
Approving Updates in Collaborative Databases

Khaleel Mershad †1, Qutaibah M. Malluhi †2, Mourad Ouzzani ‡3, Mingjie Tang ?4, Walid G. Aref ?5

† Qatar University, ‡ Qatar Computing Research Institute, ? Purdue University
1,2 {kwm03, qmalluhi}@qu.edu.qa, 3 mouzzani@qf.org.qa, 4,5 {tang49, aref}@cs.purdue.edu

Abstract—Data curation activities in collaborative databases
mandate that collaborators interact until they converge and agree
on the content of their data. Typically, updates by a member
of the collaboration are made visible to all collaborators for
comments but at the same time are pending the approval or
rejection of the data custodian, e.g., the principal scientist or
investigator (PI). In current database technologies, approval and
authorization of updates is based solely on the identity of the user,
e.g., via the SQL GRANT and REVOKE commands. However,
in collaborative environments, the updated data is open for
collaborators for discussion and further editing and is finally
approved or rejected by the PI based on the content of the
data and not on the identity of the updater. In this paper,
we introduce a cloud-based collaborative database system that
promotes and enables collaboration and data curation scenarios.
We realize content-based update approval and history tracking
of updates inside HBase, a distributed and scalable open-source
cluster-based database. The design and implementation as well
as a detailed performance study of several approaches for update
approval are presented and contrasted in the paper.

I. INTRODUCTION

In collaborative environments, e.g., scientific databases,
large volumes of data are shared among scientists that collab-
orate to curate data coming from experiments and analytical
processes. A typical scenario is when scientists produce some
dataset, share it among collaborators that are not necessarily
co-located, collectively update it, share the updates among
themselves for commenting, and keep updating the data until
they converge and agree on the final content. Once the dataset
stabilizes, they eventually publish it. For example, this scenario
takes place when deciding on the function of a particular gene
or allele, or a protein binding site. While being discussed and
commented on, the data along with all of its updates should
be visible to all collaborators. Ultimately, the data custodian,
e.g., the principal investigator (PI, for short), makes the final
decision of approving some updates and rejecting others.

Current database technologies fall short in support-
ing the above collaborative environment. SQL supports
GRANT/REVOKE access models that allow users to have data
access rights based solely on the identity of the user [1], [2].
In this case, when an update takes place, it is not reflected into
the database until the update-issuer commits the update, e.g.,
towards the end of the update transaction. Once committed, the
update is visible to the collaborators. However, if this update
needs to be approved by the PI, the updated value cannot be
committed until approved. Hence the updated value cannot be
shared with the other collaborators for commenting.

Assume that Users U1 and U2 collaborate with the PI in
some task (See Fig. 1). At Time I1, User U1 updates Object
A and changes its value from 1 to 2. At Time (I2), the PI is
notified of the update. Both U1 and PI can see the update but

U2 can only see the old value. The PI becomes a bottleneck as
the PI is part of every update transaction, resulting in needless
delays. Moreover, U2 does not have a chance to comment on
or discuss the update before the new value of A is committed,
which hampers the collaboration. Another drawback of the
conventional approach is that if U2’s experiments depends on
the value of A, knowing the updated value of A ahead of time
will allow U2 to setup and prepare for the experiment that
needs to be re-performed in case A’s update gets approved.
Alternatively, if U2 is aware of A’s new value, U2 may redo her
experiments even before the approval takes place and provide
feedback to the PI on the potential outcome of her experiment
in case A gets approved. From the figure, at Time (I3), the
PI examines the update and decides to approve or reject the
update on A. At Time (I4), if the PI approves the update, then
U2 can now see the new value of A after a prolonged time
delay (I1 + I2 + I3). However, if PI rejects the update, then
U2 will continue to see the old value of A, and does not learn
from this experience. Also, U2’s seeing and commenting on
the update beforehand may have affected the PI’s decision on
A’s update, but U2 is unaware of this update attempt.

