, e.g., tries [10, 16]
of non-traditional indexing mechanisms beyond B+-trees quadtrees [15, 18, 26, 30], and kd-trees [8]. Both frame-
and hash tables. SP-GIST is an extensible indexing frame-works have internal methods that furnish general database
work that broadens the class of supported indexes to includefunctionalities, e.g., generalized search and insert-algo
disk-based versions of a wide variety of space-partitignin rithms, as well as user-defined external methods and pa-
trees, e.g., disk-based trie variants, quadtree variaatsl rameters that tailor the generalized index into one inganc
kd-trees. This paper presents a serious attempt at imple-index from the corresponding index class. GiST has been
menting and realizing SP-GiST-based indexes inside Posttested in prototype systems, e.g., in Predator [36] and in
greSQL. Several index types are realized inside PostgreSQLPostgreSQL [39], and is not the focus of this study.
facilitated by rapid SP-GiST instantiations. Challenges, The purpose of this study is to demonstrate feasibility
periences, and performance issues are addressed in the paand performance issues of SP-GiST-based indexes. Us-
per. Performance comparisons are conducted from within ing SP-GiST instantiations, several index types are redliz
PostgreSQL to compare update and search performances ofapidly inside PostgreSQL that index string, point, ane lin
SP-GiST-based indexes against the B+-tree and the R-treesegment data types. In addition, several advanced search
for string, point, and line segment data sets. Interesteg r operations are developed inside the SP-GiST framework.
sults that highlight the potential performance gains of SP- In particular, in addition to the standard index maintemanc
GiST-based indexes are presented in the paper. and search mechanisms, we realized the nearest-neighbor
(NN) search algorithm proposed in [23] to support NN
search over space partitioning trees. Performance compar-
1 Introduction isons are conducted from within PostgreSQL to compare
update and search performances of (1) a disk-based trie

Many emerging database applications warrant the use of” ariant_ against the B+-tree for a variety O.f string Qataset
non-traditional indexing mechanisms beyond B+-trees andcollecnons, (2) a disk-based kd-tree variant against the

hash tables. Database vendors have realized this need arlg "€ .for two-dimensional pc_)int dataset collections, and
have initiated efforts to support several non-traditicinal 3) a disk-based quadt_ree variant (the PMR—quadtre_e_ [30))
dexes, e.g., (Oracle [37], and IBM DB2 [1]). against the R-tree for line segment datasets. In addition to

One of the major hurdles in implementing non- the performance gains and the advanced search functionali-

traditional indexes inside a database engine is the verg wid ties provided by .SP'GiST. inglexes, itis the abi_lity to rapid
variety of such indexes. Moreover, there is tremendouspromtype these indexes inside a DBMS that is most attrac-
overhead associated with realizing and integrating any of Ve o) _

these indexes inside the engine. Generalized search trees The contributions of this paper are as follows:

(e.g., GIiST [21] and SP-GIST [3, 4]) are designed to ad-

. 1. We realized SP-GIST inside PostgreSQL to extend
dress this problem.

: . the available access methods to include the class of
Generalized search trees (GIiST [21]) and Space- space-partitioning trees, e.g., quadtrees, tries, kabktre

partitioning G_energlized search trees (SF.)'GiST [3, _4]) are and suffix trees. Our implementation methodology
§oftware_ engineering framewqus fo_r rapid prototyping of makes SP-GiST portable, i.e., SP-GIST is realized in-
indexes inside a database engine. GiST supports the class of side PostgreSQL without recompiling PostgreSQL.

*This work was supported in part by the National Science Fatiod)))))
under Grants 11S-0093116, 11S-0209120, and 0010044-CCR. 2. We extended the index operations in SP-GIST to in-

clude prefix and regular expression mat¢chand a extensible framework for the family of space-partitioning
generic incremental NN search for SP-GiST-based in- trees [3, 4, 19]. Extensible indexing structures are impor-
dexes. tantin the context of object-relational database manageme
systems to support new data types. The implementation of

3. We conducted extensive experiments from withi_n POSt- GiST in Informix Dynamic Server with Universal Data Op-
greSQL to compare the performance of SP-GiST in- tjon (IDS/UDO) is presented in [27]. Commercial databases
dexes against the B+-tree and R-tree. Our results showhaye supported extensible indexing frameworks, e.g., IBM
that a disk-based SP-GiST trie performs more than 2 pg2 [1], and Oracle [37]. The performance of various in-
orders of magnitude better than the B+-tree foegu- ey structures have been studied extensively. For example,
lar expression matckearch, and that a disk-based SP- 3 model for the R-tree performance is proposed in [40]. R-
GiST kd-tree performs more than 300% better than an tree and quadtree variants are compared in [24] and from
R-tree for apoint matchsearch. within Oracle Spatial in [28].

4. We realized a disk-bsed suffix tree index using SP-
GiST to supporsubstring matclsearching. Our exper-
iments demonstrate that the suffix tree performs more
than 3 orders of magnitude better than existing tech-
nigues.

3 Space-partitioning Trees: Overview, Chal-
lenges, and SP-GIiST

The main characteristic of space-partitioning trees is
that they partition the multi-dimensional space into digjo
(non-overlapping) regions. Refer to Figures 1, 2, and 3, for
a few examples of space-partitioning trees. Partitionang c
be either (1) space-driven (e.g., Figure 2), where we decom-
The rest of this paper proceeds as follows. In Section 2, weP0S€ the space into equal-sized partitions regardlessof th
highlight related work. In Section 3, we overview space- data distribution, or (2) data-driven (e.g., Figure 3), vehe
partitioning trees, the challenges they have from databaseVe SPIit the data set into equal portions based on some cri-
indexing point of view, and how these challenges are ad- €& €., based on one of the dimensions.
dressed in SP-GiST. Section 4 describes the implementation 11€ré are many types of trees in the class of space-
of SP-GIST inside PostgreSQL. Section 5 presents a newPartitioning trees that differ from each other in various
nearest-neighbor search functionality for SP-GiST. In-Sec Ways. Without loss of generality, and for the simplicity of
tion 6, we present the performance results of a disk-based"iS discussion, we highlight below some of the important
SP-GiST trie vs. the B+-tree for string data sets, and a disk-variations in the context of the trie data structure.
based SP-GIiST kd-tree and PMR quadtree vs. the R-tree Path Shrinking (refer to Figure 1) - The problem is

5. We made the PostgreSQL version of SP-GIiST
available for public access and download at:
www.cs.purdue.edu/spgist.

for two-dimensional point and line segment data sets, re-
spectively. Section 7 contains concluding remarks.

