
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

HandsOn DB: Managing Data Dependencies
involving Human Actions

Mohamed Eltabakh1, Walid Aref2, Ahmed Elmagarmid3, Mourad Ouzzani3
1 Worcester Polytechnic Institute, MA, USA, meltabakh@cs.wpi.edu

2 Purdue University, IN, USA, aref@cs.wpi.edu
3 Qatar Computing Research Institute, Qatar, {aelmagarmid, mouzzani}@qf.org.qa

Abstract—Consider two values, x and y, in the database, where y = F(x). To maintain the consistency of the data, whenever x changes,
F needs to be executed to re-compute y and update its value in the database. This is straightforward in the case where F can be executed
by the DBMS, e.g., SQL or C function. In this paper, we address the more challenging case where F is a human action, e.g., conducting
a wet-lab experiment, taking manual measurements, or collecting instrument readings. In this case, when x changes, y remains invalid
(inconsistent with the current value of x) until the human action involved in the derivation is performed and its output result is reflected into
the database. Many application domains, e.g., scientific applications in biology, chemistry, and physics, contain multiple such derivations
and dependencies that involve human actions. In this paper, we propose HandsOn DB, a prototype database engine for managing
dependencies that involve human actions while maintaining the consistency of the derived data. HandsOn DB includes the following
features: (1) semantics and syntax for interfaces through which users can register human activities into the database and express the
dependencies among the data items on these activities, (2) mechanisms for invalidating and revalidating the derived data, and (3) new
operator semantics that alert users when the returned query results contain potentially invalid data, and enable evaluating queries on
either valid data only, or both valid and potentially invalid data. Performance results are presented that study the overheads associated
with these features and demonstrate the feasibility and practicality in realizing HandsOn DB.

Index Terms—Scientific databases, data dependency and consistency, human actions, query processing.

F

1 INTRODUCTION

In many application domains such as scientific experi-
mentation in biology, chemistry, and physics, the deriva-
tions among the data items are complex and may involve
sequences of human actions, e.g., conducting a wet-lab
experiment, taking manual measurements, and collecting
instrument readings. In traditional derived data that are
stored inside the database, e.g., deriving age from the
date-of-birth attribute, simple procedures internal to the
database system can be coded and executed automati-
cally to maintain the consistency of the data. In contrast,
when the derivations among the data items involve
human actions, these derivations cannot be coded within
the database. Hence, updating a database value may
render all dependent and derived values invalid until the
required human actions are performed and their output
results are updated back in the database.

Typical databases may contain multiple dependencies
which may cascade and interleave with other dependen-
cies that involve executable functions, e.g., SQL and C
functions. Hence, a complex dependency graph is created
among the database items. Since human actions may
take long time to prepare for and perform, parts of the
underlying database may remain inconsistent for long
periods of time while the data still need to be made
available for querying. Our focus in this paper is on
managing dependencies that involve human actions or

This work was partially supported by the National Science Foundation
under Grants III-1117766, IIS-0964639, IIS-0916614, and Qatar Computing
Research Institute.

more generally, real-world activities, inside the database
engine while maintaining the consistency of the derived
data under update and query operations.

Motivating Examples: Figure 1 illustrates an example,
from the biology domain, of a pipeline collecting different
pieces of information about genes/proteins and storing
them in the database. As depicted in the figure, the initial
sequence files stored in the database will be used as
input to a set of procedures involving human actions
in order to discover more information, e.g., the protein
family, gene function, and the location of SNP (Single-
Nucleotide Polymorphism). If the underlying sequence
data is modified due to correction of sequencing errors
or an improved assembly, then the corresponding output
data from the procedures become potentially invalid and
need to be re-verified. Another example of chemical
reactions is illustrated in Figure 2 where chemists may
store in the database descriptions of chemical reactions,
e.g., substrates, reaction parameters, instruments settings,
and products. Clearly, these chemical reactions require
human intervention. If, for example, any of the substrates
in the reaction are modified, then the products of the
reaction may change as well, and hence they become
invalid until the reaction is re-executed or the chemist
verifies the old value.

The presence of potentially-invalid values in the
database directly affects the correctness of the queries’
answers as well as any decisions based on the results. For
example, continuing with the biology pipeline (Figure 1)
assume the database instance shown in Figure 3 where

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

Traditional

454

SOLiD

Gs-assemble
Gs-map

Bioscope

Phred/Phrap

Initial Sequence
Files

Reassemble
(alt. algorithm)

Map transcripts
to genes

Map to known
genome

Identify similar
genes

Identify gene
function Identify SNP

Sequencing
Platform

Genomics Facility
Pipeline

Sequences stored
in database

Procedures involving
human actions

Human Actions
•  Choose analysis algorithm/

experiment
•  Parameter adjustment
•  Evaluate and refine results

Derived information
Stored in database

•  Protein family
•  Gene function
•  Locations of SNP

Fig. 1. Real-world dependencies in biological pipeline.

Reagents

Solvents

Etc.

Reaction
Temperature
Pressure
Mixing
Etc.

Product

Analysis of Product

Calibrate
Instrument

Instrument Human Actions
a. Design reaction
b. Select Analysis Method
c. Calibrate Instrument
d. Re-calibrate instrument

a

c

b

d

Fig. 2. Real-world dependencies in chemical
reactions.

GID Gseq Predicted
Function

Loc Of
SNP

...

JW0013 TGCT! F1 25444

JW0014 GGTA! F2 14457

JW0015 CTTT! F2 5447

JW0018 CGAA! F3 42204

JW0019 TATG! F4 75441

GENE table

Select GSeq, LocOfSNP
From Gene
Where PredictedFunction = “F2”;

GSeq LocOfSNP

GGTA! 14457
CTTT! 5447

Query Q1

Q1 Answer

Outdated

Evaluated based on
Up-to-date values

Evaluated based on
outdated values

External-dependencies

Fig. 3. Querying invalid values.

the sequence of gene JW0014 has been updated, and
hence the dependent values become invalid (marked
as black table cells). Although the reported result from
query Q1 seems correct, it is missing crucial information,
e.g., the reported value “14457” is potentially invalid and
needs to be verified, and the first tuple in the answer
matched the query predicate (PredictedFunction = “F2”)
based on an invalid value F2, and hence its presence in
the output is questionable.

Candidate Solutions with Current Technologies:
While there are several existing technologies that may
be used to solve our problem, all have limitations as
compared to HandsOn DB. We discuss below three of
these possible solutions.

The first possible approach is to store metadata infor-
mation along with the data values, e.g., a version number
or timestamp, to track whether values are up-to-date or
outdated. However, this approach has several limitations
including: (1) Without explicitly modeling the dependen-
cies inside the DBMS, the maintenance of the auxiliary
metadata is delegated to end-users which is both an
overwhelming task and error prone. (2) Integrating the
metadata information inside the query engine is prob-
lematic because users’ queries have to incorporate the
metadata information in their evaluation. For example,
dependencies may span multiple tables, e.g., values in
table R depend on values in tables Si and Sj , and hence
a query on only table R needs to be extended to also
check tables Si and Sj to decide whether R’s values are
up-to-date or outdated, which will make even simple
queries very complex. (3) All curation operations, e.g.,
why certain values are invalid and how to re-validate
them, and which external activities need to be performed
and using which parameters, will be manually performed
without any system support.