The above scenario demonstrates that collaborative envi-
ronments require sophisticated support for approving updates.
When a collaborator, say U1, updates a data item, it is marked
as pending approval until the PI approves or rejects the update.
In the meantime, any other collaborator, say U2, should be
allowed to view the data pending its approval. Refer to Fig. 2
for illustration. At Time I1, User U1 updates Object A from
1 to 2. At Time (I2), the PI is notified of the update. At the
same time, U2 can see A’s new value. However, in order to
distinguish between the old and new values of A, the new
value for A, i.e., Value 2, is marked as “pending” approval.
As a result, U2 is aware of the possible modification from time
I2. Now, the PI is not the bottleneck anymore as the pending
updates are accessible by all collaborators for inspection and
commenting. The PI can view the feedback from all other
collaborators, e.g., from U2, before committing to a decision .
At Time (I3), PI examines the update and decides to approve
or reject it. Next, at Time (I4), if PI approves the update, then
U2 can now see the new value of A, and the status of A with
value 2 is changed to being “approved” as Fig. 2 illustrates.
On the other hand, if PI rejects the update of User U1, the
Value 2 of data object A is marked as “rejected”. Compared
to the standard update model in Fig. 1, the time delay for User
U2 to view the update is improved from I1 + I2 + I3 to 0.
Data modification actions, i.e., update, approve, or reject, are
recorded so that each collaborator can track the status of an
object and the history of an update with each value in the
history, whether approved or rejected. In the rest of this paper,
we term this proposed update scheme as the Update-Pending-
Approval model (or UPA, for short).

reject

approve

U1

U2

U1 U1 U1

U2 U2U2PI

Time

PI PI PI

Examination and

Action

1A

1A 1A

2A 2A

U2 A=1

A=2

(approved)

A=1

(rejected)

U2's view on A

2A

1A

User

View
User

Operation

Data

Transformation

(I1)

Update

(I2)

Notify PI

(I3)

Approve

(I4)

Consolidate

Fig. 1: An example of using conventional update processing.

approve or

rejected

U1

U2

U1 U1

U2 U2U2PI

Time

PI PI PI

Examination and

Action

Pending
Pending

Approved

Or

Rejected

U2 A=1, A=2(Pending)

A=2(approved)

 A=1(old version)A=1

U1

U2's view on A

1A
1A 1A

2A 2A

A

User

View
User

Operation

Data

Transformation

Old

1A2

(I1)

Update

(I2)

Notify PI
(I3)

Decision:approve

 or:reject

(I4)

Consolidate

Or A=2(rejected)

A=1

Fig. 2: The Proposed Update Pending Approval (UPA) Model.

UPA is very important for a variety of application sce-
narios. For example, assume that members of a scientific
team are collaborating to collect vast amounts of data from
a field experiment. Other scientists, who might be at distant
locations, are conducting their own experiments and producing
and saving results based on this collected data. These produced
results, being saved to the database along with their associated
experimental setups, should be checked for validity by one
or more PIs before they can be approved and made public.
Another example is content management systems that allow
users to collaboratively edit shared content. UPA can be used
in a content management system for accurate and efficient
monitoring, approval, and history archival purposes. A third
example is Wikis: While web users may continuously update
their own pages in a Wiki, these updated pages can be publicly
available while marked as “pending approval” until these
updates are approved by the Wiki administrator(s).

In this paper, we present a prototype system that realizes
UPA inside a cloud-based platform, namely HBase [3]. HBase
is a distributed and scalable cluster-based database that is
suitable to store big data on the cloud [3]. While HBase
supports version and history tracking of updates, it does
not support the notion of update approval or rejection that
are essential features in data collaboration environments. We
extend HBase with the following functionalities:

• We maintain the history of all the updates for a given
data item or cell along with the associated meta-data.

• We mark each update as Approved, Rejected, or Pend-
ing, and we extend HBase to allow for querying (1) the
history of all updates, (2) the approved data only, or
(3) the most recent values only (approved or pending).

• We introduce three modes of operation for a data
cell depending on most queried values, i.e., (1) last
inserted values, (2) last approved values, or (3) both
the last inserted and the last approved values. In
addition, our system can dynamically switch between
modes to adapts to the current query workload.

