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Abstract1 

To achieve more efficient video indexing and access, we introduce a video database management framework and 

strategies for video content structure and events mining. The video shot segmentation and key-frame selection 

strategy are first utilized to parse the continuous video stream into physical units. Video shot grouping, group 

merging, and scene clustering schemes are then proposed to organize the video shots into a hierarchical structure 

using clustered scenes, scenes, groups, and shots, in increasing granularity from top to bottom. Then, audio and 

video processing techniques are integrated to mine event information, such as dialog, presentation and clinical 

operation, from the detected scenes. Finally, the acquired video content structure and events are integrated to 

construct a scalable video skimming tool which can be used to visualize the video content hierarchy and event 

information for efficient access. Experimental results are also presented to evaluate the performance of the 

proposed framework and algorithms. 

1. Introduction 

As a result of decreased costs for storage devices, increased network bandwidth, and improved compression 

techniques, digital videos are more accessible than ever. To help users find and retrieve relevant video more 

effectively and to facilitate new and better ways of entertainment, advanced technologies must be developed for 

indexing, filtering, searching, and mining the vast amount of video now available on the web. While numerous 

papers have appeared on video analysis and retrieval, few deal with video database management and mining [1-6]. 

There has recently been much interest in video database mining [7-9][24]; however, most existing data mining 

techniques operate on structured data and video data are unstructured [7]. The existing data mining tools suffer 

from the following problems when applied to video databases:  
                                                 
 



•  Video database modeling: Most traditional data mining techniques work on the relational database [1-3]. 

Video documents are generally unstructured, and although we can now retrieve video frames (and even 

physical shots) with satisfactory results, acquiring the relational relationships among those shots is still an 

open problem. Traditional data mining techniques cannot be utilized in video data mining directly, hence, 

a distinct database model must first be addressed. 

•  Semantics and granularity: Existing video retrieval systems first partition videos into a set of access 

units such as shots, or regions [10, 17], and then follow the paradigm of representing video content via a 

set of feature attributes (i.e., metadata) such as color, shape, motion and layout. Thus, video data mining 

can be achieved by applying the data mining techniques to the metadata directly. Unfortunately, there is a 

semantic gap between low-level visual features and high-level semantic concepts. The capability of 

bridging the semantic gap is the first requirement for existing data mining tools to be used in video data 

mining [7]. On the other side, most approaches use the low-level features and various indexing strategies, 

e.g. Decision tree [7], R-tree [26], etc. for video content management. However the results generated with 

these approaches may consist of hundreds of thousands of internal nodes, which are consequently very 

difficult to comprehend and interpret. Moreover, the constructed tree structures do not make sense to the 

video database indexing and human perception. Detecting similar or unusual patterns is not the only 

objective for video data mining. The current challenge is to determine what type of outcome is most 

suitable for video data mining. The capability of supporting more efficient video database indexing is the 

second requirement for existing data mining tools to be applicable to video data mining. 

•  Security and privacy: As more and more techniques are developed to access video data, there is an 

urgent need for video data protection [4, 11]. For example, one of the current challenges is to protect 

children from accessing inappropriate videos on the Internet. In addition, video data are often used in 

various environments with very different objectives. An effective video database management structure is 

needed to maintain data integrity and security. User-adaptive database access control is becoming an 

important topic in the areas of networks, database, national security, and social studies. Multilevel 

security is needed for access control of various video database applications. The capability of supporting 



a secure and organized video access is the third requirement for the existing data mining tools to be 

applied to video data mining. 

In this paper, we introduce our framework, ClassMiner, which makes some progress in addressing these 

problems. In Section 2, we present a database management model and our system architecture.  A video content 

structure mining scheme is proposed in Section 3, and the event mining strategy among detected scenes is 

introduced in Section 4. Based on the acquired content structure and event information, a scalable video 

skimming tool is proposed in Section 5. Section 6 presents the results of algorithm evaluation and we conclude in 

Section 7.  

2. Database Management Framework and System Architecture 

There are two widely accepted approaches for accessing video in databases: shot-based and object-based. In this 

paper, we focus on the shot-based approach. In order to meet the requirements for video data mining (i.e., 

bridging the semantic gap, supporting more efficient video database management, and access control), we classify 

video shots into a set of hierarchical database management units, as shown in Fig. 1. To support efficient video 

database mining, we need to address the following key problems: (a) How many levels should be included in the 

video database model, and how many nodes should be included in each level? (b) What kind of decision rules 

should be used for each node? (c) Do these nodes (i.e., database management units) make sense to human beings? 

In order to support hierarchical browsing and access control, the nodes in the database indexing tree must be 

meaningful to human beings. 
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Figure 1. The proposed hierarchical video database model, where the cluster may include multiple levels according to the 
concept hierarchy, and a video scene consists of sequence of shots. 