Another possible approach is to delay the updates to

the database until all derived values are computed, i.e.,
keeping the partial results outside the database. Although
feasible in some scenarios involving simple dependen-
cies, it has several limitations as it does not scale with
complex dependencies, and storing the data outside the
database is not a preferred solution w.r.t. recovery, instant
availability of results, and ensuring the consistency of the
new values with other database values.

A third approach is in the context of workflow man-
agement, e.g., [27], [28], [29], where the external activities,
dependencies, and the database updates are modeled as
processes of a workflow. While attractive, this approach
has two major limitations: (1) Since the dependencies
are modeled at the workflow management level (i.e.,
outside the DB), directly querying the database without
consulting the workflow system will not reflect such
dependencies, and hence may reveal potentially-invalid
values to end-users without notification, and (2) The
advanced optimizations and features offered by HandsOn
DB, such as extended querying capabilities and curation
operators, will no longer be applicable because the ex-
ternal dependencies are not coherently integrated inside
the database system. Supporting such optimizations and
features at the workflow level will be much harder.

Contribution: The above limitations motivate the need
for a more systemic mechanism and an end-to-end so-
lution that enables scientists to focus on running their
experiments and uploading the results, instead of track-
ing the dependencies among the data items and verifying
their consistency. In this paper, we propose HandsOn DB,
a prototype database engine for managing dependencies
that involve real-world activities while maintaining the
consistency of the derived data. HandsOn DB addresses
all of the above limitations as it enables users to reflect
the updates immediately into the database, i.e., instant
availability of the data, while the DBMS keeps track of
the derived data by marking them as potentially invalid
(aka outdated) and reflecting their status in the query
results, i.e., the consistency of the data is not compro-
mised. HandsOn DB introduces extended query operators
for evaluating users’ queries on either valid data only,
thus avoiding relying on any potentially invalid values
(no false-positive tuples), or both valid and potentially
invalid data (include false-positive tuples). HandsOn DB
is a component in bdbms [1], [2], our proposed database
system for scientific data management. We first high-
lighted the main research challenges involved in manag-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

ing complex real-world dependencies in [3]. In this paper,
we propose novel solutions to these challenges.

The contributions of this paper are as follows1:
• Proposing new SQL syntax and its corresponding

semantics to register real-world activities into the
database and to express the dependencies among
data items using these activities.

• Introducing an extended relational algebra and new
semantics for query operators to alert users of any
potentially-invalid data in the query results, and to
enable querying either valid data only or both valid
and potentially-invalid data.

• Proposing new data manipulation and curation op-
erations for invalidating and revalidating the data,
and for keeping track of the real-world activities that
need to be performed in order to revalidate the data.

• Experimentally evaluation the proposed features of
HandsOn DB and demonstrating the system’s prac-
ticality.

The rest of the paper is organized as follows. Sec-
tion 2 overviews the related work. Section 3 presents
the needed definitions. Sections 4 and 5 introduce the
data manipulation operations as well as the new query
operators, respectively. In Section 6, we present several
design issues. The performance analysis is presented in
Section 7. Section 8 contains concluding remarks.

2 RELATED WORK

The theory of functional dependencies (FDs) in DBMSs,
e.g., [5], [6], [7], is used to model dependencies among
data items, infer keys, and systematically normalize
database schemas to prevent several inconsistency prob-
lems, e.g., redundancy, and update and delete anomalies.
However, FDs cannot solve the inconsistency problem
raised in this paper mainly because the dependencies
that involve real-world activities cannot be modeled or
coded inside the database (E.g.,using triggers or user-
defined functions) regardless of how well the schema is
designed or normalized. The existence of such external
activities that cannot be handled by DBMSs triggered the
research in long-running transactions, e.g., [8], [9], where
a database transaction may involve external activities,
e.g., getting a manager’s signature to complete a pur-
chase transaction. Systems for long-running transactions
took the approach of loosening the ACID properties, us-
ing optimistic concurrency control techniques, and using
compensating transactions in the case of failures. The
key objective of these systems is to keep track of the
derived data that are already modified by the transaction
to roll them back if needed (compensating transactions).
However, long-running transactions do not keep track
of the derived data that are still awaiting to be updated
and are currently inconsistent, and hence they delegate
this inconsistency issue to the end-user without any

1. The correctness of execution of HandsOn DB is theoretically proven
in [4], but the proof is not included in this paper due to space
limitations.

system support. More importantly, the currently incon-
sistent values are subject to querying—possibly for long
periods of time— without any special query processing
or notification mechanisms.

Active databases [10], [11], [12] provide mechanisms
(through triggers) to respond automatically to events
taking place either inside or outside the database. The
outside events are ultimately mapped to operations that
the DBMS can capture, e.g., insertion, deletion, or calling
of a user-defined function. Unlike active databases, in
HandsOn DB, a change inside the database, e.g., updating
the gene sequence in Figure 3, may trigger the execution
of a real-world activity outside the database to update
the derived data. Until this activity is performed, the
system needs to keep track of all potentially invalid data
items, reflect their status over query results, and provide
mechanisms for re-validating these invalid items. Active
databases do not address these challenges.

Multi-version systems and databases, e.g., [13], [14],
[15], maintain the old and new values of updated data.
However, like snapshot databases (which is the focus
of this paper), multi-version databases model only the
computable dependencies among the data items. And
hence, the provided isolation level and consistency de-
gree are based on the traditional notion of transactions.
For example, if value vj depends on value vi through
an external activity, then a transaction updating vi to v′i
would create a newer version of the database where both
v′i and vj are viewed as consistent and up-to-date val-
ues. Although this is correct with the traditional notion
of transactions, it is semantically incorrect because the
external dependency is not taken into account. Extending
the proposed techniques in the context multi-version
databases is left as future work, and in this case, the
history of dependencies changing over time can be also
maintained.

Some systems such as checkout\checkin systems [16]
consider querying an old consistent version of the data
while updating an off-line version until all required
changes to all dependent data items have been per-
formed. Then, the off-line version is released as the
newer consistent version. The drawbacks of this ap-
proach include violating the need for making users’ up-
dates available as early as possible, hiding possible data
corrections for unbounded long delays, and resolving any
consistency issues outside the DBMS, i.e., data conflicts
are resolved at the checkin time using version-control
systems outside the DBMS. HandsOn DB resolves all
these issues within the database system.