The rest of this paper proceeds as follows. Section II
discusses the related work. Section III presents an overview of
HBase and the procedures for supporting UPA. Section IV in-
troduces the various design alternatives, the data organization,
history tracking, and querying. We presents our experiments
in Section V and conclude in Section VI.

II. RELATED WORK

Several areas are related to our proposal ranging from
active databases, multiversion databases, checkout and check-
in systems, to data provenance management.

Active databases [4], [5] aim to respond to events either
inside or outside the database. They can realize a database
hold to make the database system aware of external activities.
Conceptually, by using rules and triggers, active databases can
be used to monitor data that is pending approval and mark it
as potentially invalid. However, this would be rather inefficient
and would not scale because a new rule would need to be added
explicitly for each update that is pending approval.

Multi-version or temporal database systems [6], [7] keep
track of the history of updated data. They are very efficient as
they maintain the history of the updates at the disk-page level.
However, it is hard to extend them to support the semantics
for pending-approval updates as well as the rejection of the
unapproved updates. This is also true for versioning support
in cloud database systems.

Checkout and check-in systems, e.g., SVN [8] and GIT [9],
maintain current and historical versions of files. The main
drawback of adopting a similar approach is that the data will be
residing outside the database system. Also, updating at the at-
tribute level cannot be supported by such systems. In contrast,
UPA allows the data to reside inside the database system and
the history will be maintained at the right granularity. Hence,
the proposed system will result in performance efficiency when
querying Approved, Rejected, or Pending data.

Data provenance management [10] or provenance support
inside scientific workflow systems [11] retain the derivation
history of a data item from its original sources. The provenance
of data can help a scientist understand the development and
progression of a data item over time. However, a provenance-
based system does not maintain the consistency of data items
and hence rolling back and rejecting cascaded updates is not
supported. In addition, UPA supports transaction consistency
in the sense that updates that depend on a rejected update
are tracked and will also be rejected. In addition, UPA is

implemented inside a cloud database, i.e., at the engine level
rather than at the application level. Thus, it can co-exist with
a provenance system to achieve stronger data tracking.

In building the proposed system, we leverage our previous
work in [12], [13]. In contrast to the original centralized
architecture, in this paper, we investigate the implications
as well as the design and the performance issues related
to providing the UPA model in a cloud-based environment.
Unique challenges include the impact of partitioning the data
within the cluster and how they are partitioned and the effort
of each partitioning policy on the performance.

III. SYSTEM OVERVIEW

A. An Overview of HBase

HBase is a column-oriented data store running on top of
HDFS [14], [15]. Data is stored as fragments of columns,
instead of complete rows in the form of <key, value> pairs.
Fig. 3 illustrates the architectural diagram of HBase. HBase
contains two main entities: (1) an HMaster, and (2) a set of
Region Servers. The HMaster is responsible for administrative
operations such as creating and dropping tables. The Region
Server manages the Regions that are the actual data stores [3].
HBase operates alongside Zookeeper [16] that manages con-
figuration and naming tasks. When a client wants to execute an
HBase operation, he/she obtains from Zookeeper the Region
Server address that hosts the data. Next, the client executes the
required operation by accessing the corresponding region.

HBase contains four basic operations: Put, Delete, Get, and
Scan. Put inserts the value of a data item into an HBase table.
Each data item or cell is identified by four fields that constitute
its key: Row, Column Family, Qualifier, and Timestamp, where
Row is the main identifier. Column Family groups related
qualifiers together, and Timestamp is usually the time at which
the value is inserted. Put can either insert values into a newly
created qualifier, or update the value of an existing qualifier.
In the latter case, the previous value is not removed, but is
saved as an older version. Delete marks data for deletion in
the memory store. When data is flushed into disk, the actual
data is deleted. Get retrieves data that is within a single row
while Scan retrieves data from the whole table.