 Database Root Node

Health care Medical Education Medical report 

Medicine Nursing Dentistry

Presentation Dialog Clinical Operation

Video Shot 1 Video Shot k Video Shot Mo

······· ·······

······· 

······· 

······· ·······

·······

·······

Database Level 

Cluster 

Subcluster 

Scene 

Shot and Object 
 

Figure 2. The concept hierarchy of video content in the medical domain, where the subcluster may consist of several levels 

We solve the first and third problems by deriving the database model from the concept hierarchy of video 

content. Obviously, the concept hierarchy is domain-dependent; a medical video domain is given in Fig. 2. This 

concept hierarchy defines the contextual and logical relationships between higher level concepts and lower level 

concepts. The lower the level of a node, the narrower is its coverage of the subjects. Thus, database management 

units at a lower level characterize more specific aspects of the video content and units at a higher level describe 

more aggregated classes of video content. From the database model proposed in Fig.1 and Fig.2, we find that the 

most challenging task in solving the second problem is determining how to map the physical shots at the lowest 

level to various predefined semantic scenes. In this paper, we will focus on mining video content structure and 

event information to attain this goal. Based on the results of our video mining process, we have developed a 

prototype system, ClassMiner, with the following features: 

•  A semantics-sensitive video classifier to narrow the semantic gap between the low-level visual feature and the 

high-level semantic concepts. The hierarchical structure of our semantics-sensitive video classifier is derived 

from the concept hierarchy of video content and is provided by domain experts or obtained using WordNet 

[25]. Each node in this classifier defines a semantic concept and thus makes sense to human beings. The 

contextual and logical relationships between the higher level nodes and their sub-level nodes are derived from 

the concept hierarchy. 

•  A hierarchical video database management and visual summary organization technique to support more 

effective video access. The video database indexing and management structure is inherently provided by the 



semantics-sensitive video classifier. The organization of visual summaries is also integrated with the inherent 

hierarchical database indexing structure. For the leaf node of the proposed hierarchical video database 

indexing tree, we use hash table to index video shots. For the non-leaf node (nodes representing high-level 

visual concepts), we use multiple centers to index video shots because they may consist of multiple low-level 

components, and it is very difficult to use any single Gaussian function to model its data distribution. 

•  A hierarchical video database access control technique to protect the video data and support a secure and 

organized access. The inherent hierarchical video classification and indexing structure can support a wide 

range of protection granularity levels, in that it is possible to specify filtering rules that apply to different 

semantic concepts (i.e., database management units). 

As shown in Fig. 3, we first utilize a general video shot segmentation and key-frame selection scheme to 

parse the video stream into physical units. Then, the video group detection, scene detection and clustering 

strategies are executed to mine the video content structure. Various visual and audio feature processing techniques 

are utilized to detect slides, face and speaker changes, etc. within the video, and these results are joined together 

to mine three types of events (presentation, dialog, clinical operation) from the detected video scenes. Finally, a 

scalable video skimming tool based on the mined video content structure and event information is constructed to 

help the user visualize and access video content more effectively.  
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Figure 3. Video mining and scalable video skimming/summarization structure 
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Figure 4. Pictorial video content structure  

3. Video Content Structure Mining 

In general, most videos from daily life can be represented using a hierarchy of five levels (video, scene, group, 

shot and frame)*, as shown in Fig. 4. To clarify our objective, we first present the definition of video content 

structure. 

Definition 1: The video content structure is defined as a hierarchy of clustered scenes, video scenes, video groups 

and video shots (whose definitions are given below), increasing in granularity from top to bottom. Although there 

exist videos with very little content structure (such as sports videos, etc.), a content structure can be found in most 

videos from our daily life. 

*Definition 2: In this paper, the video shot, video group, video scene and clustered scene are defined as follows:  

•  A video shot (denoted by Si) is the simplest element in videos and films; it records the frames resulting from a 

single continuous running of the camera, from the moment it is turned on to the moment it is turned off.  

•  A video group (denoted by Gi) is an intermediate entity between the physical shots and semantic scenes; 

examples of groups are temporally related shots and spatially related shots.  

•  A video scene (denoted by SEi) is a collection of semantically related and temporally adjacent groups 

depicting and conveying a high-level concept or story.  



•  A clustered scene (CSEi) is a collection of visually similar video scenes that may be shown in various places 

in the video.  

Usually, the simplest way to parse video data for efficient browsing, retrieval and navigation is to 

segment the continuous video sequence into physical shots, and then select representative frame(s) for each shot 

to depict its content information [12-13]. However, a video shot is a physical unit and is usually incapable of 

conveying independent semantic information. Accordingly, various approaches have been proposed to parse 

video content or scenario information. Zhong et. al [12] proposes a strategy which clusters visually similar shots 

and supplies the viewers with a hierarchical structure for browsing. However, since spatial shot clustering 

strategies consider only the visual similarity among shots, the video context information is lost. To address this 

problem, Rui et. al [14] presents a method which merges visually similar shot into groups, then constructs a video 

content table by considering the temporal relationships among groups. The same approach is reported in [16]. In 

[15], a time-constrained shot clustering strategy is proposed to cluster temporally adjacent shots into clusters, and 

a Scene Transition Graph is constructed to detect the video story unit by utilizing the acquired cluster information. 

