
R-trees with Update Memos∗

Xiaopeng Xiong Walid G. Aref

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398

{xxiong, aref}@cs.purdue.edu

Abstract

The problem of frequently updating multi-dimensional
indexes arises in many location-dependent applications.
While the R-tree and its variants are one of the dominant
choices for indexing multi-dimensional objects, the R-tree
exhibits inferior performance in the presence of frequent up-
dates. In this paper, we present an R-tree variant, termed
the RUM-tree (stands for R-tree with Update Memo) that
minimizes the cost of object updates. The RUM-tree pro-
cesses updates in a memo-based approach that avoids disk
accesses for purging old entries during an update process.
Therefore, the cost of an update operation in the RUM-tree
reduces to the cost of only an insert operation. The removal
of old object entries is carried out by a garbage cleaner in-
side the RUM-tree. In this paper, we present the details of
the RUM-tree and study its properties. Theoretical analy-
sis and experimental evaluation demonstrate that the RUM-
tree outperforms other R-tree variants by up to a factor of
eight in scenarios with frequent updates.

1. Introduction

With the advances in positioning systems and wireless
devices, spatial locations of moving objects can be sampled
continuously to database servers. Many emerging applica-
tions require to maintain the latest positions of moving ob-
jects. In addition, a variety of potential applications rely on
monitoring multidimensional items that are sampled contin-
uously. Considering the fact that every sampled data value
results in an update to the underlying database server, it is
essential to develop spatial indexes that can handle frequent
updates in efficient and scalable manners.

As one of the primary choices for indexing low-
dimensional spatial data, the R-tree [5] and the R*-
tree [1] exhibit satisfactory search performance in tradi-

∗ This work was supported in part by the National Science Foundation
under Grants IIS-0093116 and IIS-0209120.

tional databases when updates are infrequent. However, due
to the costly update operation, R-trees are not practically
applicable to situations with enormous amounts of updates.
Improving the R-trees’ update performance is an important
yet challenging issue.

Two approaches exist to process updates in R-trees,
namely, the top-down approach and the bottom-up ap-
proach. The top-down approach was originally proposed
in [5] and has been adopted in many R-tree variants,
e.g., [1, 7, 16, 20]. This approach treats an update as a
combination of a separate deletion and a separate insertion.
Firstly, the R-tree is searched from the root to the leaves to
locate and delete the data item to be updated. Given the fact
that R-tree nodes may overlap each other, such search pro-
cess is expensive as it may follow multiple paths before it
gets to the right data item. After the deletion of the old data
item, a single-path insertion procedure is invoked to insert
the new data item into the R-tree. Figure 1(a) illustrates the
top-down update process. The top-down approach is rather
costly due to the expensive search operation.

Recently, new approaches for updating R-trees in a
bottom-up manner have been proposed [9, 10]. The bottom-
up approach starts the update process from the leaf node of
the data item to be updated. The bottom-up approach tries to
insert the new entry into the original leaf node or to the sib-
ling node of the original leaf node. For fast access of the
leaf node of a data item, a secondary index such as a direct
link [9] or a hash table [10] is maintained on the identifiers
for all objects. Figure 1(b) illustrates the bottom-up update
process. The bottom-up approach exhibits better update per-
formance than the top-down approach when the change in
an object between two consecutive updates is small. In this
case, the new data item is likely to remain in the same leaf
node. However, the performance of the bottom-up approach
degrades quickly when the change between consecutive up-
dates becomes large. Moreover, a secondary index may not
fit in memory due to its large size, which may incur signif-
icant maintenance overhead to the update procedure. Note
that the secondary index needs to be updated whenever an
object moves from one leaf node to another.



3. (Optional)
Insert in Top−down

A Secondary Index

Incoming updates

R−tree

R−tree
2. Search & Update

Incoming updates

Update 2nd Index
4. (Optional)1. Search 2nd Index

2. Insert

(Multiple Paths)

1. Search
&

Delete (Single Path)

(b) Bottom−up Update Approach(a) Top−down Update Approach

Figure 1. Existing R-tree Update Approaches

In this paper, we propose the RUM-tree (stands for R-
tree with Update Memo), an R-tree variant that handles
object updates efficiently. A memo-based update approach
is utilized to minimize the update cost in the RUM-tree.
The memo-based update approach enhances the R-tree by
an Update Memo structure. The Update Memo eliminates
the need to delete the old data item from the index dur-
ing an update. Therefore, the total cost for update process-
ing is reduced dramatically. Compared to R-trees with a
top-down or a bottom-up update approach, the RUM-tree
has the following distinguishing advantages: (1) The RUM-
tree achieves significantly lower update cost while offering
similar search performance; (2) The update memo is much
smaller than the secondary index used by other approaches.
The garbage cleaner guarantees an upper-bound on the size
of the Update Memo making it practically suitable for main
memory; (3) The update performance of the RUM-tree is
stable with respect to the changes between consecutive up-
dates, the extents of moving objects, and the number of
moving objects.

The contributions of the paper can be summarized as fol-
lows:

• We propose the RUM-tree that minimizes the update
cost while yielding similar search performance to other
R-tree variants;

• We analyze the update costs for the RUM-tree and the
other R-tree variants, and derive an upper-bound on the
size of the Update Memo;

• We present a comprehensive set of experiments in-
dicating that the RUM-tree outperforms other R-tree
variants by up to a factor of 8 for frequent updates.