HBase coprocessors are the basic building blocks for any
custom operation in HBase. A coprocessor pushes compu-
tational logic into the HBase cluster, close to where data
is stored. HBase coprocessors are of two types: Observers
and Endpoints. An Observer executes certain code before
or after executing an HBase operation. An Endpoint runs a
custom function on a specified set of Region Servers and can
be invoked at any time by the user. We use Endpoints for
implementing various UPA operations.

B. Extending HBase to Support UPA

History Tracking: History tracking of Data refers to the
process of monitoring data over time to track down (i) how the
data changed over time, (ii) who changed it, at what times, and
possibly (iii) the reasons, if any, behind each of the changes.
Tracking the history of data is a very important operation
in collaborative environments as well as in data auditing in
database systems. The validity of future results depends on
the correctness of the existing data and how it was derived.

Hadoop Distributed File SystemHadoop Distributed File System

Region

Server

Region

Server
Region

Server

Region

Server
Region

Server

Region

Server

ClientClient
HMasterHMaster ZooKeeperZooKeeper

HFILE

HRegionHRegion HRegionHRegion HRegionHRegion HRegionHRegion HRegionHRegion HRegionHRegion

HFILE HFILE HFILE HFILE HFILE

Coproce

ssor

Coproce

ssor
Coproce

ssor

Coproce

ssor
Coproce

ssor

Coproce

ssor

Fig. 3: HBase System Structure and EndPoint Coprocessors.
Our extensions are labeled in green.

Existing database management systems do not provide
means for history tracking. For instance, HBase saves the new
value of a cell as a new version of the cell. The user can query
each value of the cell and the time at which it was inserted.
Other important data, e.g., the ID of the user who inserted the
value and the parameters of the environment in which it was
generated are not saved. Hence, the process of history tracking
still misses important features and needs to be augmented to
satisfy the requirements of researchers and collaborators.

UPA enables history tracking by saving, with each opera-
tion on a cell, the necessary metadata related to the operation,
such as the user ID, the type and reason for the operation,
the status of the data value (more about this field in the next
section), and any other metadata related to the environment
in which the data was generated, such as the machine ID.
The proposed history tracking mechanism supports important
operations, such as reverting a cell to a previous stable state
and building a timeline of the lifecycle of the cell.

Approval of Updates: A set of privileged users, e.g.,
principal investigators, will monitor and approve/reject the data
values being inserted or updated by collaborators. We refer
to each of these privileged users as a principle investigator
or PI. We differentiate between three types of inserted data
values: (i) pending, a data value that is yet to be approved or
rejected by a PI, (ii) approved, a data value that is approved
by a PI and (iii) rejected, a data value that is rejected by a PI.
A PI can approve or reject data items either individually or
as groups through bulk approve/reject operations. In the latter
case, the approve/reject interface will provide the PI with a
set of data items that are pending. The PI selects the data
items that should be approved, and the system adds them to
an approve list. After the PI finishes, the remaining data items
are automatically added to a reject list. The system performs a
single operation which approves the items in the approve list
and rejects those in the reject list.

Storing the history of data updates over time along with
the metadata would adversely affect negatively the overall
performance. Users that do not query the historical data should
not be penalized by the fact that the system is maintaining
the history. In order to address this issue, we save the history
of a data cell in a separate storage entity. In the proposed
HBase implementation, we create a History table in which the
complete history and the metadata of a cell are saved. For the

ROW Family Qualifier Timestamp Mode Value

ROW1 F1 Q1 T1 1 5

ROW2 F1 Q2 T2 3 3

User1 User2 User3

HBase Table

History Table

delete2 5

ROW (Cell ID) value operation operator timestamp status comment

ROW1:F1:Q1:T1 2 insert user1 T1 approved . . .

ROW1:F1:Q1:T1 5 update user2 T2 pending . . .

ROW1:F1:Q1:T1 delete user3 T3 pending . . .