A temporally time-constrained shot grouping strategy has also been proposed [17].  

The most efficient way to address video content for indexing, management, etc. is to acquire the video 

content structure. As shown in Fig. 1, our video content structure mining is executed in four steps: (1) video shot 

detection, (2) group detection, (3) scene detection, and (4) scene clustering. The continuous video sequence is first 

segmented into physical shots, and the video shots are then grouped into semantically richer groups. Afterward, 

similar neighboring groups are merged into scenes. Beyond the scene level, a cluster scheme is applied to 

eliminate repeated scenes in the video. Finally, the video content structure is constructed. 

3.1 Video shot detection 

To support shot based video content access, we have developed an efficient shot cut detection technique [10]. Our 

shot cut detection technique can adapt the threshold for video shot detection according to the activities of various 

video sequences, and this technique has been developed to work on MPEG compressed videos. Unfortunately, 

such techniques are not able to adapt the thresholds for different video shots within the same sequence. 



 In order to adapt the thresholds to the local activities of different video shots within the same sequence, 

we use a small window (i.e., 30 frames in our current work) and the threshold for each window is adapted to its 

local visual activity by using our automatic threshold detection technique and local activity analysis. The video 

shot detection result shown in Fig.5 is obtained from one video data source used in our system. It can be seen that 

by integrating local thresholds, a more satisfactory detection result is achieved (The threshold has been adapted to 

the small changes between adjacent shots, such as changes between eyeballs from various shots in Fig. 5, for 

successful shot segmentation). After shot segmentation, the 10th frame of each shot is taken as the key-frame of 

the current shot, and a set of visual features (256 dimensional HSV color histogram and 10 dimensional tamura 

coarseness texture) is extracted for processing.  

 
(a) 

 
(b) 

Figure 5. The video shot detection results from a medical education video: (a) part of the detected shot boundaries; (b) the 
corresponding frame difference and the determined threshold for different video shots, where the small window shows the 

local properties of the frame differences. 
 

3.2 Video group detection 

The shots in one group generally share a similar background or have a high correlation in time series. Therefore, 

to segment the spatially or temporally related video shots into groups, a given shot is compared with shots that 

precede and succeed it (using no more than 2 shots) to determine the correlation between them, as shown in Fig.4. 

We adopt 256-color histogram and 10-tamura coarseness texture for visual features. Suppose Hi,j, j∈ [0,255] and 



Ti,j,j∈ [0,9] are the normalized color histogram and texture of the key frame i. The similarity between shot i, j is 

defined by Eq. (1). 
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where WC and WT indicate the weight of color and tamura texture. For our system, we set WC=0.7, WT=0.3.  
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Figure 6. Correlations among video shots 

In order to detect the group boundary using the correlation among adjacent video shots, we define the 

following similarity distances: 

CLi =Max{ StSim(Si,Si-1), StSim(Si,Si-2)};        CRi =Max{ StSim(Si,Si+1), StSim(Si,Si+2)}        (2) 

CLi+1 =Max{ StSim(Si+1,Si-1), StSim(Si+1,Si-2)};  CRi+1 =Max{ StSim(Si+1,Si+2), StSim(Si+1,Si+3)}   (3) 

Given shot Si, if it is the first shot of a new group, it will have a higher correlation with shots on its right side (as 

shown in Fig. 6) than with shots on its left side, since we assume that shots in the same group usually have a high 

correlation with each other. A separation factor R(i) for shot Si is then defined by Eq.(4) to evaluate a potential 

group boundary. 
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The shot group detection procedure takes the following steps: 

1. Given any shot Si, if CRi is larger than T2-0.1: 

a. If R(i) is larger than T1, claim that a new group starts at shot Si.. 

b. Otherwise, go to step 1 to process other shots. 

2. Otherwise: 

a. If both CRi and CLi are smaller than T2, claim that a new group starts at shot Si. 

b. Otherwise, go to step 1 to process other shots. 

3. Iteratively execute step 1 and 2 until all shots are parsed successfully. 



As the first shot of a new group, both CRi and R(i) of shot Si are generally larger than predefined thresholds. Step 

1 is proposed to handle this situation. Moreover, there may be a shot that is dissimilar with groups on both sides, 

where the shot itself acts as a group separator (like the anchor person in a News program.) Step 2 is used to detect 

such boundaries. The thresholds T1 and T2 can be automatically determined via the fast entropy technique 

described in [10]. 

Using this strategy, two kinds of shots are absorbed into a given group: (1) shots related in temporal 

series, where similar shots are shown back and forth. Shots in this group are referred to as temporally related, and 

(2) shots similar in visual perception, where all shots in the group are similar in visual features. Shots in this 

group are referred to as spatially related. 