2 Related Work

Multidimensional searching is a fundamental operation
for many database applications. Several index structures
beyond B-trees [6, 11] and hash tables [14, 31] have been
proposed for multidimensional data, e.g., [17, 29, 33, 35].
These index structures include the R-tree and its variants,
e.g., [7, 20, 34], the quadtree and its variants, e.g., [15,
18, 26, 41], the kd-tree [8] and its disk-based variants,
e.g., [9, 32], and the trie and its variants [2, 10, 16]. Ex-
tensions to the B-tree have been proposed to index multidi-
mensional data, e.g., [5, 13]. Extensible indexing frame-
works have been proposed to instantiate a variety of in-
dex structures in an efficient way and without modifying
the database engine. Extensible indexing frameworks are
first proposed in [38]. GiSTGeneralized Search Treeis
an extensible framework for B-tree-like indexes [21]. SP-
GIST (Space Partitioning Generalized Search Tiessan

that we may want to avoid lengthy and skinny paths
from a root to a leaf. Paths of one child can be col-
lapsed into one node. For example, the Patricia trie
allows for leaf-shrinking (Shrinking single child nodes
at the leaf level nodes, e.g., Figure 1(b)), while it is
also possible to allow for path-shrinking (Shrinking
single child nodes at the non-leaf level nodes, e.qg., Fig-
ure 1(c)), or even no shrinking at all (Figure 1(a)).

Node Shrinking (refer to Figure 2) - The problem is
that with space-driven partitions, some partitions may
end up being empty. So, the question is: Do we al-
low that empty partitions be omitted? For example,
the difference between the standard trie (Figure 2(a))
and the forest trie (Figure 2(b)) is that the latter allows
for empty partitions to be eliminated.

Clustering - This is one of the most serious issues
when addressing disk-based space-partitioning trees.
The problem is that tree nodes do not map directly to
disk pages. Infact, tree nodes are usually much smaller
than disk pages. So, the question is: How do we pack

indexes. To handle the differences among the various SP-
GiST-based indexes, SP-GIST provides a seintdrface
parameters and a set externalmethod interfaces (for the
developers).

The interface parameters include:

X ©

OO aIr

e NodePredicateThis parameter specifies the predicate

Q 0 ‘ type at the index nodes.

G e sta e KeyType:This parameter specifies the data type stored
at the leaf nodes.

@ b) © o NumberofSpacePartitions:This parameter specifies
the number of disjoint partitions produced at each de-
Figure 1. Trie variants. (a) No tree shrink, composition.

(b) Leaf shrink, (c) Path shrink.) . o
e Resolution:This parameter limits the number of space

ledb D] [z | [~ [b[t][z] decompositions and is set depending on the required
granularity.

LD T[] [Halfoll] Geo LM] [=]alol

e PathShrink: This parameter specifies how the index

l tree can shrink.PathShrinktakes one of three possi-
(ko) p> G Git (o ble valuesNeverShrikLeafShrinkandTreeShrink

G) (b)
e NodeShrink: A Boolean parameter that specifies
Figure 2. Trie variants. (a) No node shrink, whether the empty partitions should be kept in the in-
(b) Node shrink. dex tree or not.

_ _ _ o e BucketSize: This parameter specifies the maximum
tree nodes into disk pages with the objective of reduc- number of data items a data node can hold.

ing disk I/Os for tree search and update? An optimal
node-packing algorithm already exists that solves this For example, to instantiate the trie variants presented
issue [12]. in Figure 1(a), (b), and (c), we s@athShrinkto Never-
o] ~_ Shrink LeafShrinkandTreeShrinkrespectively. To instan-
Other characteristics of importance to space-partitionin (ate the trie variants presented in Figures 2(a) and 2(b) we
trees include the bucket size of leaf nodes, the resolutionget NodeShrinko FALSE and TRUE, respectively. In the
of the underlying space, the support for various data types,case of the quadtree and the kd-tree presented in Figures 3,
the splitting of nodes (when to trigger a split and how node NoOfSpacePartitionis set to 4 and 2, respectively.
splitting is performed), and how concurrency control of 11,4 Sp_GiST external methods include the metRioit-
space-partitioning trees is performed. For more discassio Split()to specify how the space is decomposed and how the
onthes_e issues as they relate to space-partitioning trees, data items are distributed over the new partitior&ick-
reader is referred to [3, 4, 19]. Split() is invoked by the internal metholahsert() when a
node-split is needed. Another external method isGoa-
3.1 SP-GIST sistent()method that specifies how to navigate through the
index tree.Consistent()s invoked by the internal methods
SP-GIiST is an extensible indexing framework that Insert()andSearch(Xo guide the tree navigation.
broadens the class of supported indexes to include disk- InTable 1, we illustrate the instantiation of the dictiopar
based versions of a wide variety of space-partitioningstree trie and the kd-tree using SP-GiST. Notice that from the
e.g., disk-based trie variants, quadtree variants, and kd-developer’s point of view, coding of the external methods in

trees. Table 1 is all what the developer needs to provide.
SP-GIiST provides a set dhternal methods that are SP-GIiST provides a default clustering technique that
common for all space-partitioning trees, e.g., theert(), maps index nodes into disk pages [3, 4]. The clustering

Search() andDelete()methods. The internal methods are technique is based on [12] and is proven to generate mini-
the core of SP-GiST and are the same for all SP-GiST-basednum page-height trees.