Fig. 4: Formats of records in the original and History tables.

original data table in which the cell is created, we investigate
the following three alternative design options: (i) Store the
most recently inserted value of the cell. In this case, all other
older values, whether approved or not, are stored in the history
table, (ii) Store the most recently approved value of the cell.
At the same time, all the more recent updates to the cell, which
are still pending, are stored in the history table until they get
approved, and (iii) Store both the most recently inserted and
the most recently approved values of the cell in the original
table and all other versions of the cell are stored in the history
table. Using this alternative enables users that query the most
recent value of a cell (or the most recent approved value) to
obtain the result directly from the original table in an efficient
way without having to access the history table. Users interested
in History Tracking will have to query the data that is saved
in the History table that resides in a separate storage entity.
We refer to these three alternatives as the UPA Modes.

IV. SYSTEM DESIGN

A. History Tracking

In this section, we present the proposed format of entries in
the History table and how they comply with HBase standards.

Record Structure: To illustrate the format of a history
record, we present the example given in Fig. 4. Suppose that
user1 inserts the cell: <Table:ROW1:F1:Q1> at Time T1. The
value 2 will be inserted into the original table, and the first
history record of the cell will be inserted in the History table.
The status of the history record will be “pending”. Suppose
that the PI approves the history record at Time T2. Then, the
status of the history record is set to “approved”. Suppose that
at Time T3, user2 inserts the value 5 to the cell, then the cell
value in the original table will be set to 5, and a new history
record of the cell is added to the History table. Finally, suppose
that at Time T3, user3 deletes the cell. In this case, the cell in
the original table is marked deleted, and a new history record,
with operation equal to “delete” and status equal to “pending”
will be added to the History table. The last two history records
will be pending approval or rejection by the PI.

Table Structure: As stated in Section III, different values
that are inserted into the same cell are saved as different
versions of the cell. The creator of an HBase table defines
the maximum number of versions, say n, that can be saved
per cell. If the number of versions of the cell exceeds n, only
the newest n versions will be kept and the older versions will
be deleted. In UPA, we set the default value of n equal to 1
for any table other than the History table. The reason is that in
each such table, which we refer to in this paper as the original

table, we save only either the last inserted value or the last
approved value. When we operate in UPA Mode 3, we need
to save both the last inserted and the last approved values of
the cell. In such a case, we save these values as two different
cells that will point to the original cell. Using this approach,
we keep the original tables as compact as possible, which will
lead to more query efficiency. However, the maximum number
of versions in the History table will be set to a high value since
each newly inserted value of the cell will lead to the creation
of a new record in the History table, and we want to keep all
history records of each cell, as long as the cell is not deleted.

B. Approving Updates

The Approval Process: A history record will include, in
addition to the cell value and the timestamp, the operation, i.e.,
’insert’, ’update’, ’delete’, or ’approve’, the user ID, the record
status, i.e., ’pending’, ’approved’, or ’rejected’, and comments.
A PI can approve or reject pending values using one of two
methods. In the first method, the PI specifies, in addition to the
ID of the cell, a list of timestamps of records to be approved (or
rejected). The ScHistory operation sequentially approves (or
rejects) these records. In the second method, the PI specifies
two time instances. The ScHistory operation will search the
History table for all records of the cell whose timestamps fall
within the two time instances and subsequently approve (or
reject) these records. The first method is useful for approving
(rejecting) a limited number of records. The PI simply queries
the History table to obtain these records, and then passes their
timestamps to ScHistory. The second method is useful for a
large number of values generated for the same cell, and the
generation start and end times are known.

The UPA Model: Two important values of each data cell
need to be distinguished; the last inserted value and the last
approved value. Since these two values are mostly important
for users who query the cell, we propose three operating modes
as follows: (i) If users are mostly querying the most recently
inserted value of the cell, the cell will operate in UPA Mode
1, in which only the most recently inserted value of the cell
is saved in the original table. Each newly inserted value will
overwrite the existing value in the original table. (ii) If users
are mostly querying the most recently approved value, then
this value is saved in the original table. Each newly approved
value will overwrite the previous approved value. Then the
cell will be operating in UPA Mode 2. (iii) If users heavily
query both the most recently inserted and the most recently
approved values, then both values will be saved separately
in the original table, and the cell will be operating in UPA
Mode 3. Regardless of the UPA Mode of the cell, each time
an operation is conducted on the cell, a history record that
contains all necessary metadata is written to the History table.