3.2.1 Group classification and representative shot selection 

Given any detected group, Gi, we will classify it in one of two categories: temporally vs spatially related group. A 

successful classification will help us in determining the feature variance in Gi and selecting representative shot(s) 

for Gi. Assume that there are T shots (Si, i=1,..,T) contained in Gi. The group classification strategy is as follows:  

Input: Video group Gi and shots Si (i=1,..,T) in Gi. Output: Clusters (
cNC , Nc=1,..K) of shots in Gi. 

Procedure: 

1. Initially, set variant Nc=1; cluster 
cNC  has no members. 

2. Select the shot (Sk) in Gi with the smallest shot number as the seed of cluster 
cNC , and subtract Sk from 

Gi. If there are no more shots contained in Gi, go to step 5. 

3. Calculate the similarity between Sk and shot Sj in Gi, If StSim(Sk,Sj) is larger than threshold Th, absorb shot 

Sj into cluster 
cNC , and subtract Sj from Gi. 

4. Iteratively execute step 3, until there are no more shots that can be absorbed into the current cluster 
cNC . 

Increase Nc by 1 and go to step 2. 

5. If Nc is larger than 1, we claim Gi is a temporally related group, otherwise it is a spatially related group. 

In order to support hierarchical video database indexing and summarization, the representative shot(s) of each 

group are selected to represent and visualize the content information in Gi. We denote this procedure as 

SelectRepShot(). 



[SelectRepShot] 

The representative shot of group Gi is defined as the shot that best represents the content in Gi. Since semantic 

content is not available, we use visual features in our strategy. With the technique above, all shots in Gi have been 

merged into Nc clusters, and these clusters will help us to select the representative shots for Gi. Given group Gi 

with Nc clusters (Ci) , we denote by ST(Ci) the number of shots contained in cluster Ci. The representative shot of 

Gi is selected as follows: 

1. Given Nc clusters Ci (i=1,..,Nc) in Gi, use steps 2, 3 and 4 to extract one representative shot for each 

cluster Ci. In all, Nc representative shots will be selected for Gi. 

2. Given any cluster Ci which contains more than 2 shots, the representative shot of Ci (denote by RS(Ci)) is 

obtained from Eq. (5) 
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This indicates that among all shots in Ci, the shot which has the largest average similarity with others 

shots is selected as the representative shot of Ci. 

3. If there are 2 shots contained in Ci, the shot with larger time duration usually conveys more content 

information, and hence is selected as the representative shot of Ci.  

4. If there is only 1 shot contained in cluster Ci, it is selected as the representative shot for Ci. 

3.3 Video group similarity evaluation 

As we stated above, video scenes consist of semantically related adjacent groups. To merge video groups for 

scene detection, the similarity between video groups must be determined. We first consider the similarity between 

a shot and group. Based on Eq. (1), given shot Si and group Gj, the similarity between them is defined by Eq. (6). 

jj GS
jiji SSStSimMaxGSStGpSim

∈

= )},({),(         (6) 

This implies that the similarity between Si and Gj is the similarity between Si and the most recent shot in Gj.  



In general, when we evaluate the similarity between two video groups using the human eye, we take the 

group with fewer shots as the benchmark, and then determine whether there are any shots in the second group 

similar to shots in the benchmark group, as shown in Fig.7. If most shots in the benchmark group are similar 

enough to the other group, they are treated as similar. Given group Gi and Gj, assume jiG ,
ˆ represents the group 

containing fewer shots, and jiG ,
~ denotes the other group. Suppose NT(x) denotes the number of shot in group x, 

then, the similarity between Gi and Gj is given by Eq. (7). 
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That is, the similarity between Gi and Gj is the average similarity between shots in the benchmark group and their 

most similar shots in the other group.  
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Figure 7. Group similarity evaluation (the arrows indicate the most similar shots between G1 and G2) 

3.4 Group merging for scene detection 

Since our shot grouping strategy places more emphasis on the details of the scene, one scene may be parsed into 

several groups. However, groups in the same scene generally have higher correlation with each other than with 

other groups from different scenes. Hence, we introduce a group merging method as follows: 

1. Given groups Gi, i=1,..,M, calculate similarities between all neighboring groups (SGi, i=1,..,M-1) using 

Eq. (8), where GpSim(Gi,Gj) denotes the similarity between group Gi and Gj (given in Eq. (7) 

SGi=GpSim(Gi, Gi+1)  i=1,..,M-1     (8) 

2. Collect all similarities SGi, i=1,..,M-1, and apply the fast entropy technique [10] to determine the merging 

threshold TG.  



3. Merge adjacent groups with similarity larger than TG into a new group.  If there are more than 2 

sequentially adjacent groups with  similarities larger than TG, all are merged into a new group. 

4. Those reserved and newly generated groups are formed as video scenes. Scenes containing less than three 

shots are eliminated, since they usually convey less semantic information than scenes with more shots. 

The SelectRepGroup() strategy is then used to select the representative group of each scene for content 

representation and visualization. 