Toronto

Denver Buffal

Chicag

Atlanta
Mobile

Omaha|

Chicago

Chicago

aPenver
L 4

Toronto
°

Denver Toronto Omaha Mobile

Buffalo Atlanta

[]
Omahal

Denyer obile
Buﬁaﬁ /"\ /
hica
! S
Omaha

Atlant;

’ (]
Miblle

Atlanta

(a) Point quadtree

(b) kd-tree

Figure 3. Example point quadtree and kd-tree.

Toronto

Buffalo

trie

kd-tree

Parameters

PathShrink = TreeShrink, NodeShrink = True
BucketSize =B

NoOfSpacePartitions = 27

NodePredicate = letter or blank

KeyType = String

PathShrink = NeverShrink, NodeShrink = Fal
BucketSize = 1

NoOfSpacePartitions = 2

NodePredicate = “left”, “right”, or blank
KeyType = Point

b€

Consistent(E,q,level)

If (q[level]==E.letter)
OR (E.letter ==blank AND leve}> length(q))
Return True, else Return False

If (level is odd AND g.x satisfies E.p.x)
OR (level is even AND q.y satisfies E.p.y)
Return True, else Return False

PickSplit(P,level)

Find a common prefix among words in P

Put the old point in a child node with

Update level = level + length of the common prefjxpredicate “blank”

Let P predicate = the common prefix
Partition the data strings in P according to
the character values at position “level”
If any data string has length level,
Insert data string in Partition “blank”
If any of the partitions is still over full
Return True, else Return False

Put the new point in a child node with
predicate “left” or “right”
Return False

Table 1. Instantiations of the trie and kd-tree using SP-GiS

4

In this section we discuss implementation issues in re-
alizing SP-GIST inside PostgreSQL. First, we give an

Implementation Issues

T.

tions that perform the functionality of that access

method. These functions are call@tterface routines

overview of the main extensible features of PostgreSQL.

Then, we discuss the implementation of SP-GiST.
4.1 PostgreSQL Extensibility

PostgreSQL is an open-source object-relational database
management system. PostgreSQL is extensible as most
of its functionalities are table-driven.
the available data types, access methods, operatorsisetc.,
stored in the system catalog tables. PostgreSQL incorpo-
rates user-defined functions into the engine through dynam-
ically loadable modules, e.g., shared libraries. Thesd-loa

The interface routines can be implemented as loadable
modules.

e Defining New Operators: In the operator definition,

we specify the data types on which the operator works.

Information albou

able modules can be used to implement the functionality

of new operators or access methods. The implementation4
of SP-GIST inside PostgreSQL makes use of the following

features:

e Defining New Interface Routines: Each access

We also specify a set of properties that the query opti-
mizer can use in evaluating the access methods.

Defining New Operator Classes: Operator classes
specify the data type and the operators on which a cer-
tain access method can work. In addition to linking an
access method with data types and operators, operator
classes allow users to define a set of functions called
support functionsthat are used by the access method
to perform internal functions.

2 Realizing SP-GIST Inside PostgreSQL

The access methods currently supported by PostgreSQL

(version 8.0.1) areHeap accessSequential scan over the

method in PostgreSQL has a set of associated func-relation,B+-tree: The defaultindex access methédiree:

INSERT INTO pgam VALUES (‘SRGIST’, 0, 20, 20, 0, 'f", 'f", 'f’, 't’, ‘spgistgettuple’,

this access method

SP-GiST insert ‘spgistinsert’, ‘spgistbeginscan’, ‘spgistrescan’,gsgiendscan’, ‘spgistmarkpos’,
statement ‘spgistrestrpos’, ‘spgistbuild’, ‘spgistbulkdelete; ; ‘spgistcostestimate’);
Column name Column description SP-GIST function/value

amname Name of the access method SPGIST

amowner User ID of the owner 0

amstrategies Max number of operator strategies for | 20

this access method
amsupport Max number of support functions for 20

amorderstrategy | The strategy number for entries ordering 0

amcanunique Support unique index flag FALSE
amcanmulticol Support multicolumn flag FALSE
amindexnulls Support null entries flag FALSE
amconcurrent Support concurrent update flag TRUE
amgettuple “Next valid tuple” function ‘spgistgettuple’
aminsert “Insert this tuple” function ‘spgistinsert’
ambeginscan “Start new scan” function ‘spgistbeginscan’
amrescan “Restart this scan” function ‘spgistrescan’
amendscan “End this scan” function ‘spgistendscan’
ammarkpos “Mark current scan position” function ‘spgistmarkpos’
amrestrpos “Restore marked scan position” function] ‘spgistrestrpos’
ambuild “Build new index” function ‘spgistbuild’
ambulkdelete Bulk-delete function ‘spgistbulkdelete’

amvacuumcleanup Post-VACUUM cleanup function

amcostestimate Function to estimate cost of an index scanspgistcostestimate’

Table 2. pg .am catalog table entry for SP-GiST.

To support queries on spatial datégash: To support sim-

ple equality queriesiST: Generalized index framework
for the B-tree-like structures. By realizing SP-GiST iresid
PostgreSQL, we extend the access methods to include the
family of space-partitioning trees, e.g., the kd-tree,ttheg

the quadtree, and their variants. In the following, we déscu
how we implement SP-GIiST inside PostgreSQL.

e Realization of SP-GIiST Internal Methods

SP-GIiST internal methods are the core part of
the SP-GIST framework, and they are shared among
all the space partitioning tree structures. To realize
the internal methods, we use PostgreSQL access
methods’ interface routines (See Section 4.1). A
new row is inserted into thpg.amtable to introduce
SP-GiST to PostgreSQL as a new access method (See
Table 2). pgamis a system catalog table that stores
the information about the available access methods.
The internal methods are defined as the interface
routines of that access method.