The system will dynamically change the cell from one
UPA Mode to another as follows: for each cell, the system
maintains and updates three parameters: a mode variable, the
cell’s search-for-last-approved-value rate (SLA) and search-
for-last-inserted-value rate (SLI). When SLI is higher than
a certain threshold while SLA is low, the system changes the
cell to operate in UPA Mode 1 by setting mode to 1. If SLA

is high and SLI is low, mode will be set to 2. If both rates are
high, mode will be set to 3. All UPA operations (update, delete,
approve, ...) will read the mode variable before execution to

know the current Mode of the cell and perform the operation
according to that. For example, when the ScGet operation
searches for the last inserted value, it examines mode. If mode
is equal to 1 or 2, it searches in the original table of the cell.
If mode is 3, it searches in the History table.

V. EXPERIMENTAL STUDY

A. Dataset and Test Environment

We realize and test our system in an HBase Cluster with six
virtual machines (VMs). A single VM is used as the Hadoop
and HBase masters, while the other five VMs act as Hadoop
slaves and HBase clients. We use data from Wikipedia [17],
which provides the history of updates performed on Wikipedia
pages. Each Webpage represents a data cell and each update
on the Webpage is a new value of the cell. The size of the
dataset is around 2.1 GB. We test three scenarios, where we
insert into HBase 1, 10, and 100 % of the data respectively,
leading to three data sizes: 21 MB, 210 MB, and 2.1 GB
respectively. Note that this is the size of the original data from
the training file. After adding the metadata in the History table,
the database size reaches about 5 times the size of the original
file. The three data sizes were tested for all three UPA Modes.
We also tested for each data size a dynamic-Mode scenario in
which the workload parameters were varied over time.

In the fixed-Mode scenarios, each of the five slaves runs
two processes in parallel: the first process inserts one fifth
of the data into the Wiki table, while the second process
continuously executes two queries that respectively retrieve the
last inserted and the last approved values of a randomly chosen
cell. On the other hand, the master VM executes, while the five
slaves are inserting data, a PI process, which looks for pending
values in the History table and randomly approves or rejects
them, according to a certain rejection percentage RP. We
vary RP between 0.01 and 0.8.In the dynamic-Mode scenario,
we divide the simulation time into three equal parts: In the
first part, the five clients target 90% of their search queries to
the last inserted values, and the other 10% to the last approved
values. In this case, the best UPA Mode to use is Mode 1. In
the second part, the five clients target 90% of their queries to
the last approved values and the other 10% to the last inserted
values. The best UPA Mode here is Mode 2. In the third part,
the five clients target the last inserted and the last approved
values with equal percentages. Hence, the best UPA Mode
for the third part is Mode 3. A continuously running ScMode
thread periodically calculates SLI and SLA for each cell and
dynamically changes the UPA Mode of the cell to the best
suitable one according to the values of the two rates.

B. Results and Discussion

Fig. 5 and 6 show the total delay of the Insert, Delete, Ap-
prove, Reject, Search-last-inserted, and Search-last-approved
operations. Fig. 5a shows that Mode 2 has the least Insert delay
because it inserts data to the original table only when approved,
while Mode 1 inserts data to the original table when data is
inserted and when a history record is rejected. In contrast,
Mode 3 inserts data to the original table at insertion, approval,
or rejection and hence yields the highest delay. The Insert delay
of dynamic-Mode is equal to that of Mode 2 when the data size
is small and slightly less than that of Mode 1 when data size

is large. For all four Modes, the delay converges as the data
size increases. This behavior is also observed for the Delete,
Approve, and Reject operations (Fig. 5b, 5c, 6a), which reflects
the stability of the system.