[SelectRepGroup] 

For any scene, SEi, the representative group is defined as the video group in SEi that contains the most content 

information of SEi. As noted previously, the low-level features associated with each group are used in our 

strategy: 

1. For any scene SEi that contains three or more groups, Gj (j=1,..,Ni), the representative group of SEi, 

Rp(SEi), is given by Eq. (9) 
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  That is, Rp(SEi) is the group in SEi which has the largest average similarity to all other groups. 

2. If there are only two groups in SEi, we use the number of shots and time duration in the group as the 

measurement. Usually, a group containing more shots will convey more content information, hence it is 

chosen as the representative group. If more than one group is selected, the group with longer time 

duration is selected as the representative group. 

3. If there is only one group in SEi, this group is selected as the representative group for SEi. 

In the sections below, the selected representative group Rp(SEi) is also taken as the centroid of SEi. 

3.5 Video scene clustering 

Using the results of group merging, the video scene information is constructed. In most situations, many scenes 

are shown several times in the video. Clustering similar scenes into one unit will eliminate redundancy and 

produce a more concise video content summary. Since the general K-meaning cluster algorithm needs to seed the 



initial cluster center, and furthermore the initial guess of cluster centroids and the order in which feature vectors 

are classified can affect the clustering result, we therefore introduce a seedless Pairwise Cluster Scheme (PCS) for 

video scene clustering. 

Input: Video scenes (SEj, j=1,..,M) and all member groups (Gi, i=1,..,NG); Output: Clustered scene structure 

(SEk, k=1,..,N). 

Procedure: 

1. Given video groups Gi, i=1,..,NG, we first calculate the similarities between any two groups Gi and Gj 

( jiNGji ≠−∈ ];1,1[, ). The similarity matrix SMij for all groups is then constructed using Eq. (10). 

SMij(Gi,Gj)=GpSim(Gi,Gj), i=1,..,NG-1; j=1,..,NG-1;  i≠j    (10) 

 where GpSim(Gi,Gj) denotes the similarity between Gi and Gj which is given by Eq. (7). Since any scene 

SEj consists of one or more groups, the similarity matrix of all scenes ( ijMS ′ ) can be derived from the 

group similarity matrix (SMij) using Eq. (11) 

jiMjiSERSERGpSimSESEMS jpipjiij ≠−∈=′ ],1,1[,));(),((),(     (11) 

2. Find the largest value in matrix ijMS ′ . Merge the corresponding scenes into a new scene, and use 

SelectRepGroup() to find the representative group (scene centroid) for the newly generated scene. 

3. If we have obtained the desired number of clusters, go to the end. If not, go to step 4. 

4. Based on the group similarity matrix SMij and the updated centroid of the newly generated scene, update 

the scene similarity matrix 
ijMS ′ with Eq. (11) directly, then go to step 2. 

To determine the end of scene clustering at step 3, the number of clusters N must be explicitly specified. Our 

experimental results suggest that for a significant number of interesting videos, if we have M video scenes, then 

using a clustering algorithm to reduce the number of scenes by 40% produces a relatively good result with respect 

to eliminating redundancy and reserving important scenario information. However, a fixed threshold often 

reduces the adaptive ability of the algorithm. Therefore, to find an optimal number of clusters, we employ cluster 

validity analysis [21]. The intuitive approach is to find clusters that minimize intra-cluster distance while 



maximizing inter-cluster distance. Assume N denotes the number of clusters. Then the optimal cluster would 

result in the ρ(N) with smallest value, where ρ(N) is defined in Eq. (12) 
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and Ni is the number of scenes in cluster i, and ui is the centroid of the ith cluster (Ci). Hence, ςi is the intra-cluster 

distance of the cluster i, while ξij is the inter-cluster distance of cluster i and j, and Cmin, Cmax are the ranges of the 

cluster numbers we seek for optimal values. We set these two numbers Cmin=[M⋅0.5] and Cmax=[M⋅0.7], where M 

is the number of scenes for clustering, and the operator [x] indicates the greatest integer which is not larger than x. 

That is, we seek optimal cluster number by eliminating 30% to 50% of the original scenes. Hence, the optimal 

number of cluster N̂  is selected as: 
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Figure 8. Video scene detection results, with row (a), (b), (d) and (e) indicate the “Presentation”, “Dialog”, “surgery”, 

“Diagnosis” and “Diagnosis” respectively.  

 

Fig. 8 presents the experimental results of our video scene detection strategy. By applying shot grouping and 

group merging, most scenes can be correctly detected.  

 



4. Event Mining Among Video Scene 

After the video content structure has been mined, the event mining strategy is applied to detect the event 

information within each detected scene. A successful result will not only satisfy a query such as “Show me all 

patient-doctor dialogs within the video”, it will also bridge the inherent gap between video shots and their 

semantic categories for efficient video indexing, access and management. Since medical videos are mainly used 

for educational purposes, the video content is usually recorded or edited using the style formats described below 

(as shown in the pictorial results in Fig.8): 

•  Using presentations of doctors or experts to express the general topics of the video.  