Probabilistic and fuzzy database systems (PDBMSs),
e.g., [17], [18], [19], [20], overlap with HandsOn DB as-
suming that data invalidation introduces uncertainty to
the data, e.g., potentially invalid values can be viewed as
unknown values. However, the focus of the two systems
is different. In HandsOn DB a change in the state of a
database value, i.e., being valid or invalid, is triggered
by database operations, while in PDBMSs the uncertainty
is inherent to the data and is given as external input.
These uncertainties do not change over time unless users

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

manually modify them. Therefore, PDBMSs do not ad-
dress several challenges, that are the core of HandsOn
DB, such as modeling the dependencies among the data
items, keeping track of when and why a data item
becomes uncertain (invalid), and keeping track of how
to revalidate a data item to become certain (valid).

Provenance management, e.g., [20], [21], [22], [23],
follows two main approaches; inversion-based and
annotation-based. Inversion-based techniques are not ap-
plicable to the problem at hand since we deal with
external activities that cannot be executed by the DBMS
in the first place. Annotation-based techniques [21], [24],
[25], [26] lack the ability of modeling and integrating real-
world activities inside the database system, and hence
the dependency graph involving these external activities
cannot be constructed. Annotations, therefore, can neither
maintain the consistency of the derived data items (com-
putable or non-computable) nor keep track of pending
activities that need to be performed to re-validate the
data. Provenance has been also studied extensively in
the context of scientific workflows, e.g., [27], [28], [29],
[30] where workflow systems are instrumented to capture
and store the provenance information. In these systems,
a database can be a single component within a bigger
workflow. However, as discussed in Section 1, modeling
the external dependencies at the workflow management
level has several limitations and does not actually guar-
antee the desired consistency level. Nevertheless, Hand-
sOn DB can still be used in conjunction with workflow
systems to achieve stronger consistency of the data.

3 MODELING ACTIVITIES & DEPENDENCIES

In this section, we present the formal definitions of ac-
tivities and dependencies, and show how to model them
inside the database. We assume a relational database
model, and we use the term ”database cell” to refer to an
attribute value in a single tuple. The value itself can be
primitive, e.g., integer or string, or complex, e.g., arrays
or bit maps.
Definition (Real-world Activity): A real-world ac-

tivity (RWA, for short) is an activity that requires human
intervention, and hence cannot be executed by the DBMS.
RWA takes one or more input parameters and produces one
or more output parameters.

Since real-world activities are very close in definition
to functions, we define the concept of a real-world activity
function that maps a real-world activity to a nondeter-
ministic function inside the database. RWA functions are
nondeterministic since RWAs such as lab experiments
may not generate the same exact output given the same
input parameters.
Definition (Real-world Activity Function): A real-

world activity function RWA-F is a nondeterministic function
inside the database that represents a real-world activity. RWA-
F is of type ‘real-world activity’ and has a signature that
specifies the function name and the input and output types.
RWA-F has no associated code.

Similar to defining SQL, C, or Java functions inside the
database, we extend the SQL Create Function command
to define real-world activity functions as follows:

Create Function <activity_name> (<input_types>)

Returns (<output_types>) As real-world activity;

Once real-world activity functions are defined in the
database, users can create dependencies among the data
items using these functions. Users can also create depen-
dencies among the data items using executable functions,
e.g., SQL or C functions. Each dependency defines the
function name involved in the dependency, the input
parameters to the function (the order of the inputs mat-
ters only if the function is executable), and the output
parameters from the function.
Definition (Dependency Instance): A dependency

instance DI is a dependency between a set of input parameters
(database cells) and a set of output parameters (database cells)
through a specific execution of a function. A dependency
instance is defined as DI= (F, SP, DP), where:
• F: The function name involved in the dependency.
• SP (Source Parameters): A set of database cells that

are the input parameters to F .
• DP (Destination Parameters): A set of database cells

that are the output parameters from F .
If F is of type real-world activity, then DI is called

real-world dependency, otherwise, DI is called computable
dependency. The dependency of DP on SP is complete in
the sense that each database cell in DP depends on all
database cells in SP.

Dependency instances are conceptually defined at the
cell level, i.e., they capture the dependencies between
the database table cells. Such fine-granular level of ex-
pressing the dependencies may sometimes involve high
overhead as reported in [35]. In HandsOn DB, we intro-
duce a higher level of abstraction using the Add Depen-
dency construct, by which users may define dependencies
over one cell, multiple cells, or even entire columns at
once. Dependencies are created in (or dropped from) the
database using the Add Dependency (or Drop Dependency)
constructs that are augmented to the SQL Create Table and
Alter Table commands as follows:

Alter Table <R>
Add Dependency [<dependency_id>]
Using <func_name>
Source <T1.c1[, T2.c2, ...] >
Destination <R.c’1 [, R.c’2, ...]>
[Where <predicates>]
[Invalidate Destination] ;

Create Table <R>
(
 <columns_definitions >
 ….
 Add Dependency [<dependency_id>]
 Using <func_name>
 Source <T1.c1[, T2.c2, ...] >
 Destination <R.c’1 [, R.c’2, ...]>
 [Where <predicates>]
);

Alter Table <R>
Drop Dependency <dependency_id>
[Invalidate Destination] ;

A new dependency is defined over Table R that
contains the destination attributes R.c′1, R.c′2, ... of the
dependency. The dependency id is a unique id that is
either defined by the user or generated automatically
by the system. If the dependency applies to multiple
destination tables, then it is defined over each of these
tables with different dependency id. The optional Where
clause contains join and selection predicates over the
source and destination tables to specify the exact table

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

cells that are linked together. Examples 1 and 2 below
illustrate defining dependencies over single and multiple
tables.

Example 1: Single-table
 dependency
!
Create Table Gene(!
 GID text primary key,!
 GSeq text,!
 GDirection char,!
 GFunction text,!
 ...
 ADD Dependency
 Using GeneFunExp!
 Source GSeq, GDirection!
 Destination GFunction);

Description: Each gene function is
inferred from the corresponding
gene’s sequence and direction
using GeneFunExp.

Example 2: Cross-table dependency

Create Table Protein(!
 PID text primary key,!
 GID text references Gene(GID),!
 PSeq text,!
 PFunction text,!
 ...

 ADD Dependency Using A-Prediction
 Source Gene.GSeq, Gene.GDirection!
 Destination Protein.PSeq!
 Where Protein.GID = Gene.GID!
 And Gene.GFunction = ‘F1’,!

 ADD Dependency Using B-Prediction
 Source Gene.GSeq!
 Destination Protein.PSeq!
 Where Protein.GID = Gene.GID!
 And Gene.GFunction != ‘F1’);

Description: For proteins whose gene functions = ‘F1’,
the protein sequence is inferred from the corresponding
gene’s sequence and direction using A-Prediction.
Otherwise, the protein sequence is inferred from only the
gene’s sequence using B-Prediction.