In Table 2 we illustrate thepg.am table entry for
SP-GIiST. The name of the new access method is set
to 'SP.GIST'. We set the maximum number of the
possible strategies (i.e., operators linked to an access

method), and the maximum number of possible sup-
port functions to 20. Since SP-GIST index entries
do not follow a certain order, we set the value of the
amorderstrategyo 0. This value means that there is no
strategy for ordering the index entries. The SP-GIST
internal methods (e.gspgistgettuple(), spgistinsert()
etc.) are assigned to the corresponding interface rou-
tine columns (e.gamgettuple, aminsereétc.).

Estimating the cost of the SP-GIST index scan is per-
formed by functionspgistcostestimatg(yvhich is as-
signed to colummamcostestimatespgistcostestimate()
uses the generic cost estimate functions provided by
PostgreSQL. Four cost parameters are estimated:

1. Index selectivity: The index selectivity is the es-
timated fraction of the underlying table rows that
will be retrieved during the index scan. The se-
lectivity depends on the operator being used in
the query. We associate with each operator that
we define, a procedure that estimates the selec-
tivity of that operator.

2. Index correlation: The index correlation is set
to 0 because there is no correlation between the
index order and the underlying table order.

Query type

Query Semantic

Equality query

Return the keys that exactly match the query predicate.

Prefix query

Return the keys that have a prefix that matches the querycatedi

Regular expression quer|

y Return the keys that match the query regular expressiongated

Substring query

Return the keys that have a substring that matches the queticpte.

Range query

Return the keys that are within the query predicate range.

NN query

Return the keys sorted based on their distances from thg guedicate.

Table 3. The semantic of the query types.

trie

kd-tree

Equality operator=’

Prefix match operatof?="

Equality operator@’

inside operator A’

CREATE OPERATOR = (
leftarg = VARCHAR,
rightarg = VARCHAR,
procedure = triewordequal,
commutator = =,
restrict = egsel,

CREATE OPERATOR ?= (
leftarg = VARCHAR,
rightarg = VARCHAR,
procedure = trieworgrefix,
restrict = likesel,

CREATE OPERATOR @ (
leftarg = POINT,
rightarg = POINT,
procedure = kdpoinequal,
commutator = @,
restrict = egsel,

CREATE OPERATORA (
leftarg = POINT,
rightarg = BOX,
procedure = kdpoininside,
restrict = contsel,

);)

);)

Table 4. The trie and kd-tree operator definitions.

3. Index startup cost: The startup cost is the CPU
cost of evaluating any complex expressions that
are arguments to the index. These expressions
are evaluated once at the beginning of the index
scan.

4. Index total cost: The total cost is the sum of the
startup cost plus the disk I/O cost. The estimated
disk 1/0 cost depends on the index selectivity and
the index size.

SP-GIST internal methods are implemented as a dy-
namically loadable module that is loaded by the Post-
greSQL dynamic loader when the index is first used.
Therefore, the implementation of the internal methods
is completely portable, and does not even require re-
compiling PostgreSQL’s code.

Definition of SP-GiST Operators

The various SP-GIiST index structures have dif-
ferent sets of operators (external methods) to work
on. For the trie index structure, we define the three
operators; ‘=', ‘#=', and ‘?=", to support the equality
queries, the prefix queries, and the regular expression
queries, respectively. For the regular expression
gueries, the SP-GIST trie supports currently, the wild-
card character; ‘?’, that matches any single character.
In the case of the kd-tree, we define two operators;
‘@’ and ‘A, to support the equality and range queries,
respectively. We define one operator for the suffix tree,
i.e., ‘@=', to support the substring match queries. The
nearest-neighbor search, N§e¢arch, (see Section 5) is
defined as the operator ‘@@’ that can be called from
the SQL like all other operators. The NN distance

function for each index structure is defined in the
NN_Consistent() external method (see Section 5).
For example, the kd-tree and quadtree may use the
Euclidean distance function, while the trie may use
the Hamming distance function. The semantics of the
query types are given in Table 3.

An example of the operators’ definitions is given in
Table 4. Each operator is linked to a procedure
that performs the operator’s functionality, e.dyi-
word_equal(), kdpointequal() Other properties can
be defined for each operator. For example, che-
mutatorclause specifies the operator that the query op-
timizer should use, if it decides to switch the original
operator’'s arguments.

Estimating the selectivity of each operator is per-
formed by the procedures defined in thstrictclause.

We use procedures provided by PostgreSQL, e.g.,
egsel(), contsel(), likesel()egsel()estimates the se-
lectivity of the equality operatorscontsel()estimates

the selectivity of the containment operators (i.e., range
search), whereatikesel() estimates the selectivity of
the similarity operators, e.d.JKE operator. The query
optimizer uses these procedures to estimate the index
selectivity and the index scan cost.