The remainder of the paper is organized as follows. Sec-
tion 2 overviews the R-tree and summarizes related work.
In Section 3, we present the RUM-tree. In Section 4, we
give a cost analysis of the memo-based approach and com-
pare it with the top-down and the bottom-up approaches.
We derive an upper-bound for the size of the Update Memo
in Section 4. Experiments are presented in Section 5. Fi-
nally, Section 6 concludes the paper.

2. R-tree-based Indexing and Related Work

The R-tree [5] is a height-balanced indexing structure. It
is an extension to the B-tree in the multidimensional space.
In an R-tree, spatial objects are clustered in nodes according
to their Minimal Bounding Rectangles (MBRs). In contrast
to the B-tree, the R-tree nodes are allowed to overlap each
other. An entry in a leaf node is of the form: (MBRo, po),
where MBRo is the MBR of the indexed spatial object, and
po is a pointer to the actual object tuple in the database. An
entry in an internal node is of the form: (MBRc, pc) where
MBRc is the MBR covering all MBRs in its child node,
and pc is the pointer to its child node c. The number of en-
tries in each R-tree node, except for the root node, is be-
tween two specified parameters m and M (m ≤

M
2

). The
parameter M is termed the fanout of the R-tree.

In the last two decades, several R-tree variants have
been proposed, e.g., [1, 7, 16, 20]. With the recent atten-
tion on indexing moving objects, a number of R-tree-based
methods for indexing moving objects have been proposed.
They focus on one of the following approaches: (1) Index-
ing the historical trajectories of objects, e.g., [3, 6, 11, 12,
21, 22, 24]; (2) Indexing the current locations of objects,
e.g., [4, 8, 13, 14, 17, 18]; and (3) Indexing the predicted tra-
jectories of objects, e.g., [15, 19, 23]. Most of these works
assume that the updates are processed in a top-down man-
ner. The memo-based update technique presented in this pa-
per is applicable to most of these works to improve their up-
date performance.

To support frequent updates in R-trees, [9] and [10] pro-
pose a bottom-up update approach. This approach processes
an update from the leaf node of the old entry, and tries to in-
sert the new entry into the same leaf node or to its sibling
node. The bottom-up approach works well when the consec-
utive changes of objects are small. However, in the case that
consecutive changes are large, their performance degrades
quickly. In Section 5, we show that the proposed memo-
based update approach of the RUM-tree outperforms the
bottom-up approach and is more stable under various pa-
rameters.

3. The RUM-tree Index

In the existing update approaches, the deletion of old en-
tries incurs overhead in update processing. In the top-down
approach, the deletion involves searching in multiple paths.
In the bottom-up approach, a secondary index is maintained
to locate and delete an entry. In this section, we present the
RUM-tree that minimizes additional disk accesses for such
deletion and thus minimizes the update cost.

The primary feature behind the RUM-tree is as follows.
As an update occurs, the old entry of the data item is not re-
quired to be removed. Instead, the old entry is allowed to



co-exist with newer entries before it is removed later. Only
one entry of an object is the most recent entry (referred to in
the paper as the latest entry), and all other entries of the ob-
ject are old entries (referred to in the paper as obsolete en-
tries). The RUM-tree maintains an Update Memo to identify
the latest entries from obsolete entries. These obsolete en-
tries are identified and are removed from the RUM-tree by
a garbage cleaner mechanism.

In Section 3.1, we describe the RUM-tree structure. In
Section 3.2, we discuss the insert, update, delete, and query
algorithms of the RUM-tree. The garbage cleaner is intro-
duced in Section 3.3.

3.1. The RUM-tree Structure

In the RUM-tree, each leaf entry is assigned a stamp
when the entry is inserted into the tree. The stamp is as-
signed by a global stamp counter that increments mono-
tonically. The stamp of one leaf entry is globally unique
in the RUM-tree and remains unchanged once assigned.
The stamp places a temporal relationship among leaf en-
tries, i.e., an entry with a smaller stamp was inserted
before an entry with a larger stamp. Accordingly, the
leaf entry of the RUM-tree is extended to the form
(MBRo, po, oid, stamp), where oid is the identifier of the
stored object, stamp is the assigned stamp number, and
MBRo and po are the same as in the standard R-tree.

The RUM-tree maintains an auxiliary structure, termed
the Update Memo (UM, for short). The main purpose of
UM is to distinguish the obsolete entries from the latest en-
tries. UM contains entries of the form: (oid, Slatest, Nold),
where oid is an object identifer, Slatest is the stamp of
the latest entry of the object oid, and Nold is the maxi-
mum number of obsolete entries for the object oid in the
RUM-tree. As an example, a UM entry (O99, 1000, 2) en-
tails that in the RUM-tree there exist at most two obsolete
entries for the object O99, and that the latest entry of O99

bears the stamp of 1000. Note that no UM entry has Nold

equivalent to zero, namely, objects that are assured to have
no obsolete entries in the RUM-tree do not own a UM en-
try. To accelerate searching, the update memo is hashed on
the oid attribute. With the garbage cleaner provided in Sec-
tion 3.3, the size of UM is kept rather small and can prac-
tically fit in main memory of nowadays machines. We de-
rive the upper-bound for the size of UM in Section 4. The
size of UM is further studied through experiments in Sec-
tion 5.