In Example 1, the Where clause is omitted which indi-
cates that the source and destination table cells belong
to the same tuple. In this example, The dependency
definition applies to all tuples in table GENE. In Exam-
ple 2, the dependencies are defined between the two
tables, GENE and PROTEIN. In this case, the Where clause
contains a join between the two tables. Join predicates
are mandatory for cross-table dependencies and are re-
stricted to only equality joins between a foreign key in
the destination table, e.g., Protein.GID, and the primary
key in the source table, e.g., Gene.GID. This restriction
ensures that each destination table cell is attached to
unique source table cells. Notice that the predicates of
the two Add Dependency constructs in Example 2 are
not disjoint, i.e., one tuple may have the gene function
equals ”F1” and the start position greater than 10000. In
this case, the destination table cell of that tuple, i.e., the
protein sequence, follows the definition of the second
dependency (the most recent one) as will be explained
using the overriding property in Section 4.

4 DATA MANIPULATION OPERATIONS
In this section, we present the data manipulation oper-
ations in HandesOn DB and define how they affect the
value and status of the database cells. These operations
represent the interfaces through which the dependency
graph—created from the user-defined real-world and
computable dependencies—is manipulated. Conceptu-
ally, each table cell has a status (0 = up-to-date, 1 =
outdated) in addition to the cell value. That is, Relation
R having n attributes is represented as: R = {r =<

(C1.value, C1.status), ..., (Cn.value, Cn.status) >}.
We define five data manipulation operations, namely,

insert(t), delete(t), update(c), invalidate(c), and validate(c),
where t is a tuple and c is a database cell. In Figure 4, we
demonstrate a sequence of cumulative operations over
two sample tables T and S. Tuples in S reference the
tuples in T using the foreign and primary keys S.T fk,
and T.T pk, respectively. The dependencies among the
two tables are depicted in Figure 4(a), where the dashed

and solid lines represent computable and real-world
dependencies, respectively. The semantics of each depen-
dency are presented in Figure 4(b). Figure 4(c) gives the
state of the database after performing each operation. The
black-marked table cells represent the outdated values
while the red-marked ones represent modified or newly
inserted values.

Throughout this section, we use the following short-
hand notations for a given database cell c. The database
cells from which c is derived are called InputParameters(c).
The database cells that are derived from c through real-
world and computable dependencies are called Real-
worldOutputs(c), and ComputableOutputs(c), respectively.
• invalidate(c): invalidates c and all database cells

that depend on c recursively, i.e., database cells in Com-
putableOutputs(c) and RealworldOutputs(c). For example,
when Operation 1 in Figure 4 invalidates the database
cell (t4,r1) because of the existence of the real-world
activity F2, the invalidation propagates recursively to the
dependent database cells (t5,r1), (s1,r1), and (s3, r1).
• validate(c): validates c only if InputParameters(c), are

all up-to-date. If c is validated, then the validate procedure
is called recursively on the database cells in Computable-
Outputs(c). The database cells in RealworldOutputs(c) are
not validated automatically because they are waiting
on real-world activities to be performed. Referring to
Operation 2 in Figure 4, when Activity F2 is externally
performed and its result (value 13) is updated in (t4, r1),
the dependent table cell (t5, r1) is re-computed and vali-
dated automatically through the computable dependency
involving F3. However, the validation does not propagate
to (s1, r1) because F4 is a real-world activity.
• update(c): updates the value of c as well as the

values of ComputableOutputs(c). If c is currently invalid,
then c is validated only if InputParameters(c) are all valid.
Otherwise, the status of c remains unchanged. Moreover,
since the value of c is modified, the database cells in Real-
worldOutputs(c) are invalidated. For example, Operation 1
in Figure 4 re-computes and modifies the value of (t1, r1)
from ‘9’ to ‘3’ while maintaining its status valid. In con-
trast, the value in (t4, r1) is invalidated through the real-
world dependency involving F2. Similarly, Operation 3
results in re-computing the value in (s3,r1) to be ‘90’
instead of ‘150’ through F5. However, this update does
not validate (s3,r1) because one of its input parameters,
i.e., (s1,r1), is still outdated.
• delete(t): If the values in t are neither source nor

destination parameters to any dependency, then t is
deleted without any further processing. The same rule
applies if the values in t are only destination parameters
to some existing dependencies. However, if the values in
t are source parameters to some existing dependencies,
then either the deletion of t is rejected, or t is deleted
and the destination parameters of these dependencies are
invalidated. The default behavior in the system is to reject
the deletion of t. This behavior can be altered at the table
level using the following command:
Alter Table <tableName> Add Constraint <constName>

On Delete Propagate Invalidation;

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Op.# Operation Triggering event Consequence

1 Update cell (t2,r1)

from 10 to 4

--- -Update cell (t1,r1) with value 3

-Invalidate cell (t4,r1)

-Invalidate cell (t5, r1)

-Invalidate cell (s1,r1)

-Invalidate cell (s3,r1)

2 Update cell (t4,r1)

from 6 to 13

Activity F2 is conducted

using the current values

of cells (t2,r1) and (t3,r1).

The output value is 13

-Validate cell (t4, r1)

-Update cell (t5,r1) with value 26

-Validate cell (t5,r1)

3 Update cell (s2,r1)

from 80 to 20

--- -Update cell (s3,r1) with value 90

4 Insert into T tuple r3 --- ---

5 Update cell (t3,r3)

from 4 to 8

--- -Invalidate cell (t4,r3)

-Invalidate cell (t5, r3)

6 Insert into S tuple r3 --- -Invalidate cell (s1,r3)

-Invalidate cell (s3,r3)

7 Alter Table S

Add Dependency

Using F6

Source S.s1

Destination S.s3

Invalidate destination;

The derivation

mechanism of Column

S.s3 is modified.

-For each database cell c in S.s3

-Invalidate (c)

-For each database cell c in S.s3

-The new dependency overrides

the old one

T_pk t1 t2 t3 t4 t5

1 3 4 5 6 12

2 1 2 7 4 8

S_pk s1 s2 s3 T_fk

100 70 80 150 1

200 30 40 70 2

r1

r2

r1

r2

T_pk t1 t2 t3 t4 t5

1 3 4 5 13 26

2 1 2 7 4 8

S_pk s1 s2 s3 T_fk

100 70 80 150 1

200 30 40 70 2

r1

r2

r1

r2

T_pk t1 t2 t3 t4 t5

1 3 4 5 13 26

2 1 2 7 4 8

S_pk s1 s2 s3 T_fk

100 70 20 90 1

200 30 40 70 2

r1

r2

r1

r2

T_pk t1 t2 t3 t4 t5

1 3 4 5 13 26

2 1 2 7 4 8

3 8 9 4 7 14

S_pk s1 s2 s3 T_fk

100 70 20 90 1

200 30 40 70 2

r1

r2

r3

r1

r2

T_pk t1 t2 t3 t4 t5

1 3 4 5 13 26

2 1 2 7 4 8

3 8 9 8 7 14

S_pk s1 s2 s3 T_fk

100 70 20 90 1

200 30 40 70 2

r1

r2

r3

r1

r2

T_pk t1 t2 t3 t4 t5

1 3 4 5 13 26

2 1 2 7 4 8

3 8 9 8 7 14

S_pk s1 s2 s3 T_fk

100 70 20 90 1

200 30 40 70 2

300 3 13 16 3

r1

r2

r3

r1

r2

r3

Database state after the operation

T S

T_pk t1 t2 t3 t4 t5

1 9 10 5 6 12

2 1 2 7 4 8

S_pk s1 s2 s3 T_fk

100 70 80 150 1

200 30 40 70 2

F1
F2

F3 F4
F5

T S

Dependency

function

Type Description Source(s) Dest. Predicate(s)