•  Using clinical operations (such as the diagnosis, surgery, organ pictures, etc.) to present details of the 

disease, their symptoms, comparisons and surgeries, etc. 

•  Using dialog between the doctors and patients to acquire other knowledge about medical conditions. 

In this section, visual/audio features and rule information are integrated to mine these three types of events. 

4.1 Visual feature processing  

Visual feature processing is executed among all representative frames to extract semantically related visual cues. 

Currently, five types of special frames and regions are detected: slides or clip art frame, black frame, frame with 

face, frame with large skin area and frame with blood-red regions, as shown in Fig.9 and Fig.10. Due to the lack 

of space, we will describe only the main idea; algorithm details can be found in [18-20]. Since the slides, clip art 

frames and back frames are man-made frames, they contain less motion and color information when compared 

with other natural frame images. They also generally have very low similarity with other natural frames, and their 

number in the video is usually small. These features are utilized to detect slides, clip art and black frames. 

Following this step, the videotext and gray information are used to distinguish the slides, clip art and black frames 

from each other. To detect the faces, skin and blood-red regions, Gaussian models are first utilized to segment the 

skin and blood-red regions, and then a general shape analysis is executed to select those regions that have 

considerable width and height. For skin-like regions, texture filter and morphological operations are implemented 



to process the detected regions. A facial feature extraction algorithm is also applied. Finally, a template curve-

based face verification strategy is utilized to verify whether a face is in the candidate skin region. 

 

 

Figure 9. Visual feature cue (Special frames). With frames from let to right indicate the black, slide, clipart, and sketch frame. 

 
         (a)                               (b)                                         (c) 

Figure 10. Visual feature cue (Special regions). With (a), (b) and (c) indicate the face, blood-red and skin regions. 

 
4.2 Audio feature processing 

Audio signals are a rich source of information in videos. They can be used to separate different speakers, detect 

various audio events, etc. In this paper, our objective is to verify whether speakers in different shots are the same 

person. The entire classification can be separated into two steps: (1) select the representative audio clip for each 

shot, and (2) compare whether representative clips of different shots belong to the same speaker. 

For each video shot, we will separate the audio stream into adjacent clips, such that each is about 2 seconds 

long (a video shot of length less than 2 seconds is discarded), and then compute 14 audio features from each clip 

[22]. We classify each clip using the Gaussian Mixture Model (GMM) classifier into two classes: clean speech vs 

non-clean speech, and select the clip most like the speech clip as the audio representative clip of the shot. Given 

any audio representative clip of the shot Si, a set of 14 dimensional mel frequency coefficients (MFCC) 

},..,{ 1 iNi xxX = are extracted from 30 ms sliding windows with an overlapping of 20 ms. Then, the Bayesain 

Information Criterion (BIC) procedure is performed for comparison [23]. 



The BIC is a likelihood criterion penalized by the model complexity. Given },..,{ 1 nxx=χ , a sequence of 

χN acoustic vectors, and ),( ML χ , the likelihood of χ for the model M, the BIC value is determined by: 

χλχ NmMLMBIC log
2

),(log)( −= , where m is the number of parameters of the model M and λ is the penalty factor. We 

assume that χ is generated by a multi-Gaussian process. Given shot Si, Sj and their acoustic vectors 

},..,{ 1 iNi xxX = and },..,{ 1 jNj xxX = , we consider the following hypothesis test for speaker change between Si and Sj:  
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The maximum likelihood ratio between hypothesis H0 (no speaker change) and H1 (speaker change) is then 

defined by Eq. (16): 

||log
2

||log
2

||log
2

)(
1 j

ji NNNR χχχ Σ−Σ−Σ=Λ ℜ      (16) 

where 
ji NNN +=ℜ
, 

iχχ ΣΣ , and
jχΣ are, respectively, the covariance matrices of the feature sequence 

},..,,..,{ 1 jii NNN xxx +
, },..,{ 1 iNxx and },..,{ 1 jNxx . The variations of the BIC value between the two models (one Gaussian vs 

two different Gaussians) is then given by Eq. (17): 

PRBIC λ+Λ−=Λ∆ )()(      (17) 

where the penalty is given by 
ℜ++= NpppP log))1(

2
1(

2
1 , p is the dimension of the acoustic space, and λ is the 

penalty factor. If )(Λ∆BIC is less than zero, a change of speaker is claimed between shot Si and Sj. 

4.3. Event mining strategy 

Given any mined scene SEi, our objective is to verify whether it belongs to one of the following event categories:  

1. A “Presentation” scene is defined as a group of shots that contain slides or clip art frames. At least one 

group in the scene should consist of temporally related shots. Moreover, at least one shot should contain a 

face close-up (human face with size larger than 10% of the total frame size), and there should be no 

speaker change between adjacent shots.  



2. A “Dialog” scene is a group of shots containing both face and speaker changes. Moreover, at least one 

group in the scene should consist of spatially related shots. The speaker change should take place at 

adjacent shots, which both contain the face. At least one speaker should be duplicated more than once. 