Fig. 5b shows that delete has a similar end-to-end delay for
the four Modes. The reason is that the delete algorithm is very
similar among the three UPA Modes. In addition, we notice in
Fig. 5c that Mode 1 has the minimum approve delay, because
it approves the cell only in the History table, while Modes 2
and 3 need to write to the original table when approving. The
approve delay of the dynamic-Mode is somehow in the middle
between the delays of the three Modes, and is less than the
delays of Modes 2 and 3 for all data sizes. As for reject, Mode
2 (Fig. 6a) has minimum delay, because it does not need to
write to the original table in case of a reject. Modes 1 and
3 need to restore the previous approved value to the original
table when the current value is rejected. Hence, they consume
additional delay. Similar to approve, the reject delay of the
dynamic-Mode scenario is less than the delays of Modes 1
and 3 for all data sizes. Also, the reject delay of the dynamic-
Mode is less than that of Mode 2 when the data size is small.

For searching, Fig. 6b shows that Modes 1 and 3 have
a much less delay than Mode 2 when searching for the last
inserted value, since they save this value in the original table,
while in Mode 2 it is retrieved from the History table. Fig. 6c
shows that Modes 2 and 3 have much less delay than Mode
1 when searching for the last approved value, for the same
reason. The figures also illustrate that the Search-last-inserted
and Search-last-approved delays of dynamic-Mode are close to
the best possible search delay and much less than the highest
search delay for both operations. Note that the delays in Fig. 6b
and 6c increase as the data size increases, since the number
of regions increases, and the regions will be distributed on
different VMs. In this case, there is a higher probability that
the region that contains the target data is on another VM.

Finally, Fig. 7 gives the delay of the six operations when
varying RP between 0.01 and 0.8. Notice that Delete, Approve,
and Search are the most affected by increasing RP, e.g., the
Delete delay decreases from 60 to 48 ms. The reason is that
deletes that are found in the training file will not be executed
if the data has already been rejected. Thus, the total delete
delay decreases. The delays of Approve and Search decrease
because as more rejections are made, more data is deleted from
the original and History tables and the database size decreases.
However, the Reject delay increases because more reject jobs
are injected into the database, while the Insert delay is not
affected, since the same insertions are made, regardless of the
rejection percentage. In general, the performance of the system
is acceptable for both high and low values of RP.

From the results, we notice that each of the three UPA
Modes has good performance for some operations but weak
performance for others. On the other hand, as Fig. 5 and 6
show, the dynamic-Mode scenario has a delay which is equal
or slightly larger than the best delay, but much less than the
worst delay, for all six operations. Hence, it is the best scenario
that guarantees good performance for all operations.

0 1 2 3 4 5 6 7 8 9 10
70

75

80

85

90

95

100

105

Data Size(GB)

D
el

ay
 T

im
e(

m
il

li
se

co
n

d
s)

mode1

mode2

mode3

dyn mode

(a) Insert

0 1 2 3 4 5 6 7 8 9 10
40

50

60

70

80

90

100

110

Data Size(GB)

D
el

ay
 T

im
e(

m
il

li
se

co
n

d
s)

mode1

mode2

mode3

dyn mode

(b) Delete

0 1 2 3 4 5 6 7 8 9 10
40

50

60

70

80

90

100

110

120

Data Size(GB)

D
el

ay
 T

im
e(

m
il

li
se

co
n

d
s)

mode1

mode2

mode3

dyn mode

(c) Approve

Fig. 5: The effect of data size on query delay: insert, delete, approve

0 1 2 3 4 5 6 7 8 9 10
80

85

90

95

100

105

110

Data Size(GB)

D
el

ay
 T

im
e(

m
il

li
se

co
n

d
s)

mode1

mode2

mode3

dyn mode

(a) Reject

0 1 2 3 4 5 6 7 8 9 10
50

55

60

65

70

75

80

85

90

95

Data Size(GB)

D
el

ay
 T

im
e(

m
il

li
se

co
n

d
s)

mode1

mode2

mode3

dyn mode

(b) Search-last-inserted

0 1 2 3 4 5 6 7 8 9 10
50

55

60

65

70

75

80

85

90

Data Size(GB)