F1 Computable Subtract one from the source T.t2 T.t1 None

F2 Real-world Wet-lab experiment T.t2, T.t3 T.t4 None

F3 Computable Multiply the source by 2 T.t4 T.t5 None

F4 Real-world Wet-lab experiment T.t5 S.s1 S.T_fk = T.T_pk

F5 computable Sum the sources S.s1, S.s2 S.s3 None

F6 (in Op# 7) Real-world Wet-lab experiment S.s1 S.s3 None(a) User-defined dependencies over
sample tables T and S

(c) Sequence of database operations and their effect on the database (dark cells represent invalid values)

r1

r2

r1

r2

(b) Dependencies details

T_pk t1 t2 t3 t4 t5

1 3 4 5 13 26

2 1 2 7 4 8

3 8 9 8 7 14

S_pk s1 s2 s3 T_fk

100 70 20 90 1

200 30 40 70 2

300 3 13 16 3

r1

r2

r3

r1

r2

r3

F6

Fig. 4. Examples of database operations under a set of user-defined dependencies.

• insert(t): One of the restrictions on the Add De-
pendency construct is that the destination table has to
contain foreign keys that reference the primary keys in
the source tables (Refer to Section 3). This restriction
ensures the uniqueness of the source table cells for a
given destination table cell. It also simplifies the insertion
procedure since it ensures that at the insertion time of t,
there cannot be destination parameters in the database
that depend on t. The default action is to insert t into the
database with all its values up-to-date and no further
processing is needed. The only exception is when the
values of t are destination parameters to some existing
dependencies. In this case, for each database cell c in
t, if any of the InputParameters(c) is invalid, then c is
invalidated. For example, Operation 4 in Figure 4 inserts
a new tuple T.r3 with all its values up-to-date. In contrast,
Operation 6 inserts tuple S.r3 (which references tuple
T.r3) and invalidates the value in (s1,r3) because this
value is inferred from (t5,r3), which is currently invalid.

Other operations that may affect the status of the
database items are adding and dropping dependencies.
When a new dependency, say DI , is added to the
database, we need to address two issues: (1) whether

or not DI will form a cycle with other existing depen-
dencies, and (2) whether or not DI will override other
existing dependencies.

A cycle among a set of user-defined dependencies
indicates that the derivations among the destination and
source parameters of these dependencies may loop indef-
initely. Cycles are not allowed in HandsOn DB according
to the following definitions— Recall that DI.DP and
DI.SP correspond to the destination and source param-
eters of dependency DI , respectively.
Definition (Cycle Formation): Dependency in-

stances DI1, DI2, ..., DIn form a cycle if DIi.DP ∩
DIi+1.SP 6= φ, for 1 ≤ i < n, and DIn.DP ∩DI1.SP 6= φ.

Property (Cycle-Free Dependency Graph): A
newly defined dependency instance DIi is rejected by the
system if ∃ dependency instances DIj , DIk, ..., DIn |
DIi ∪DIj , DIk, ..., DIn form a cycle.

The algorithm for detecting and preventing cycles
among the dependencies is discussed in Section 6.1.

Since the derivations among the data items may change
over time, the user-defined dependencies may change
over time as well, i.e., new dependencies may override
other existing dependencies. For example, if a database

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

cell c is a destination parameter to dependency DIj and a
new dependency DIi is defined where c is its destination
parameter, then DIi overrides DIj w.r.t. c. Now c is being
derived according to DIi instead of DIj . Dependencies
DIi and DIj may or may not be of the same type (real-
world or computable). The overriding property is defined
as follows:
Definition (Dependency Overriding) Dependency

instance DIi is said to override dependency instance DIj w.r.t
destination parameters DP ′ 6= φ if DIi.DP ∩ DIj .DP =
DP ′ and DIi is defined (chronologically) after DIj .

The dependency overriding mechanism creates flexi-
bility in the system by allowing derivations of values to
change over time while making sure that any database
cell c can be a destination parameter to at most one
dependency instance at any given time. Hence, there
is exactly one way to derive or infer c (if any). This
guarantees the deterministic behavior of HandsOn DB,
otherwise the system cannot determine which function
derives a given value.
• Adding/Dropping dependencies: A new depen-

dency is added to the database using either the extended
Create Table or Alter Table commands (See Section 3). If
an added (or dropped) dependency is defined using the
Alter Table command including the optional Invalidate
Destination clause, then the destination table cells that
satisfy the dependency predicates are invalidated. Oth-
erwise, the destination table cells remain valid. Newly
added dependencies may override existing ones. For
example, Operation 7 in Figure 4 defines a new depen-
dency indicating that the values in column S.s3 are new
derived from the RWA-F F6 instead of the computable
dependency involving F5. The overriding mechanism is
described in detail in Section 6.1.

5 EXTENDED QUERYING MECHANISM
Initially, all values in HandsOn DB have a valid status.
However, as users perform database updates, parts of
the underlying database will become potentially invalid
(under re-evaluation). Thus, it is crucial for end-users
to get alerted when their queries touch or depend on
potentially invalid values. In this section, we introduce
extended semantics for the query operators to annotate
the query results with the status information and to
enable evaluating queries on either valid data only (avoid
getting false positive tuples), or both valid and poten-
tially invalid data (include false positive tuples).

5.1 Predicate Evaluation
A predicate evaluation over a tuple typically results in a
boolean value True or False. With the status of each value
in the database being up-to-date or outdated, we extend
the predicate evaluation to return one of four possible
values (4-valued logic): True (T), False (F), Potentially
false positive (+ve), and Potentially false negative (-
ve). The value True indicates that the tuple qualifies the
predicate based on only up-to-date values, and hence, the
tuple is certainly part of the answer (e.g., the 2nd tuple

(a) Example of Database Instance.
*Black-marked values are potentially-invalid.

Predicate 1 Predicate 2
Attr-N = “v2” Attr-N = “v2” AND

Attr-1= “a3”

F F

T -ve

+ve +ve

F F

-ve F

F F

(b) Predicate Evaluation.