3. The “Clinical operation” scene includes medical events, such as surgery, diagnosis, symptoms, etc. In 

this paper, we define the “Clinical operation” as a group of shots without speaker change, where at east 

one shot in SEi contains blood-red or a close-up of a skin region (skin region with size larger than 20% of 

the total frame size) or where more than half of the shots in SEi contain skin regions. 

Based on the above definitions, event mining is executed as follows. 

1. Input all shots in SEi and their visual/audio preprocessing results.  

2. Test whether SEi belongs to a “Presentation” scene: 

•  If there is no slide or clip art frame contained in SEi, go to step 3. If there is no face close-up 

contained in SEi, go to step 3. 

•  If all groups in SEi consist of spatially related shots, go to step 3. 

•  If there is any speaker change between adjacent shots of SEi, go to step 3,  

•  Assign the current group to the “Presentation” category; go to end or process other scenes. 

3. Test whether SEi belongs to “Dialog”: 

•  If there is either no face or no adjacent shots which both contain faces in SEi, go to step 4. 

•  If all groups in SEi consist of spatially related shots, go to step 4. 

•  If there is no speaker change between all adjacent shots which both contain faces, go to step 4. 

•  Among all adjacent shots which both contain face and speaker change, if there are two or more 

shots belonging to the same speaker, SEi is claimed as a “Dialog”, otherwise, go to step 4. 

4. Test whether SEi belongs to “Clinical Operation”: 

•  If there is a speaker change between any adjacent shots, go to step 5. 

•  If there are any close-up skin region or blood-red regions detected, SEi is assigned to “Clinical 

Operation”. 

•  If more than half of representative frames of all shots in SEi contain skin regions, then SEi is 

assigned as “Clinical Operation.” Otherwise, go to step 5. 

5. Claim the event in SEi cannot be determined and process another scene. 



5. Scalable Video Skimming System 

To utilize mined video content structure and events directly in video content access and to create a useful 

application, a scalable video skimming tool has been developed for visualizing an overview of the video and 

helping users access video content more effectively, as shown in Fig. 11. Currently, a four layer video skimming 

has been constructed, with level 4 through level 1 consisting of representative shots of clustered scenes, all 

scenes, all groups, and all shots, respectively. Note that the granularity of video skimming increases from level 4 

to level 1. A user can change to different levels of video skimming by clicking the up or down arrow. While video 

skimming is playing, only those selected skimming shots are shown, and all other shots are skipped. A scroll bar 

indicates the position of the current skimming shot among all shots in the video. The user can drag the tag of the 

scroll bar to fast-access an interesting video unit.  

To help the user visualize the mined events information within the video, a color bar is used to represent the 

content structure of the video so that scenes can be accessed efficiently using event categorization. As shown in 

Fig. 11, the color of the bar for a given region indicates the event category to which the scene belongs. Using this 

strategy, a user can access the video content directly.  
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Figure 11. Scalable video skimming tool 



6. Algorithm Evaluation 

In this section, we present the results of an extensive performance analysis we have conducted to: (1) evaluate the 

effectiveness of video scene detection and event mining, (2) analyze the performance of our cluster-based 

indexing framework, and (3) assess the acquired video content structure in addressing video content. 

6.1 Video scene detection and event mining results 

To illustrate the performance of the proposed strategies, two types of experimental results, video scene detection 

and event mining, are presented. Our dataset consists of approximately 6 hours of MPEG-I encoded medial videos 

which describe face repair, nuclear medicine, laparoscopy, skin examination, and laser eye surgery. Fig.7 presents 

the experimental results and comparisons between our scene detection algorithm and other strategies [14, 17]. To 

judge the quality of the detected results, the following rule is applied: the scene is judged to be rightly detected if 

and only if all shots in the current scene belong to the same semantic unit (scene), otherwise the current scene is 

judged to be falsely detected. Thus, the scene detection precision (P) in Eq. (18) is utilized for performance 

evaluation. 

P= Rightly detected scenes / All detected scenes     (18) 

Clearly, without any scene detection (that is, treating each shot as one scene), the scene detection precision would 

be 100%. Hence, a compression rate factor (CRF) is defined in Eq. (19). 

CRF=Detected scene number / Total shot number         (19) 

To show both CRF and P in the same figure, we multiply CRF by 10. We denote our method as A, and the two 

methods from the literature [14] and [17] as B and C, respectively. From the results in Fig. 6, some observations 

can be made: (1) our scene detection algorithm achieves the best precision among all three methods, about 65% 

shots are assigned to the appropriate semantic unit, (2) method C achieves the highest compression rate, 

unfortunately the precision of this method is also the lowest, and (3) as a tradeoff with precision, the compression 

ratio of our method is the lowest (CRF=8.6%, each scene consists of about 11 shots). We believe that in semantic 

unit detection, it is worse to fail to segment distinct boundaries than to over-segment a scene. From this point of 

view, our method is better than other two methods. 