3.2. Insert, Update, Delete, and Search Algorithms

3.2.1. Insert and Update Inserting an entry and updating
an entry in the RUM-tree follow the same procedure as il-
lustrated in Figure 2(a). Pseudo-code for the insert/update

R−tree R−tree

(Raw answer set)

Incoming updates Spatial queries

UM entries
Add/Update

Spatial
search

Insert

Final answer set

Stamp Counter

Update MemoUpdate Memo

(a) Insert/Update Process (b) Query Process

Figure 2. Operations in the RUM-tree

Algorithm MemoBasedInsert(oid, newLocation)

1. newTuple = (oid, newLocation);
2. stamp← StampCounter; Increment StampCounter;
3. Insert newTuple to the RUM-tree;
4. Let ne be the inserted leaf entry for newTuple,

ne.oid← oid, ne.stamp← stamp;
5. Search oid in Update Memo UM .

If no entry is found, insert (oid, stamp, 1) to UM ;
Otherwise, let umne be the found UM entry;
umne.Slatest ← stamp; Increment umne.Nold;

Figure 3. Insert/Update in the RUM-tree

algorithm is given in Figure 3. Firstly, an insert/update is
assigned a stamp number when it reaches the RUM-tree.
Then, along with the stamp and the object identifier, the
new value is inserted into the RUM-tree using the standard
R-tree insert algorithm [1]. After the insertion, the entry that
has been the latest entry, if exists, for the inserted/updated
object becomes an obsolete entry. To reflect such a change,
the UM entry for the object is updated as follows. The UM
entry of the object, if exists, changes Slatest to the stamp of
the inserted/updated tuple and increments Nold by 1. In the
case that no UM entry for the object exists, a new UM en-
try with the stamp of the inserted/updated tuple is inserted.
Nold of the UM entry is set to 1 to indicate up to one obso-
lete entry in the RUM-tree. The old value of the object be-
ing updated is not required, which potentially reduces the
maintenance cost of database applications.

3.2.2. Delete Deleting an object in the RUM-tree is equiv-
alent to marking the latest entry of the object as obsolete.
Figure 4 gives pseudo-code for the deletion algorithm. The
object to be deleted is treated as an update to a special loca-
tion. The special update does not actually go through the R-
tree. It only affects the UM entry for the object to be deleted,
if exists, by changing Slatest to the next value assigned by
the stamp counter, and incrementing Nold by 1. In the case
when no UM entry for the given object exists, a new UM en-
try is inserted whose Slatest is set to the next stamp number



Algorithm MemoBasedDelete(oid)

• stamp← StampCounter; Increment StampCounter;
• Search oid in Update Memo UM .

If no entry is found, insert (oid, stamp,1) to UM ;
Otherwise, let umne be the found UM entry;
umne.Slatest ← stamp; Increment umne.Nold;

Figure 4. Delete in the RUM-tree

Algorithm CheckStatus(leafEntry)

1. Search leafEntry.oid in UM . If no entry is found, return
LATEST ; Otherwise, let ume be the found UM entry;

2. If (leafEntry.stamp == ume.Slatest), return LATEST ;
Otherwise, return OBSOLETE;

Figure 5. Checking Entry Status

and Nold is set to 1. In this way, all entries for the given ob-
ject will be identified as obsolete and consequently will get
removed by the garbage cleaner.

3.2.3. Search Figure 2(b) illustrates the processing of spa-
tial queries in the RUM-tree. As the obsolete entries and the
latest entry for one object may co-exist in the RUM-tree,
the output satisfying the spatial predicates is a superset of
the actual answers. In the RUM-tree, UM is utilized as a fil-
ter to purge false answers, i.e., UM filters obsolete entries
out of the answer set. By adding such an additional filter
step, any existing query processing algorithms in other R-
tree variants can apply directly to the RUM-tree. The RUM-
tree employs the algorithm given in Figure 5 to identify a
leaf entry as latest or obsolete. The main idea is to com-
pare the stamp of the leaf entry with the Slatest of the cor-
responding UM entry. Recall that Slatest of a UM entry is
always the stamp of the latest entry of the corresponding ob-
ject. If the stamp of the leaf entry is smaller than Slatest of
the UM entry, the leaf entry is obsolete for the object; oth-
erwise it is the latest entry for the object. In the case that
no corresponding UM entry exists, the leaf entry is the lat-
est entry.

Discussion. Sanity checking can be done at a higher
level before invoking the index. The RUM-tree does not
check the existence of an old entry when performing in-
sert, update or delete. Thus, the RUM-tree may insert an ob-
ject that already exists in the index or delete/update an ob-
ject that never existed. However, based on the above algo-
rithms, regardless of whether sanity checking is performed
or not, the RUM-tree will always return only the correct lat-
est insert/update values to queries. A related issue of phan-
tom entries is addressed in Section 3.3.2.

2 3 4 6 7 81 5

B
Token Token

A

Figure 6. Garbage Cleaner: Cleaning Tokens

3.3. Garbage Cleaning

The RUM-tree employs a Garbage Cleaner to limit the
number of obsolete entries in the tree and to limit the size of
UM. The garbage cleaner deletes the obsolete entries lazily
and in batches. Deleting lazily means that obsolete entries
are not removed immediately; Deleting in batches means
that multiple obsolete entries in the same leaf node are re-
moved at the same time.