Realization of SP-GIiST External Methods

The SP-GiST external methods and interface pa-
rameters capture the differences among the various
types of SP-GIST index structures. To realize the
external methods inside PostgreSQL, we use the
access methods’ support functions. The support
functions are provided within the definition of the

operator classes (See Section 4.1). The definitions

trie kd-tree

suffix tree

CREATE OPERATOR CLASS
SP.GIiST._trie
FOR TYPE VARCHAR
USING SPGIST
AS OPERATOR 1 =,
AS OPERATOR 2 #=,
AS OPERATOR 3 7=,
AS OPERATOR 20 @@,
FUNCTION 1 trie consistent,
FUNCTION 2 trie picksplit,
FUNCTION 3 trie NN_consistent,
FUNCTION 4 trie getparameters;

SP.GiST_kdtree
FOR TYPE POINT
USING SPGIST

OPERATOR 2A,

CREATE OPERATOR CLASS

AS OPERATOR 1 @,

OPERATOR 20 @@,

FUNCTION 1 kdtreeconsistent,
FUNCTION 2 kdtreepicksplit,
FUNCTION 3 kdtreeNN_consistent,
FUNCTION 4 kdtreegetparameters;

CREATE OPERATOR CLASS
SP.GiST_suffix
FOR TYPE VARCHAR
USING SRGIST
AS OPERATOR 1 @=,
AS OPERATOR 20 @@,
FUNCTION 1 suffixconsistent,
FUNCTION 2 suffixpicksplit,
FUNCTION 3 suffix NN_consistent;
FUNCTION 4 suffixgetparameters;

Table 5. The trie, kd-tree, and suffix tree operator class defi nitions.
trie kd-tree

CREATE TABLE word data (CREATE TABLE pointdata (
Index name VARCHAR(50), id INT); p POINT , id INT);
creation

CREATE INDEX sptrie_index ON worddata CREATE INDEX spkdtreeindex ON pointdata

USING SPGIST (name SEGIST_trie); USING SPGIST (p SRGIST_kdtree);

equality query regular expression query equality query range query

Queries | SELECT * SELECT * SELECT * SELECT *

FROM word data FROM word data FROM pointdata FROM pointdata

WHERE name = ‘random’;| WHERE name ?=‘r?nd?m’j WHERE p @ ‘(0,1)"; | WHERE pA ‘(0,0,5,5)’;

Table 6. The trie and kd-tree index creation and querying.

of the trie operator classSP-GiSTtrie), the kd-tree
operator class3P-GiSTkdtreg, and the suffix tree
operator classP-GiSTsuffi¥y are given in Table 5.
SP-GiSTirie, and SP-GiSTsuffix use the data type
VARCHAR, whereas,SP-GiSTkdtree uses the data
type POINT.

PostgreSQL Engine

PostgreSQL Function Manager ‘

R

Two examples for creating and querying the trie and
kd-tree indexes are given in Table 6. ThiSING
clause in theCREATE INDEXstatement specifies
the name of the access method to be used, that is
‘SP_GIST’ in our case. We then specify the column
name to be indexed, and the corresponding operator
class.

SP-GIiST external methods are implemented as a dy-
namically loadable module that is loaded when the in-
dex is first used.

In Figure 4, we illustrate the architecture of SP-GIST
inside PostgreSQL. The implementation of the SP-
GIST core (i.e., internal methods) is fully isolated from
the implementation of the SP-GIST extensions (i.e.,

external methods). The link between the core and the5

extensions is achieved through PostgreSQL operator
classes. The communication among the methods is

PostgreSQL SP_Gist_kdtree T l
Storage Manager Operator class ﬂ Operator class
LY

] SP-Gist
SP-Gist kd-tree
Internal

Methods

PostgreSQL
storage interface

Figure 4. SP-GIST architecture inside Post-
greSQL.

extensions are loadable modules. That is, SP-GIiST
can be realized inside PostgreSQL without recompil-

ing PostgreSQL. We extended the internal methods to
include functions, i.e.PostgreSQL storage interface

to communicate with the PostgreSQL storage manager
for the allocation and retrieval of disk pages.

New Nearest-Neighbor Search in SP-GiST

We extended SP-GIiST core internal methods to support

through the PostgreSQL function manager. The porta-incremental nearest-neighbor searching. Our extension is
bility is achieved because both the SP-GIST core andan adaptation of the algorithm in [23]. The outline of the

Insert the root node into the priority queue with minimum distance
While (priority queue is not empty)

- Retrieve the top of the queue into P
- If (P is an object) Then
- Report P as the next NN to the query object
- Else
- Compute the minimum distances between
the query object and P’s children
- Insert P’s children into their proper positions
in the queue based on their distances

Figure 5. Generic NN algorithm for SP-GiST

algorithm s givenin Figure 5. The algorithm prioritizesian
visits the space partitions based on their minimum distance
from the query object. The partitions are maintained sorted
in increasing order of their distances in a priority queue.
Initially, the queue contains the root node with a minimum
distance of 0. The algorithm recursively replaces the nbde a
the top of the queue by the node’s children (inserted in their
proper positions based on their minimum distances) until a
database object reaches the top of the queue. This object i
reported as the next NN to the query object. The algorithm

External methods code
trie | kd-tree | P quadtree| PMR quadtree
No. of lines 580 551 562 602
% of total lines| 8.2 7.8 8.0 8.6

Table 7. Number and percentage of external
methods’ code lines

Search Time Relative Performance
175

150

125 4

100

75 A

50

(B-tree/trie) x 100

—a— Exact Match Performance

25 ---a--- Prefix Match Performance

M 4M 8M 16M 32M

Relation Size (No. of Keys)

Figure 6. The search performance of the B+-
tree vs. the patricia trie.

S
6 Experiments

is incremental and can be used in a query pipeline such that

every call to the algorithm (get-next) returns the next NN
object.

To make the algorithm generic for all space-patrtitioning

Our main objective of this paper is not to show the su-
periority of one index structure over the other as we believe
that the index performance depends heavily on the nature
of data and the type of applications. Our objectives are

trees (not only for quadtrees and kd-trees), we modified theto demonstrate the extensibility of SP-GiST to rapidly pro-

algorithm. For example, in the case of a trie, the NN algo-

totype new indexes and to highlight several strengths and

rithm has to remember the minimum distance of the parentweaknesses of SP-GiST indexes over B+-tree and R-tree in-

node in order to compute the minimum distance of the chil-
dren. The NN algorithm stores the minimum distance of a
parent in the priority queue and uses it to compute the min-

dexes.
We realized the following index structures in Post-
greSQL using SP-GIST: a disk-based patricia trie, kd-tree,

imum distances of the parents children and stores them inpoint quadtree, PMR quadtree, and suffix tree. In Table 7,

the priority queue entries of each child.