OID Attr-1 Attr-2 ! Attr-N
1 a1 b1 ! v1

2 a2! b2 ! v2

3 a3 b3 ! v2

4 a4! b4 ! v4

5 A5 b5 ! v5

6 a3 b6 ! v7

Fig. 5. Examples of predicate evaluation.

against Predicate1 in Figure 5). The value False indicates
that the tuple disqualifies the predicate based on only up-
to-date values, and hence, the tuple is certainly not part
of the answer (e.g., the 1st tuple against Predicate1 in
Figure 5). The value Potentially false positive indicates that
the tuple qualifies the predicate but based on outdated
values, and hence, the tuple is potentially a false positive
(e.g., the 3rd tuple against Predicate1 in Figure 5). The
value Potentially false negative indicates that the tuple
disqualifies the predicate based on outdated values, and
hence, the tuple is potentially a false negative (e.g., the 5th

tuple against Predicate1 in Figure 5). Although it seems
easier to set the potentially-invalid values to Null and
use the 3-valued logic supported by most DBMSs, i.e.,
True, False, and IS NULL, the proposed 4-valued logic
has several advantages: (1) Columns in the database may
be defined as Not NULL and hence the Null value may
not be allowed in the first place. (2) Null values are
known to be problematic to work with as they mandate
the use of special functions, e.g., IS NULL or NVL, when
comparing values to avoid nondeterministic evaluation.
Nevertheless the complexity of manipulating Null values
by query operators such as joins and grouping. (3) Under
the 3-valued logic, the query operators still need to be
extended to differentiate between the user-inserted Null
values and the system-generated Null values, otherwise,
simple operation like reporting the potentially-invalid
values in a given column cannot be performed.

In Figure 6(a), we present the rules for evaluating
binary predicates (Column <op> Column)— rules for
evaluating unary predicates (Column <op> constant) are
trivial. As an example, a predicate P over Columns ci
and cj evaluates to +ve if the values of ci and cj satisfy P
while at least one of the two values is outdated. The truth
tables for evaluating multiple predicates are presented in
Figure 6(b).

5.2 Query Operators
In this section, we present extended semantics for the
query operators. Our goal is that the output produced
from the query operators should be both semantically
meaningful and easily interpretable by end-users. We
extended the selection and join operators with three dif-
ferent semantics to enable retrieving tuples that evaluate
the predicate(s) to either T, +ve, or -ve. The semantics
of the other operators, e.g., duplicate elimination and set
operators, have been also extended to take both the status

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

T +ve -ve F

T T +ve -ve F

+ve +ve -ve F

-ve -ve F

F F

T +ve -ve F

T T T T T

+ve +ve +ve +ve

-ve -ve -ve

F F

T +ve -ve F

F -ve +ve T

Conjunction Disjunction

Negation

T if P(ci.value, ck.value) = True & (ci.status = 0 & ck.status = 0)

F if P(ci.value, ck.value) = False & (ci.status = 0 & ck.status = 0)

P = +ve if P(ci.value, ck.value) = True & (ci.status = 1 || ck.status = 1)

-ve if P(ci.value, ck.value) = False & (ci.status = 1 || ck.status = 1)

(a) Binary predicate P over columns ci and ck

(b) Truth tables for multiple predicates

*Up-to-date Status = 0
*Outdated Status = 1

Fig. 6. Predicate evaluation rules.

and the value of the database items into account while
comparing them. The following notations are used in the
rest of this section: R and S are relation names, r and s
are individual tuples in R and S, respectively, and ci is a
column name. When ambiguous, we use r.ci to refer to
Column ci in Tuple r.
• Selection: Tuples that evaluate the selection predicate

to T, +ve, or -ve are of interest since they either satisfy
or have the potential to satisfy the query. However,
returning these tuples altogether from one operator can
be very misleading and hard to interpret. In HandsOn
DB, we define three types of selection operators, namely,
True Selection (σT), False-positive Selection (σ+), and False-
negative Selection (σ−), that return tuples that evaluate
to each of T, +ve, or -ve, respectively. The algebraic
expressions of the selection operators are as follows.

True Selection(σT,P): Selects tuples that evaluate
Predicate P to T.
σT,P (R) = {r =< (c1.value, c1.status), ..., (cn.value, cn.status) >,

|P (r) = T}

False-positive Selection(σ+,P): Selects tuples that
evaluate Predicate P to +ve.
σ+,P (R) = {r =< (c1.value, c1.status), ..., (cn.value, cn.status) >,

|P (r) = +ve}

False-negative Selection(σ−,P): Selects tuples that
evaluate Predicate P to -ve.
σ−,P (R) = {r =< (c1.value, c1.status), ..., (cn.value, cn.status) >,

|P (r) = −ve}

• Inner Join: The evaluation of a join predicate over
a pair of tuples r and s results in one of four possible
values, i.e., T, +ve, -ve, or F. Join predicates are binary
predicates and hence they follow the evaluation rules
presented in Figure 6(a). Similar to the selection operator,
we define three types of join operators, namely, True
Join, False-positive Join, and False-negative Join, that return
tuples that evaluate to each of the values T, +ve, -ve,
respectively. The algebraic expression of the True Join
operator is as follows.

True Join(R ./T,P S): Returns the joined tuples r and
s that evaluate predicate P to T.

X Y Z

a ! 2

a ! 3

a " 1

b ! 2

b ! 5

b " 4

Grouping(X) COUNT(Z)

a 2

a 1

b 3

Grouping(X,Y) SUM(Z)

a ! 5

a " 1

b ! 7

b " 4

Data table

(a) Single-column Grouping

(b) Multiple-column Grouping

* Dark table cells contain outdated values

Fig. 7. Example of grouping and aggregation.
R ./T,P S = {z =< (r1.value, r1.status), ..., (s1.value, s1.status),

..., (sm.value, sm.status) > |P (z) = T}

The algebraic expressions of the False-positive (./+,P)
and False-negative (./−,P) join operators are similar to
that of the True join operator with the exception of
having Join Predicate P(z) evaluates to +ve and -ve,
respectively.

• Duplicate Elimination & Set operations: Two tuples
are considered identical iff they share the same value
and status for all their attributes. More formally, tuples r
and s are considered identical w.r.t. Columns c1, c2,
..., cn iff: (r.ci.value = s.ci.value and r.ci.status =
s.ci.status) ∀ i ∈ {1, 2, ..., n}. Duplicate elimination and
set operators, i.e., union, intersect, and except, are ex-
tended based on this semantics. Note that it is possible
that two identical and invalid tuples may be invalid for
different reasons. However, since no extra information,
e.g., the reason of invalidation, is carried out with these
tuples in the output, then reporting all of the instances to
users can be very confusing and unjustified. Instead, we
opt to implement the standard semantics and report only
one instance of such identical tuples. In Section 5.3, we
will present a set of curation operators that enable users
to track the reasons of tuples’ invalidations and report
their dependencies.
• Grouping(γ(R)): Consistent with the semantics of

identical tuples, tuples that have the same values and
status in the grouping columns are added to the same
group. Therefore, two identical values with different
status will form two different groups with different status
as well. For example, the grouping over column X in
Figure 7(a) results in producing two groups for value a;
one up-to-date and one outdated.
• Aggregation(η(R)): An aggregate function, e.g.,

SUM, AVG, COUNT, aggregates a set of up-to-date and
outdated values and returns a single value. The question
is: What will the status of the returned value be? We
categorize the aggregate functions into two categories,
value-insensitive and value-sensitive aggregators. A value-
insensitive aggregator, e.g., COUNT, always returns
a value with an up-to-date status. The reason is that
the result from a value-insensitive aggregator does not
depend on the actual values in the aggregated set.
For example, the group corresponding to value b in
Figure 7(a) has count(Z) equals 3 with up-to-date status
although one of the values are outdated. In contrast,
a value-sensitive aggregator, e.g., SUM, AVG, MIN, or
MAX, returns a value with an up-to-date status only
if all the values in the aggregated set are up-to-date,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

otherwise the returned value will have an outdated
status. For example, the group corresponding to the pair
(b, β) in Figure 7(b) has sum(Z) equals 7 with outdated
status since the sum depends on the outdated value 5.