3.3.1. Cleaning Tokens A cleaning token is a logical to-
ken that traverses all leaf nodes of the RUM-tree horizon-
tally. The token is passed from one leaf node to the next
every time when the RUM-tree receives a certain number
of updates. Such number is termed the inspection interval
and is denoted by I . The node holding a cleaning token in-
spects all entries in the node and cleans its obsolete entries,
and then passes the token to the next leaf node after I up-
dates. To locate the next leaf node quickly, the leaf nodes of
the RUM-tree are doubly-linked in cycle. In addition, each
RUM-tree node maintains a pointer to its parent node. This
is for the purpose of adjusting the RUM-tree in a bottom-up
manner after the obsolete entries in a leaf node are removed.

Figure 7 gives the pseudo code of the cleaning proce-
dure. Every entry in the inspected leaf node is checked by
CheckStatus() given in Figure 5, and is deleted from the
node if the entry is identified as obsolete. When an entry
is removed, Nold of the corresponding UM entry is decre-
mented by one. When Nold reaches zero, indicating that
no obsolete entries exist for this object, the UM entry is
deleted. In occasional cases, the leaf node may underflow
due to the deletion of obsolete entries. In this situation,
the remaining entries of the leaf node are reinserted to the
RUM-tree using the standard R-tree insert algorithm. If the
leaf node does not underflow, the MBR of the inserted leaf
node and the MBRs of its ancestor nodes are adjusted.

To speed up the cleaning process, multiple cleaning to-
kens may work in parallel in the garbage cleaner. In this
case, each token serves a subset of the leaf nodes. Figure 6
illustrates a RUM-tree with two cleaning tokens. Token A
inspects Nodes 5 to 8 while Token B inspects Nodes 1 to
4. Tokens move either with the same inspection interval or



Algorithm Clean(leafnodeN )

1. For each entry e in N , if CheckStatus(e) returns
OBSOLETE,

(a) Delete e from N ;

(b) Let ume be the UM entry for e.oid, Decrement
ume.Nold; If ume.Nold equals 0, delete ume from
UM;

2. If the number of entries in N is less than MINENTRIES ,
reinsert the remaining entries of N into the RUM-tree; Oth-
erwise, adjust the MBRs of N and N ’s ancestors in a bottom-
up manner;

Figure 7. Cleaning A Leaf Node

with different inspection intervals. Note that each cleaning
token incurs additional disk accesses to the cleaning proce-
dure. Hence, there is a tradeoff between the cleaning effect
and the overall cost.

We define the garbage ratio (gr) of the RUM-tree and
the inspection ratio (ir) of the garbage cleaner as follows.
The garbage ratio of the RUM-tree is the number of ob-
solete entries in the RUM-tree over the number of indexed
moving objects. The garbage ratio reflects how clean the
RUM-tree is. A RUM-tree with a small garbage ratio ex-
hibits better search performance than a RUM-tree with a
large garbage ratio.

The inspection ratio ir of the garbage cleaner is defined
as the number of leaf nodes inspected by the cleaner over
the total number of updates processed in the RUM-tree dur-
ing a period of time. The inspection ratio represents the
cleaning frequency of the cleaner. A larger inspection ra-
tio results in a smaller garbage ratio for the RUM-tree. As-
sume that a RUM-tree has m cleaning tokens t1 to tm, and
that tk’s inspection interval is Ik for 1≤k≤m, then ir of the
cleaner is calculated as:

ir =
U

I1
+ U

I2
+···+ U

Im

The total number of updates U

= 1

I1
+ 1

I2
+ · · · + 1

Im
(1)

= m
I

(if I1 = I2 = · · · = Im = I)

The cleaning token approach has the following impor-
tant property.

Property 1: Let Ot be the set of obsolete entries in
the RUM-tree at time t. After every leaf node has been vis-
ited and cleaned once since t, all entries in Ot are re-
moved out of the RUM-tree.

Property 1 holds no matter whether there are new in-
serts/updates during the cleaning phase or not. Note that if
some entries become obsolete due to new inserts/updates,
these newly introduced obsolete entries are not contained

in Ot. The proof of Property 1 is straightforward, because
when a leaf node is visited by the garbage cleaner, all obso-
lete entries in the leaf node will be identified and cleaned.

3.3.2. Phantom Inspection In this section, we address the
issue of cleaning phantom entries in the RUM-tree. A phan-
tom entry is a UM entry whose Nold is larger than the exact
number of obsolete entries for the corresponding object on
the RUM-tree. Such an entry will never get removed from
the UM because its Nold never returns to zero. Phantom en-
tries are caused by performing operations on objects that
do not exist in the RUM-tree, e.g., updating/deleting an ob-
ject that does not exist in the RUM-tree. A special case is
when inserting a new object to the RUM-tree1.

The RUM-tree employs a Phantom Inspection proce-
dure to detect and remove phantom entries. According
to Property 1 in Section 3.3.1, we have the follow-
ing lemma.

Lemma 1. Let c be the value of the stamp counter at time
t. After every leaf node has been visited and cleaned once
since t, a UM entry whose Slatest is less than c is a phan-
tom entry.
Otherwise, if such a UM entry is not a phantom en-
try, by Property 1, it should have been removed out of UM
after every leaf page has been visited and cleaned. There-
fore, Lemma 1 holds.