To realize the NN search algorithm inside SP-GIiST, we
added the new internal meth®dN Search()and the new
external methodNN_Consistent() NN_Search()maintains
a priority queue by retrieving the top of the quebe to
either reportP as the next NN to the query object i
is a database object or replagewith its child nodes if
P is an index node.NN_Search()is aware of neither the
index data type nor how the distance function is com-
puted. NN_Consistent()guides theNN_Search()method
during the searchNN_Consistent()computes and returns

we provide the number and percentage of code lines that we
added to realize these index structures. The table illiestra
that the external methods that a developer needs to provide
represent less than 10% of the total index coding. The other
90% of the code is provided as the SP-GIST core.

For the experimental results, we conduct our experi-
ments from within PostgreSQL. We compare the perfor-
mance of the SP-GIST trie against the performance of the
B+-tree in the context of text string data. We also compare
the performance of the SP-GIST kd-tree and PMR quadtree
against the performance of the R-tree in the context of point
and line segment data, respectively. We compare the perfor-

the minimum distances between the query object and the in-mance of the suffix tree against sequential scanning because

dex nodes or database objects sent to it fidhSearch()

the other access methods do not support the substring match

NN_Search()then sorts these nodes and objects based oroperations.

their distances and insert them into their proper positions
the priority queue.

For the patricia trie versus B+-tree experiments, we gen-
erate datasets with size ranges from 500K words to 32M

Regular Exp. Search Time Performance

3
2.5
s 2
5 ./,
L
é, 1.5
o
— 1 4 .
8 —a— Search Relative performance ‘
—
0.5
0 ! ! T T

2M 4M 8M 16M 32M
Relation Size (No. of Keys)

Figure 7. The regular exp. search of the B+-
tree vs. the patricia trie.

Relative Index Size
100

80 -\.\'\'\'—‘“'

60

40

(B-treeftrie) x 100

20 } —a— Relative Index Size ‘7

0 T T T T T T
500K M 2M aM 8M 16M 32M

Relation Size (No. of Keys)

Trie Search Time Standard Deviation

m Average titne
3.5 1 | Standard deviation

Time (ms)
N
v w
!
e
—a—
—a—
—a—

N
a—

15 T T T T
2M 4M 8M 16M 32M

Relation Size (No. of Keys)

Figure 10. The index size of the B+-tree vs.
the trie.

Figure 8. The trie search time standard devia-
tion.

Max Tree Node-Height

8

74 —e— B-tree -
---m--- SP-Gist trie

6 4 L]

Max Height
w b
L]

500K M 2M 4aMm 8M 16M 32M
Relation Size (No. of Keys)

Insert Time Relative Performance
100

60

40

(B-treeftrie) x 100

20 } —e— Insert RelativePerformance

0 T T T T T T
500K M 2M 4M 8M 16M 32M

No. of Inserted Keys

Figure 11. The maximum tree height in nodes.

Figure 9. The insert performance of the B+-
tree vs. the trie.

Max Tree Page-Height

Max Height
N

—e— B-tree

---m--- SP-Gist trie

500K iM 2M 4M 8M 16M 32M

Relation Size (No. of Keys)

Figure 12. The maximum tree height in pages.

words. The word size (key Size) is UnifOfm'Y distributed Insertion and Search Time Relative Performance

over the range [1, 15], and the alphabet letters are from 'a’ 350

to 'z’. Our experiments illustrate that the trie has a better L 30 e

search performance than that of the B+-tree. In Figures 6 | S 2s0 —e—PoniSearch H

and 7, we demonstrate the performance of three search op- % 200 ---a-- Range Search ||

erationsiexact matchprefix match andregular expression 3 150 o insent

match Figure 6 illustrates that in the case of theact match 8 100l A . Ao Ao A

search, the trie has more than 150% search time improve- | ¢ o S S o ommmee oo o

ment over the B+-tree, and that, the trie scales better espe-

cially with the increase in the data size. Tk sk
For theregular expression matckearch (Figure 7), our Relation Size (No. of Keys)

experiments illustrate that the trie achieves more than 2 or

ders of magnitude search time improvement. Recall that, Figure 13. The performance of the R-tree vs.
we only allow for the wildcard, ‘?’, that matches any sin- the kd-tree.

gle character. We notice that the B+-tree performance is
very sensitive to the positions of the wildcard; *?’ in the Relative Index Size
search string. For example, if ‘?' appears in the 2nd or the 100
3rd positions, then the B+-tree performance will degrade
significantly. Moreover, if ‘?' appears as the first charac-
ter in the search string, then the B+-tree index will not be
used at all, and a sequential scan is performed. The reason
for this sensitivity is that the B+-tree makes use only of the
search string’s prefix that proceeds any wildcards. In con-
trast, the trie makes use of any non-wildcard characters in ‘ ‘ ‘ ‘
the search string to navigate in the index tree. Therefbee, t 250K 500K M 2m am
trie is much more tolerant for thegular expression match Relation Size (No. of Keys)
gueries. For example, to search for expression ‘?at?r’, the
trie matches all the entries of the tree root node with *?’, Figure 14. The index size of the R-tree vs. the
then the 2nd and the 3rd tree levels are filtered based on let- 4_tree.

ters ‘a’ and ‘t’, respectively. At the 4th level of the trebet

entries of the reached nodes are matched with *?’, and therng+-tree page-height. Recall that SP-GiST uses a cluster-
the 5th level is filtered based on letter ‘r". ing technique that tries to minimize the tree maximum page