We extend the SQL select statement to include the
newly proposed operators. A comparison operator may
be suffixed with ‘+’, or ‘-’ to indicate a false-positive or
false-negative evaluation, respectively.

Example: Consider the following extended query:
Select GSeq, PSeq From GENE G, PROTEIN P

Where G.GID =+ P.GID And GFunction =- ‘F2’;

where =+, and =- correspond to false-positive and
false-negative equality operators, respectively. The
query is equivalent to the algebraic expression:
πGSeq,PSeq(σ−,GFunction=‘F2′(GENE ./+,G.GID=P.GID

PROTEIN)) .

5.3 Curation Operators
HandsOn DB provides a set of curation operators that
help users managing and tracing the dependencies
among the data. The query and curation operators are
complementary to each other where the former opera-
tors allow users to seamlessly query the data, the latter
operators allow users to track why certain tuples/values
are invalid and how to validate them. In this section, we
present three of these curation operators, i.e., dependency
tracking (DTrack), hierarchical dependency tracking (HD-
Track), and dependency roots (DRoots). All the operators
execute over the output from an SQL select statement as
depicted below.

[DTrack | HDTrack | DRoots] (

Select *
From <table name>

Where <predicates>);

For each output tuple t from the select statement, the
DTrack operator reports for each attribute value v in t, the
status of v, the dependency id to which v is a destination,
and the source table cells on which v depends. DTrack
starts by retrieving the c dependency id values stored in t
and then based on the dependency definitions, it executes
a reverse query to retrieve the source table cells. The HD-
Track operator executes in a similar way as DTrack except
that it reports the complete hierarchy of dependencies
until it reaches values with no further dependencies,
i.e., HDTrack recursively executes DTrack until no further
dependencies can be found. Both DTrack and HDTrack
help users to trace the dependencies upward in order
to re-validate certain values. DRoots, on the other hand,
reports all invalid values within the selected tuples that
depend only on all up-to-date values—and hence they
are the ones to start re-validating (the roots). To find
the roots in a given set of tuples, DRoots scans the
Pending Activity table (Refer to Section 6.2) for records
with pending status and no compensating counterparts.
The destination table cells in these records are the set of
roots in the database which will then be filtered based
on the user’s selection.

6 DESIGN ISSUES

Since the dependency graph may grow massively, mate-
rializing and storing it inside the database may involve
unnecessary and substantial overhead. Therefore, Hand-
sOn DB utilizes the powerful triggering mechanism in
database systems by dynamically generating triggers that
enforce the user-defined dependencies and propagate
the (in)validation operations accordingly (Section 6.1).
The maintenance of the real-world activities pending
execution is presented in Section 6.2.

Storage Scheme: For each dependency, we store in
catalog tables the dependency definition, the names of
the source and destination tables and columns, the type
of the dependency as either computable or real-world, and a
unique identifier (dependency id) that is assigned to the
dependency at the creation time (See the Add Dependency
construct in Section 3). For each table cell c, in addition
to c’s value, we keep two additional system-maintained
fields c status and c dependency id, where c status indi-
cates whether c is up-to-date (status = 0) or outdated
(status = 1), and c dependency id stores the id of the most
recent dependency to which c is a destination parameter
(if dependency id is null, then c does not depend on
other values in the database). When a new dependency
having dependency id, say vi, is added to the database,
all destination table cells belonging to this dependency
will have their dependency id field updated to vi.

6.1 Realization of Dependencies using Triggers
When a new dependency is added to the database, the
system extracts the predicates from the Add Dependency
construct and automatically generates triggers that en-
force the dependency. The processing of a given Add
Dependency construct involves four steps: (1) detecting
whether or not the new dependency forms a cycle with
the already existing dependencies, (2) assigning a unique
id vi to the dependency, (3) generating a set of triggers
over the source and destination tables to enforce the de-
pendency, and (4) overriding other existing dependencies
by modifying the dependency id field of the destination
parameters of the new dependency to vi. Regarding the
scalability of the triggering mechanism, we experimented
with few thousands of triggers in PostgreSQL over 5 to
10 tables and did not observe any bottleneck due to the
number of triggers. Yet, one simple approach to even
scale better is to merge multiple triggers together — This
is straightforward since triggers are automatically gener-
ated by the system. Another approach is to consider more
advanced indexing techniques for triggers as proposed
in [36].

Formation of cycles: Testing the formation of a cycle
among the user-defined dependencies can be very expen-
sive if performed at the cell level. HandsOn DB, therefore,
detects cycles in two phases; filter (column level test)
and refine (cell level test). The intuition is that if no de-
pendency is found between columns T.ci and T.cj , then
there is no need to check the values in these columns (the
filter phase). If a dependency is found between T.ci and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

T.cj , then we need to perform the more-expensive step
and check which exact table cells have the dependencies
(the refine phase). In the filter phase, we maintain a
precedence graph among the database columns, where an
edge is added from column T.ci to column S.cj if T.ci
and S.cj are source and destination columns in a given
dependency, respectively. If the new dependency will not
form a cycle in the precedence graph, then the dependency
is added to the database. Otherwise, we move to the
more-expensive refine phase in which we check whether
the candidate cycle at the column level forms a real cycle
at the cell level. In the refine phase, we form a temporary
table, say Tempi(Src, Dest), for each dependency, say
Di, involved in the column-level cycle. Tempi contains
the tuple ids of the source and destination table cells for
dependency Di (temporary tables can be expressed as
queries without materializing them). The temporary ta-
bles are then joined so that Tempi.Dest = Tempi+1.Src,
where 1 ≤ i ≤ n − 1, and Tempn.Dest = Temp1.Src
(assuming the column-level cycle is of length n). If the
query returns any results, then there exists a cell-level
cycle, and the new dependency is rejected. Otherwise,
the new dependency is added to the database. Notice
that if the new dependency passes the refine phase, then
any insertions or updates to the base tables involved in
the column-level cycle need to be checked to ensure that
they will not form a cycle in the future. This check is not
expensive since it will be performed only for the newly
inserted or updated tuple.