Based on Lemma 1, the phantom inspection procedure
works periodically. The current value of the stamp counter
is stored as c. After the cleaning tokens traverse all leaf
nodes once, the procedure inspects UM and removes all UM
entries whose Slatest is less than c. Finally, c is updated for
the next cycle’s inspection. In this way, all phantom entries
will be removed after one cycle of cleaning.

3.3.3. Clean Upon Touch Besides the cleaning tokens,
garbage cleaning can be performed whenever a leaf node
is accessed during an insert/update. The cleaning procedure
is the same as in Figure 7. As a side effect of insert/update,
such clean-upon-touch process does not incur extra disk ac-
cesses. When working with the cleaning tokens, the clean-
upon-touch reduces the garbage ratio and the size of UM
dramatically.

4. Cost Analysis

Let N be the number of leaf nodes in the RUM-tree, E

be the size of the UM entry, ir be the inspection ratio of the
garbage cleaner, P be the node size of the RUM-tree, and
M be the number of indexed moving objects.

1 Recall that in the RUM-tree, an insert is handled in the same way as
an update. Inserting an entry incurs a new UM entry anyway.



4.1. Garbage Ratio and the Size of UM

We start by analyzing the garbage ratio and the size of
UM. According to Property 1, after every leaf node is vis-
ited and is cleaned once, all obsolete entries that exist before
the cleaning are removed. In the RUM-tree, every leaf node
is cleaned once during N

ir
inserts/updates. In the worst case,

N
ir

obsolete entries are newly introduced in the RUM-tree.
Therefore, the upper-bound for the garbage ratio is N

ir∗M
.

As each obsolete entry may own an independent UM en-
try, the upper-bound for the size of UM is N∗E

ir
.

It is straightforward to prove that the average garbage ra-
tio is N

2ir∗M
, and that the average size of UM is N∗E

2ir
. This

result implies that the garbage ratio and the size of UM are
related to the number of leaf nodes that is far less than the
number of indexed objects. Thus, the garbage ratio and the
size of UM are kept small, and UM can reasonably fit in
main memory. With the clean-upon-touch optimization, the
garbage ratio and the size of UM can be further reduced, as
we show in Section 5.

4.2. Update Cost

We analyze the update costs for the top-down, the
bottom-up, and the memo-based update approaches. We in-
vestigate the number of disk accesses. Practically, the in-
ternal R-tree nodes are cached in the memory buffer. Other-
wise, a summary structure as in [10] can be utilized to avoid
excessive accesses to internal R-tree nodes. Therefore, our
analysis focuses on the disk accesses for leaf nodes. In the
following discussion, the data space is normalized to a unit
square. Node underflow and overflow are ignored in all ap-
proaches as they happen quite rarely.

4.2.1. Cost of the Top-down Approach The cost of a
top-down update consists of two parts, namely, (1) the cost
of searching and deleting the old entry and (2) the cost of in-
serting the new entry. Unlike [10], we notice that an entry
can be found only in nodes whose MBRs fully con-
tain the MBR of this entry. To deduce the search cost, we
present the following lemma:
Lemma 2. In a unit square, let Wxy be a window of
size x ∗ y, and let Wmn be a window of size m ∗ n,
where 0 < x, y, m, n < 1. When Wxy and Wmn are ran-
domly placed, the probability that Wxy contains Wmn is
given by:

max(x − m, 0) ∗ max(y − n, 0)

Due to space limitation, the proof of Lemma 2 is omit-
ted. Please refer to [25] for a detailed proof. Assume that
the MBR of the entry to be deleted is given by a ∗ b,
where 0 < a, b < 1. From Lemma 2, the expected num-
ber of leaf node accesses for searching the old entry is

given by:

IOsearch = 1

2

N∑

i=1

(max(xi − a, 0) ∗ max(yi − b, 0))

where xi and yi are the width and the height of the
MBR of the ith leaf node. Once the entry is found,
it is deleted and the corresponding leaf node is writ-
ten back. In addition, inserting a new entry involves one
leaf node read and one leaf node write. Therefore, the ex-
pected number of node accesses for the top-down ap-
proach is:

IOTD = 1

2

N∑

i=1

(max(xi − a, 0) ∗ max(yi − b, 0)) + 3

4.2.2. Cost of the Bottom-up Approach The cost of the
bottom-up approach, as we explain below, ranges from three
to seven leaf node accesses depending on the placement of
the new data.

If the new entry remains in the original node, the update
cost consists of three disk accesses: reading the secondary
index to locate the original leaf node, reading the original
leaf node, and writing the original leaf node.

When the new entry is inserted into some sibling of the
original node, the update cost consists of six disk accesses:
reading the secondary index, reading and writing the origi-
nal leaf node, reading and writing the sibling node, and writ-
ing the changed secondary index.

In the case that the new entry is inserted into any other
node, the update cost consists of seven disk accesses: read-
ing the secondary index, reading and writing the original
leaf node, reading and writing the inserted node, writing the
changed secondary index, and writing the adjusted parent
node of the inserted node.