For theprefix matchsearch (Figure 6), our experiments height, which is effective.
illustrate that the B+-tree has a better performance ower th For the comparison of the kd-tree against the R-tree,
trie. The reason is that having the keys sorted in the B+-treewe conduct our experiments over two-dimensional point
leaf nodes, allows the B+-tree to answer firefix match datasets. The x-axis and the y-axis range from 0 to 100. We
queries efficiently. In contrast, the trie has to fork the-nav generate datasets of sizes that range from 250K to 4M two-
igation in the index tree in order to reach all the keys that dimensional points. We illustrate in Figure 13 the search
match the search string. performance under two search operations;gbit match

In Figure 8, we present the search time standard devia-search and theangesearch. The figure illustrates that the
tion of the trie in the case of thexact matcisearch to study ~ SP-GiST kd-tree has more than 300% search time improve-
the effect of the variation of the tree depth on the search ment over the R-tree in the case of th@nt matchsearch,
performance. The insertion time and the index size of the and it has around 125% performance gain in the case of the
B+-tree and the trie are presented in Figures 9 and 10, refangesearch. However, the experiments demonstrate that
spectively. The figures demonstrate that the B+-tree scaleghe R-tree has a better insertion time (Figure 13) and a bet-
better with respect to both factors. The reason is that theter index size (Figure 14) than the kd-tree. The reason is
trie involves a higher number of nodes and a higher numberthat the kd-tree is a binary search tree, where the node size
of node splits than the B+-tree because the trie node size(BucketSizgis 1, and almost every insert results in a node
is much smaller than the B+-tree node size. In Figures 11split. Therefore, the number of the kd-tree nodes is very
and 12, we present the B+-tree and the trie maximum treelarge, and in order for the storage clustering technique to
height in nodes and pages, respectively. Although the triereduce the tree page-height, it has to degrade the index page
has higher maximum node-height, as it is an unbalancedutilization, which results in an increase in the index size.
tree, the maximum page-height is almost the same as the In Figure 15, we compare the performance of the

80

60

40

(R-tree/kd-tree) x 100

20 } —s— Relative Index Size —

Insertion and Search Time Relative Performance NN Search Performance
100000

0.8

x——mm ==X

e e S 10000 -
0.6

o
=t
x
o —
= g 1000 1
k=]
€ 04 £
o g 100
E ---m--- Insert =
3 02 —a— Exact Match Search [10 —=— kd-tree |
L ---o--- pquadtree
= — ¢ — Range Search — —a— — trie
@
~ 0 . . i i 1 : : : : : :
250K 500K 1M 2M aM 8 16 32 64 128 256 512 1024
Relation Size (No. of Keys) Number of NNs
Figure 15. The performance of the R-tree vs. Figure 17. NN search performance

the PMR quadtree. L .
q execution time taken to answer the NN query. We inserted

Substring Match Search Time Performance 2Mtuples in each relation and varied the required number of

NNs from 8 to 1024 (we assume that the number of required

— NNs is controlled by the application using cursors). The fig-

/ ure illustrates that NN search over the trie is much slower
than that over the kd-tree and point quadtree. The reason

is that the comparison in the case of the trie is performed
| "+ Search Relative performance ‘ character by c_:haracter which makes the convergence to the

next NN relatively slow. Whereas, the comparison in the
case of the kd-tree and quadtree is Partition-based. More-
ok om0k v am over, the Hamming distance has a slow progress compared
Relation Size (No. of Keys) to the Euclidean distance as the Hamming distance updates

the distance value with either 0 or 1 only at each step.

w
o

w

N
«
.

N
L

[

o
o

LOG10 (sequential/suffix-tree)
-
(5]

o

Figure 16. Suffix tree search performance.
7 Conclusion and Future Research

PMR quadtree against the R-tree for indexing line segment
datasets. We measured the insertion time andettset We presented a serious attempt at implementing and re-
matchandrange (window)search times. The figure illus- alizing SP-GiST-based indexes inside PostgreSQL. We re-
trates that the R-tree has a better insertion and searabrperf alized several index structures, i.e., the trie, kd-treentp
mance than that of the PMR quadtree. The relative insertionquadtree, PMR quadtree, and suffix tree. Several imple-
performance between the R-tree and the PMR quadtree isnentation challenges, experiences, and performancesissue
almost constant with the increase in the data size. Whereasare addressed in the paper. Our experiments demonstrate
the search performance gap decreases with the increase afe potential gain of the SP-GiST indexes. For example, the
the data size. Similar results are presented in [28]. The ex-trie has more than 150% search performance improvement
periments in [28] show that under certain query types, e.g.,over the B+-tree in the case of te&act matctsearch, and
overlap queriesthe quadtree may have a better search per-it has more than 2 orders of magnitude search performance
formance than the R-tree. gain over the B+-tree in the case of tiegular expression
With respect to the suffix tree performance, we illustrate matchsearch. The kd-tree also has more than 300% search
in Figure 16, the significant performance gain of using the performance improvement over the R-tree in the case of the
suffix tree index to support theubstring matclsearch. The point matchsearch. Several advanced search operations are
performance gain is more than 3 orders of magnitude overrealized inside SP-GiST such as NN search and substring
the sequential scan search. The other index types do notnatch operations. In addition to the performance gains and
support thesubstring matclsearch. the advanced search functionalities provided by SP-GiST
We measured the NN search performance for various SP4indexes, it is the ability to rapidly prototype these indexe
GIiST instantiations of index structures, mainly, the kektr inside a DBMS that is most attractive. Our experiments
the point quadtree, and the patricia trie. The Euclidean dis demonstrate also several weaknesses of SP-GIiST indexes
tance is used as the distance function for the kd-tree andhat need to be addressed in future research. For example,
point quadtree, while the Hamming distance is used as thethe insertion time and the index size of the SP-GiST indexes
distance function for the trie. In Figure 17, we illustratet involve higher overhead than those of the B+-tree and the

R-tree indexes.