D
el

ay
 T

im
e(

m
il

li
se

co
n

d
s)

mode1

mode2

mode3

dyn mode

(c) Search-last-approved

Fig. 6: The effect of data size on query delay: reject, search-last-inserted, search-last-approved

0 10 20 30 40 50 60 70 80 90
45

50

55

60

65

70

75

80

85

90

95

Rejection(%)

D
el

ay
 T

im
e(

m
il

li
se

co
n
d
s)

Insert

Delete

Approve

Reject

Search-Inserted

Search-Approved

Fig. 7: Varying the rejection percentage for different queries

VI. CONCLUSION

In many applications, the correctness of inserted data is
based not only on the identity of the user, but also on the
value of the data itself. The underlying database system should
handle the approval of data and enable users to view its
status and track its history. In this paper, we presented an
Update Pending Approval model for collaborative databases.
We presented the basic operations of the system and discussed
its various modes of operation. Most importantly, our system is
adaptive, i.e., it can dynamically switch between modes based
on changes in the workload. We tested the various operations
using a custom-built HBase cluster. Our results illustrate the
advantages and disadvantages of each of the proposed modes
and the superiority of the adaptive mode over the fixed modes.

ACKNOWLEDGMENT

This publication was made possible by the support of
an NPRP grant from the QNRF and the support of the
National Science Foundation under Grants IIS-1117766 and
IIS-0964639. The statements made herein are solely the re-
sponsibility of the authors.

REFERENCES

[1] R. Fagin, “On an authorization mechanism,” ACM Trans. Database
Syst., vol. 3, no. 3, pp. 310–319, Sep. 1978.

[2] P. P. Griffiths and B. W. Wade, “An authorization mechanism for a
relational database system,” ACM TODS, vol. 1, no. 3, pp. 242–255,
Sep. 1976.

[3] “Apache hbase.” [Online]. Available: https://hbase.apache.org/
[4] A. Aiken, J. Hellerstein, and J. Widom, “Behavior of database produc-

tion rules: Termination, confluence, and observable determinism,” in
SIGMOD, 1992.

[5] N. W. Paton and O. Dı́az, “Active database systems,” ACM Comput.
Surv., vol. 31, no. 1, pp. 63–103, 1999.

[6] D. Lomet, R. Barga, M. Mokbel, and G. Shegalov, “Transaction time
support inside a database engine,” in Data Engineering, 2006. ICDE
’06. Proceedings of the 22nd International Conference on, April 2006.

[7] “Oracle flashback.” [Online]. Available: http://www.oracle.com/
technetwork/issue-archive/2008/08-jul/o48totalrecall-092147.html/

[8] “Apache subversion.” [Online]. Available: http://subversion.apache.org/
[9] “Git.” [Online]. Available: http://git-scm.com/

[10] P. Buneman, A. Chapman, and J. Cheney, “Provenance management in
curated databases,” in SIGMOD ’06. Chicago, IL, USA: ACM, 2006.

[11] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo, J. Stoyanovich,
and V. Tannen, “Putting lipstick on pig: Enabling database-style work-
flow provenance,” VLDB Endow., vol. 5, no. 4, pp. 346–357, Dec. 2011.

[12] M. Y. Eltabakh, M. Ouzzani, and W. G. Aref, “bdbms - a database
management system for biological data,” CIDR 2007.

[13] M. Eltabakh, W. G. Aref, A. Elmagarmid, and M. Ouzzani, “Handson
db: Managing data dependencies involving human actions,” IEEE
TKDE, no. PrePrints, p. 1, 2013.

[14] “Apache hadoop.” [Online]. Available: http://hadoop.apache.org/
[15] “Hadoop distributed file system.” [Online]. Available:

http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-hdfs/
HdfsUserGuide.html

[16] “Apache zookeeper.” [Online]. Available: http://zookeeper.apache.org/
[17] “Wikipedia challenge.” [Online]. Available: http://www.kaggle.com/c/

wikichallenge/data