4.2.3. Cost of the Memo-based Approach For the
memo-based approach, each update is directly inserted. In-
serting an entry involves one leaf node read and one leaf
node write. Given the inspection ratio ir, for a total num-
ber of U updates, the number of leaf nodes inspected by
the cleaner is U ∗ ir. Each inspected leaf node involves one
node read and one node write. The clean-upon-touch op-
timization does not involve extra disk accesses. Therefore,
the overall cost per update in the memo-based update ap-
proach is 2(1 + ir) disk accesses.

5. Experimental Evaluation

In this section, we study the performance of the RUM-
tree through experiments and compare the performance
with the R*-tree [1] and the Frequently Updated R-tree
(FUR-tree) [10].

All the experiments are running on an Intel Pentium IV
machine with CPU 3.2GHz and 1GB RAM. In the experi-



ments, the number of moving objects ranges between 2 mil-
lion and 20 million objects. The object set is generated by
the Network-based Generator of Moving Objects [2]. We
use the road map of Los Angeles in the generator and nor-
malize the road map to a unit square. The extent of the ob-
jects ranges between 0 (i.e., points) and 0.01 (i.e., squares
with side 0.01). Each object issues an update periodically
with a predefined moving distance between 0 and 0.01.
For the search performance, we study the performance of
range queries. The number of the queries is fixed at 100,000
queries. The queries are square regions of side length 0.03.
The primary parameters used in the experiments are out-
lined in Table 1, where the default values are given in bold
fonts.

As the primary metric, the number of disk accesses is in-
vestigated in most experiments. As discussed in Section 4,
the internal R-tree nodes are cached in memory buffers for
all the R-tree types. For the FUR-tree, the MBRs of the leaf
nodes are allowed to extend 0.003 to accommodate object
updates in their original nodes. For the RUM-tree, we im-
plement both the original cleaning-token garbage cleaner
(denoted by the RUM-treetoken in this section) and the op-
timized clean-upon-touch cleaner (denoted by the RUM-
treetouch in this section).

5.1. Properties of the RUM-tree

In this section, we study the properties of the RUM-tree
under various inspection ratios and various node sizes.

5.1.1. Effect of Inspection Ratio Figure 8(a) gives the
average I/O cost for updates in the RUM-tree when the
inspection ratio increases from 0% to 100%. With the in-
crease in the inspection ratio, both the RUM-treetoken and
the RUM-treetouch receive larger I/O costs due to more fre-
quent cleaning. The costs of the RUM-treetoken and of the
RUM-treetouch are very similar. This is because the clean-
upon-touch optimization of the RUM-treetouch does not in-
volve additional cleaning cost besides the cost of cleaning
tokens. Figure 8(b) gives the garbage ratios of the RUM-
trees under the same parameters. The garbage ratio of either
the RUM-treetoken or the RUM-treetouch decreases rapidly
when the inspection ratio increases to 20%. Observe that the

PARAMETERS VALUES USED
Number of objects 2M, 2M∼20M
Moving distance between upd. 0.01, 0∼0.01
Extent of objects 0, 0∼0.01
Node size (bytes) 1024, 2048, 4096, 8192
Inspection Ratio of RUM-tree 20%, 0%∼100%

Table 1. Experiment Parameters and Values

(a) Update I/O (b) Garbage Ratio

Figure 8. Effect of Inspection Ratio

inspection ratio of 20% achieves rather good update perfor-
mance and a near-optimal garbage ratio for both the RUM-
treetoken and the RUM-treetouch. If not otherwise stated,
the RUM-treetouch with a 20% inspection ratio is studied
for comparisons in the rest of the experiments.

5.1.2. Effect of Node Size In these experiments, we study
the effect of various node sizes on the RUM-tree. Fig-
ure 9(a), 9(b), and 9(c) give the average I/O cost, the average
CPU cost, and the garbage ratio of the RUM-trees under dif-
ferent node sizes, respectively. When a node has larger size,
the average update I/O cost decreases slightly. This is due
to fewer node splitting in a larger node. The average update
CPU cost increases in a larger node because the garbage
cleaner checks more entries in one node cleaning. For the
same reason, the garbage ratio decreases quickly with the
increase in the node size. Observe that the I/O cost dom-
inates the CPU time as one I/O normally takes around 10
milliseconds. Therefore, the RUM-tree prefers a large node
size over a small node size. In the rest of the experiments,
we fix the node size at 8192 bytes.

5.2. Performance with Various Moving Distances

In this section, we study the performance of the R*-tree,
the FUR-tree, and the RUM-tree when the changes between
consecutive updates (referred to as moving distance) vary
from 0 to 0.01.

5.2.1. Update Cost Figure 10(a) gives the update I/O
costs for the three R-tree variants. The R*-tree exhibits the
highest cost in all cases due to the costly top-down search.
The update cost of the FUR-tree increases with the increase
in objects’ moving distance. In this case, more objects move
far from their original nodes and require top-down inser-
tions. The update cost of the RUM-tree is steady being only
22% of the cost of the R*-tree, and only 40% to 70% of the
cost of the FUR-tree.