References

(1]
(2]

(3]
(4]

(5]
(6]
(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]
(16]
(17]
(18]

(19]

(20]

(21]

Ibm corp.: Ibm db2 universal database application dgwel
ment guide, vs. 6. 1999.

W. G. Aref, D. Barbara, and P. Vallabhaneni. The hand-
written trie: Indexing electronic ink. I'SIGMOD, pages
151-162, 1995.

W. G. Aref and I. F. llyas. An extensible index for spatial
databases. I8SDBM pages 49-58, 2001.

W. G. Aref and I. F. llyas. Sp-gist: An extensible databas
index for supporting space partitioning trees. Intell. Inf.
Syst, 17(2-3):215-240, 2001.

R. Bayer. The universal b-tree for multidimensional émel
ing: general concepts. WWCA pages 198-209, 1997.

R. Bayer and E. M. McCreight. Organization and mainte-
nance of large ordered indiceActa Inf, 1:173-189, 1972.

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The
r* -tree: An efficient robust access method for points and
rectangles. II'5IGMOD Record, 19(2)1990.

J. L. Bentley. Multidimensional binary search treesdise
for associative searchingCommun. ACM18(9):509-517,
1975.

J. L. Bentley. Multidimensional binary search trees in
database applicationtEEE TSE-5:333-3401979.

W. A. Burkhard. Hashing and trie algorithms for par-
tial match retrieval. ACM Transactions Database Systems
1(2):175-187, 1976.

D. Comer. Ubiquitous b-tree. ACM Comput. Sury.
11(2):121-137, 1979.

A. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan.- Clus
tering techniques for minimizing external path length. In
VLDB, pages 342—-353, 1996.

G. Evangelidis, D. B. Lomet, and B. Salzberg. The hb-
pi-tree: A multi-attribute index supporting concurrenos;
covery and node consolidation/LDB Journal 6(1):1-25,
1997.

R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strdfit.
tendible hashinga fast access method for dynamic fNEM
Trans. Database Sys#(3):315-344, 1979.

R. A. Finkel and J. L. Bentley. Quad trees: A data strretu
for retrieval on composite key#\cta Inf, 4:1-9, 1974.

E. Fredkin. Trie memory.Commun. ACM3(9):490-499,
1960.

V. Gaede and O. G&nther. Multidimensional access meth
ods. ACM Comput. Sury30(2):170-231, 1998.

I. Gargantini. An effective way to represent quadtréesm-
mun. ACM 25(12):905-910, 1982.

T. M. Ghanem, R. Shah, M. F. Mokbel, W. G. Aref, and
J. S. Vitter. Bulk operations for space-partitioning trebs
ICDE, pages 29-40, 2004.

A. Guttman. R-trees: A dynamic index structure for glat
searching. ISIGMOD, pages 47-57, 1984.

J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Gener
alized search trees for database systemsVLUBB, pages
562-573, 1995.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

J. M. Hellerstein and A. Pfeffer. The rd-tree: An indésus-
ture for sets. InUniv. of Wisconsin CS Technical Report
1252 1994.

G. R. Hjaltason and H. Samet. Ranking in spatial datehas
In SDD, pages 83-95, 1995.

E. G. Hoel and H. Samet. A qualitative comparison study
of data structures for large line segment databaseSI®a
MOD, pages 205-214, 1992.

N. Katayama and S. Satoh. The sr-tree: an index streictur
for high-dimensional nearest neighbor queriesSIGMOD,
pages 369-380, 1997.

G. Kedem. The quad-cif tree: A data structure for hierar
chical on-line algorithms. 119th conference on Design au-
tomation pages 352-357, 1982.

M. Kornacker. High-performance extensible indexinign
VLDB, pages 699-708, 1999.

R. Kothuri, S. Ravada, and D. Abugov. Quadtree ande-tre
indexes in oracle spatial: a comparison using gis data. In
SIGMOD, pages 546-557, 2002.

R. K. Kothuri and S. Ravada. Efficient processing of éarg
spatial queries using interior approximations. $$TD
pages 404-424, 2001.

R. C. Nelson and H. Samet. A population analysis for-hier
archical data structures. BIGMOD, pages 270-277, 1987.
R. L. Rivest. Partial-match retrieval algorithms. $hAM J.
Comput., 5(1)pages 19-50, 1976.

J. T. Robinson. The k-d-b-tree: a search structuredogd
multidimensional dynamic indexes. 8iGMOD, pages 10—
18, 1981.

H. Samet. The design and analysis of spatial data strest

In Addison-Wesley, Reading M2990.

T. K. Sellis, N. Roussopoulos, and C. Faloutsos. Theee:

A dynamic index for multi-dimensional objects. WLDB,
pages 507-518, 1987.

T. K. Sellis, N. Roussopoulos, and C. Faloutsos. Miitid
mensional access methods: Trees have grown everywhere.
In VLDB, pages 13-14, 1997.

P. Seshadri. Predator: A resource for database résehrc
SIGMOD Record, 27(1)pages 16-20, 1998.

J. Srinivasan, R. Murthy, S. Sundara, N. Agarwal, an0é.
Fazio. Extensible indexing: a framework for integrating
domain-specific indexing schemes into oracle8i.|IODE,
pages 91-100, 2000.

M. Stonebraker. Inclusion of new types in relationatada
base systems. WCDE, pages 262269, 1986.

M. Stonebraker and G. Kemnitz. The postgres next gen-
eration database management syster@ommun. ACM
34(10):78-92, 1991.

Y. Theodoridis and T. Sellis. A model for the predictioh
r-tree performance. IRODS pages 161-171, 1996.

F. Wang. Relational-linear quadtree approach for two-
dimensional spatial representation and manipulafittDE,
3(1):118-122, 1991.