After the video content structure has been mined, we manually select scenes which distinctly belong to one of 

the following event categories: presentation, dialog and clinical operation, and use them as benchmarks. We then 

apply the event mining algorithm to automatically determine their event category. The experimental results are 

shown in Table 1, where PR and RE represent the precision and recall which are defined in Eq. (20). On average, 

our system achieves relatively good performance (72% in precision and 71% in recall) when mining these three 

types of events.  

PR= True Number / Detected Number; RE= True Number / Selected Number   (20) 
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    Figure 12. Scene detection performance     Figure 13. Compression Rate 

Table 1. Video event mining results 

Events Selected number Detected number True number PR RE 

Presentation 15 16 13 0.81 0.87 

Dialog 28 33 24 0.73 0.85 

Clinical operation 39 32 21 0.65 0.54 

Average 82 81 58 0.72 0.71 

6.2 Cluster-based indexing analysis 

The search time Te for retrieving video from a large-scale database is the sum of two times: (a) time Ts for 

comparing the relevant videos in the database; (b) time Tr for ranking the relevant results. If no database indexing 

structure is used for organizing this search procedure, the total retrieval time is: 

)log( TTmTrse NNOTNTTT +⋅=+=     (21) 

where NT is the number of videos in the database, Tm is the basic time to calculate the m-dimensional feature-

based similarity distance between two video shots, and )log( TT NNO  is the time to rank NT elements. 



Our cluster-based multi-level video indexing structure can provide fast retrieval because only the relevant 

database management units are compared with the query example. Moreover, only the discriminating features are 

selected for video representation and indexing, and thus the basic time for calculating the feature-based similarity 

distance is also reduced ( mosscc TTTTT ≤,,,  because only the discriminating feature are used). The total retrieval 

time for our cluster-based indexing system is 

)log( oooosscscccc MMOTMTMTMTMT +⋅+⋅+⋅+⋅=    (22) 

were Mc, Msc, Ms are the numbers of the nodes at the cluster level, the most relevant subcluster and the scene 

levels, respectively, Mo is the number of video shots that reside in the most relevant scene node, Tc, Tsc, Ts, To are 

the basic times for calculating the similarity distances in the corresponding feature subspace, and )log( oo MMO  

is the total time for ranking the relevant shots residing in the corresponding scene node. Since 

Tosscc NMMMM <<+++ )( , mosscc TTTTT ≤),,,( , thus ec TT << . 

6.3 Scalable video skimming and summarization results 

Based on the mined video content structure and events information, a scalable video skimming and 

summarization tool was developed to present at most 4 levels of video skimming and summaries. To evaluate the 

efficacy of such a tool in addressing video content, three questions are introduced to evaluate the quality of the 

video skimming at each layer:  (1) How well do you think the summary addresses the main topic of the video? (2) 

How well do you think the summary covers the scenarios of the video? (3) Is the summary concise? For each of 

the questions, a score from 0 to 5 (5 indicates best) is specified by five student viewers after viewing the video 

summary at each level. Before the evaluation, viewers are asked to browse the entire video to get an overview of 

the video content. An average score for each level is computed from the students’ scores (shown in Fig.14). From 

Fig.12, we see that as we move to the lower levels, the ability of the skimming to cover the main topic and the 

scenario of the video is greater. The conciseness of the summary is worst at the lowest level, since as the level 

decreases, more redundant shots are shown in the skimming. At the highest level, the video summary cannot 

describe the video scenarios, but can supply the user with a concise summary and relatively clear topic 



information. Hence, this level can be used to show differences between videos in the database. It was also found 

that the third level acquires relatively optimal scores for all three questions. Thus, this layer is the most suitable 

for giving the user an overview of the video selected from the database for the first time. 

A second evaluation process used the ratio between the numbers of frames at the skimming of each layer 

and the number of all frames (RC) to indicate the compression rate of the video skimming. Fig.15 shows the 

results of RC in various skimming layers. It can be seen that at the highest layer (layer 4) of the video skimming, a 

10% compression rate has been acquired. This shows that by using the results of video content structure mining, 

an efficient compression rate can be obtained for addressing the video content for summarization, indexing, 

management etc.  
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Figure 14. Scalable video skimming and summarization evaluation Figure 15. Compress frame ratio at various layers 

7.Conclusion 

In this paper, we have addressed video mining techniques for efficient video database indexing, management and 

access. To achieve this goal, a video database management framework is proposed. A video content structure 

mining strategy is introduced for parsing the video shots into a hierarchical structure using shots, groups, scenes, 

and clustered scenes by applying a shot grouping and clustering strategy. Both visual and audio feature processing 

techniques are utilized to extract the semantic cues within each scene. A video event mining algorithm is then 

applied, which integrates visual and audio cues to detect three types of events: presentation, dialog and clinical 

operation. Finally, by integrating the mined content structure and events information, a scalable video skimming 

and content access prototype system is constructed to help the user visualize the overview and access video 

content more efficiently. Experimental results demonstrate the efficiency of our framework and strategies for 

video database management and access. 
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