(a) Update I/O (b) Update CPU (c) Garbage Ratio

Figure 9. Effect of Node Size

5.2.2. Search Cost The performance of the three index-
ing types along various moving distances is given in Fig-
ure 10(b). The R*-tree exhibits the best search performance
as its structure is adjusted continuously by the top-down up-
dates. The FUR-tree search cost exhibits a peak when the
moving distance reaches 0.002. At that point, most of leaf
nodes enclose the object updates in the original nodes by
expanding the node MBRs. Thus, the FUR-tree is not ad-
justed globally for optimal search performance. After that
point, more updates are inserted top-down, thus the FUR-
tree is more compact. The RUM-tree exhibits around 10%
higher search cost than the R*-tree. This is mainly due to a
smaller fanout of the RUM-tree leaf nodes to include more
information in the leaf entries.

5.2.3. Overall Cost Refer to Figure 10(c). In this experi-
ment, we vary the ratio of the number of updates over the
number of queries from 1:100 to 10000:1. When the ratio
increases, the RUM-tree gains more performance achieve-
ment. At the point 10000:1, the average cost of the RUM-
tree is only 43% of the FUR-tree and 23% of the R*-tree.
This experiment demonstrates that the RUM-tree is more
applicable than the R*-tree and the FUR-tree in dynamic
environments.

5.2.4. Size of Auxiliary Structure Refer to Figure 10(d).
For the FUR-tree, each object owns a corresponding entry in
the secondary index, which results in a huge indexing struc-
ture. For the RUM-tree, UM is upper-bounded and can be
kept small in size. For better visualization, we only show
the size of UM in the rest of experiments.

5.3. Performance with Object Extent

In previous experiments, the object set consists of point
objects. In this section, we study the performance of the

R-tree variants with different object sizes. In these exper-
iments, the indexed objects are squares and their side length
(referred to as object extent) varies from 0 to 0.01.

5.3.1. Update Cost Figure 11(a) gives the average update
I/O cost of the three R-tree variants. The update cost of the
R*-tree grows with the object extent. As a larger extent re-
sults in larger node MBRs, the R*-tree needs to search more
nodes to locate the object to be updated. For the FUR-tree,
the update cost decreases along with the increase in the ob-
ject extent. This is because the update is more likely to be
able to remain in the same leaf node when the MBRs of the
nodes become larger. The update cost of the RUM-tree is
around 14% to 25% that of the R*-tree, and is around 43%
to 68% that of the FUR-tree. The RUM-tree exhibits stable
update performance as the memo-based update approach is
not affected by object extents.

5.3.2. Search Cost The search performance of the R-trees
with various object extents is given in Figure 11(b). The R*-
tree achieves the best performance followed by that of the
FUR-tree. The search cost of the RUM-tree is around 12%
higher than that of the R*-tree.

5.3.3. Overall Cost Figure 11(c) gives a comprehensive
view of the performance comparison when the object ex-
tent is set as 0.01. Again, we study the performance under
various ratios of updates over queries. Comparing with Fig-
ure 10(c), the performance of the FUR-tree and the R*-tree
are both affected by the extents of the indexed objects. To
the contrary, the performance of the RUM-tree is not af-
fected by object extents. The RUM-tree outperforms both
the R*-tree when the ratio is larger than 1:1, and outper-
forms the FUR-tree when the ratio is larger than 10:1.

5.3.4. Size of UM Figure 11(d) gives the size of UM in
the RUM-tree under various object extents. The size of UM



(a) Update I/O (b) Search I/O

(c) Overall I/O (d) Size of Memo

Figure 10. Performance with Moving Distance

decreases from 53k to 29k along with the increase in ob-
ject extents. The reason is that larger objects result in larger
node MBRs. Therefore, the chance for one update to be
inserted to the original node increases. Consequently, the
clean-upon-touch cleaning optimization reduces both the
number of obsolete entries and the size of UM.

5.4. Scalability with the Number of Objects

In this section, we study the scalability of the three R-
tree variants when increasing the data set up to 20 million
point objects.

5.4.1. Update Cost Figure 12(a) gives the update perfor-
mance of the three R-tree variants. When increasing the
number of objects, the R*-tree exhibits a growing update
cost. The reason is that more R-tree nodes are searched to
locate the objects to be updated. The FUR-tree shows a
nearly steady cost with the increase in the number of ob-
jects. This is because in this case most of the updates of
the FUR-tree are handled in a top-down manner. Hence the
FUR-tree has reached the upper-bound of its update cost,
as discussed in Section 4.2.2. For the RUM-tree, the up-

(a) Update I/O (b) Search I/O

(c) Overall I/O (d) Size of Memo

Figure 11. Performance with Object Extent

date cost is not affected by the number of objects. The rea-
son is that the update cost of the RUM-tree is a combination
of the cost of the insertion and the cost of the cleaning pro-
cesses. Both factors, as analyzed in Section 4.2.3, are not
affected by the size of the RUM-tree or the number of ob-
jects. The update cost of the RUM-tree is around 13% to
28% of the update cost of the R*-tree, and is around 41% to
51% of the update cost of the FUR-tree.

5.4.2. Search Cost Figure 12(b) gives the search perfor-
mance of the R-tree variants while varying the number of
objects. The performance of the R*-tree and the FUR-tree
are very similar, because when most of updates in the FUR-
tree are handled in a top-down manner, the FUR-tree struc-
ture is tightly adjusted as the R*-tree. Due to the smaller
fanout, the search costs of the RUM-tree is 10% higher than
that of the R*-tree.

5.4.3. Overall Cost The comprehensive costs of the R*-
tree, the FUR-tree and the RUM-tree are given in Fig-
ure 12(c) when the number of objects is fixed at 20 million.
The ratio of the number of updates to the number of queries
varies from 1:100 to 10000:1. The RUM-tree outperforms
the other two R-tree variants when the ratio is larger than
1:1. When the ratio reaches 10000:1, the average cost of the



(a) Update I/O (b) Search I/O

(c) Overall I/O (d) Size of Memo

Figure 12. Performance with Num. of Obj.

RUM-tree is only 50% of that of the FUR-tree, and is only
13% of that of the R*-tree.

5.4.4. Size of UM In Figure 12(d), we study the size of
UM of the RUM-tree when the number of objects scales up
to 20 million objects. The size of UM increases linearly with
the number of indexed objects. This is because the garbage
ratio of the RUM-tree is not affected by the number of ob-
jects. This property guarantees that the size of UM is scal-
able in terms of the size of the RUM-tree.

6. Conclusion

For R-tree updates, given the object id and the object’s
new value, the most costly part lies in searching the loca-
tion in the R-tree of the objects to be updated. In contrast to
the former update approaches, we presented a memo-based
approach to avoid the deletion I/O costs. In the proposed
RUM-tree, object updates are ordered temporally according
to the processing time. By maintaining the update memo,
more than one entry of an object may coexist in the RUM-
tree. The obsolete entries are deleted lazily and in batch
mode. Garbage cleaning is employed to limit the garbage
ratio in the RUM-tree and confine the size of UM. The

RUM-tree along with the garbage cleaner outperforms sig-
nificantly other R-tree variants in the update performance,
while yielding similar search performance. We believe that
the memo-based update approach has potential to support
frequent updates in many other indexing structures, for in-
stances, B-trees, quadtrees and Grid Files.

References

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An
Efficient and Robust Access Method for Points and Rectangles. In SIGMOD,
1990.

[2] T. Brinkhoff. A Framework for Generating Network-Based Moving Objects.
GeoInformatica, 6(2), 2002.

[3] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing Large Trajectory Data
Sets with SETI. In Proc. of the Conf. on Innovative Data Systems Research,
CIDR, 2003.

[4] R. Cheng, Y. Xia, S. Prabhakar, and R. Shah. Change Tolerant Indexing for
Constantly Evolving Data. In ICDE, 2005.

[5] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
SIGMOD, 1984.

[6] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Efficient In-
dexing of Spatiotemporal Objects. In EDBT, pages 251–268, Prague, Czech
Republic, Mar. 2002.

[7] I. Kamel and C. Faloutsos. Hilbert R-tree: An Improved R-tree using Fractals.
In VLDB, pages 500–509, 1994.

[8] G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing Mobile Objects. In
PODS, 1999.

[9] D. Kwon, S. Lee, and S. Lee. Indexing the Current Positions of Moving Ob-
jects Using the Lazy Update R-tree. In Mobile Data Management, MDM, 2002.

[10] M.-L. Lee, W. Hsu, C. S. Jensen, and K. L. Teo. Supporting Frequent Updates
in R-Trees: A Bottom-Up Approach. In VLDB, 2003.

[11] M. A. Nascimento and J. R. O. Silva. Towards historical R-trees. In Proc. of
the ACM Symp. on Applied Computing, SAC, pages 235–240, Feb. 1998.

[12] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel Approaches in Query Pro-
cessing for Moving Object Trajectories. In VLDB, pages 395–406, Sept. 2000.

[13] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying Mobile Objects in Spatio-
Temporal Databases. In SSTD, pages 59–78, Redondo Beach, CA, July 2001.

[14] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambrusch.
Query Indexing and Velocity Constrained Indexing: Scalable Techniques for
Continuous Queries on Moving Objects. IEEE Transactions on Computers,
51(10):1124–1140, 2002.

[15] C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled. STAR-Tree: An Efficient
Self-Adjusting Index for Moving Objects. In Proc. of the Workshop on Algo-
rithm Engineering and Experimentation, ALENEX, pages 178–193, Jan. 2002.

[16] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases
using packed R-trees. pages 17–31, 1985.

[17] S. Saltenis and C. S. Jensen. Indexing of Moving Objects for Location-Based
Services. In ICDE, 2002.

[18] S. Saltenis and C. S. Jensen. Indexing of now-relative spatio-bitemporal data.
The VLDB Journal, 11(1):1–16, 2002.

[19] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the
Positions of Continuously Moving Objects. In SIGMOD, 2000.

[20] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dynamic index
for multi-dimensional objects. In VLDB, pages 507–518, 1987.

[21] Y. Tao and D. Papadias. Efficient Historical R-trees. In SSDBM, pages 223–
232, July 2001.

[22] Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal Access Method for
Timestamp and Interval Queries. In VLDB, 2001.

[23] Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An Optimized Spatio-
temporal Access Method for Predictive Queries. In VLDB, 2003.

[24] Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio-Temporal Indexing for
Large Multimedia Applications. In Proc. of the IEEE Conference on Multime-
dia Computing and Systems, ICMCS, June 1996.

[25] X. Xiong and W. G. Aref. R-trees with Update Memos. Purdue University De-
partment of Computer Sciences Technical Report, No. CSD TR05-020, 2005.