In principle, given a new dependency definition, Hand-
sOn DB creates automatically several triggers to enforce
the dependency and to propagate the status to dependent
values. In Figures 8(a) and (b), we present the After
Update code templates for real-world, and computable de-
pendencies, respectively. Consider the template in Fig-
ure 8(a). The trigger fires when an update occurs to a
tuple, say t, in Table Ti. Column ci is the source column
in the dependency. Lines 1 and 2 retrieve the source
and destination table cells involved in the dependency. If
the dependency id value of the destination table cell does
not match with the id value assigned to the dependency
when defined (vi), then the trigger terminates because
the destination cell is no longer a destination parameter
to this dependency (Lines 3-5). Lines 7-11 handle the
case when the value of ci is updated while its status
remains the same. If the status of ci as well as all other
source parameters of the dependency are up-to-date, then
a request record is inserted into the PendingActivity table
(See Section 6.2) to indicate that the involved real-world
activity should be performed based on the new value
of ci (Line 9). In Line 11, the destination table cell of the
dependency is marked outdated. The PendingActivity table
is maintained and populated automatically to help users
identify which real-world activities are ready for execution
as will be presented in Section 6.2. Lines 12-15 handle the
case when the value is updated and the status is modified
from outdated to up-to-date. In this case, a request record
is inserted into PendingActivity only if all other source
cells are up-to-date (Line 14). Notice that dest cell remains

1 src_list = the set of all source cells involved in the dependency other than Ti.ci;

2 dest_cell = the destination cell of the dependency;

3 IF (dest_cell.dependency_id ≠ vi) THEN

4 Return;

5 END IF;

6 IF ((dest_cell != null) and (ci.old != ci.new)) THEN

7 IF (ci_Status.old = ci_Status.new = “up-to-date”) THEN

8 IF (status of all cells in src_list is “up-to-date”) THEN

9 -- Insert a pending record into PendingActivity to request an

execution of function F using src_list and Ti.ci as inputs;

10 END IF

11 -- Update the status of dest_cell to “outdated”;

12 ELSE IF (ci_Status.old = “outdated” and ci_Status.new = “up-to-date”) THEN

13 IF (status of all cells in src_list is “up-to-date”) THEN

14 -- Insert a pending record into PendingActivity to a request an

execution of function F using src_list and Ti.ci as inputs;

15 END IF

16 END IF

17 ELSE IF ((dest_cell != null) and (ci_Status.old != ci_Status.new)) THEN

18 IF (ci_Status.old = “up-to-date” and ci_Status.new = “outdated”) THEN

19 IF (dest_cell.status = “outdated”) THEN

20 IF (status of all cells in src_list is “up-to-date”) THEN

21 -- Insert a compensating record into PendingActivity

22 END IF;

23 ELSE

24 -- Update the status of dest_cell to “outdated”;

25 END IF;

26 ELSE IF (ci_Status.old = “outdated” and ci_Status.new = “up-to-date”) THEN

27 IF (status of all cells in src_list is “up-to-date”) THEN

28 -- Insert a pending record into PendingActivity to request an

execution of function F using src_list and Ti.ci as inputs;

29 END IF

30 END IF

31 END IF (a) Template for real-world activity function F over source column Ti.ci

1 src_list = the set of all source cells involved in the dependency other than Ti.ci;

2 dest_cell = the destination cell of the dependency ;

3 IF (dest_cell.dependency_id ≠ vi) THEN

4 Return;

5 END IF;

6 IF ((dest_cell != null) and (ci.old != ci.new)) THEN

7 Call function F using src_list and Ti.ci as inputs to update dest_cell.value;

8 IF (status of all cells in src_list is “up-to-date”) THEN

9 -- Update the status of dest_cell to “up-to-date”;

10 END IF

11 ELSE IF ((dest_cell != null) and (ci_Status.old != ci_Status.new)) THEN

12 IF (ci_Status.old = “up-to-date” and ci_Status.new = “outdated”) THEN

13 -- Update the status of dest_cell to “outdated”;

14 ELSE IF (status of all cells in src_list is “up-to-date”) THEN

15 -- Update the status of dest_cell to “up-to-date”;

16 END IF

17 END IF (b) Template for computable function F over source column Ti.ci

Fig. 8. Templates for Add Dependency constructs.

outdated until the real-world activity is performed.
The second part of the template (Lines 17-31) handles

a change in the status of ci without changing its value. In
the case when the status of ci is modified from up-to-date
to outdated, dest cell is marked outdated if it is currently
up-to-date (Line 24). However, if dest cell is currently
outdated and all the other source table cells are up-to-
date, then a previous request must have been inserted
into PendingActivity to validate dest cell. This request can
no longer validate dest cell because ci is now invalid.
For this reason, we insert a compensating record (Line 21)
into PendingActivity to prevent the previous request from
validating dest cell as will be discussed in Section 6.2.
In the case when the status of ci is modified from
outdated to up-to-date, then a request record is inserted
into PendingActivity only if all other source cells are up-
to-date (Line 28).

The computable-function template in Figure 8(b) is a
simplified version of that in Figure 8(a). An important
difference to note is that since the function involved in
the dependency is computable, the trigger executes this
function automatically to update dest cell whenever the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

1 IF (the request status is “completed”, “overwritten”, or “compensating”) THEN
2 Return;
3 END IF;

4 IF (there exist previous pending requests for the same destination table cell) THEN
5 IF (cascade flag is False) THEN
6 Return;
7 ELSE
8 update the status of these previous requests to “overwritten”;
9 END IF;
10 END IF;

11 IF (there exist more recent requests for the same destination cell) THEN
12 update the value of the destination table cell without validating it;
13 ELSE
14 update the value of the destination table cell and mark it as “up-to-date”;
15 END IF;

16 Update the status of the request to “completed”;

Fig. 9. Processing the PendingActivity records.

value of ci is modified (Line 7). Another key difference is
that whenever all the source parameters become up-to-
date, the destination parameter is automatically marked
as up-to-date (Lines 9, 15). This is unlike the case of
the real-world dependencies in which a request record
is inserted into PendingActivity.

6.2 Logging and Resuming Pending Activities
When a real-world activity function F has all its source
parameters up-to-date but its destination parameter out-
dated, a request record (of type pending) for F is inserted
into the PendingActivity table (Lines 9, 14, and 28 in
Figure 8(a)). Before serving that request, i.e., executing
F and reflecting its output value into the database, the
source parameters of F may change again, or may get
invalidated. In the former case, more pending requests
for executing F are inserted into PendingActivity. Users
have the option to either serve these requests sequentially
or serve only the last request (See the Resume Function
command below). In the latter case, a compensating record
is inserted into PendingActivity (Line 21 in Figure 8(a)) to
indicate that any previous pending requests for executing
F can still be served to update the value of the destina-
tion table cell but without validating it.

The schema of the PendingActivity table consists of: a
unique request id, the function name F to be externally
executed, the input arguments to F , an update statement
that updates the destination table cell once the new
results from F are known, and a status field that shows
the status of the request. The status field takes one of
the following values: pending, completed, overwritten, or
compensating. When F is performed and its output result
is available, the result is passed to the system using the
following command:

Resume Function <func_name> Value <func_output>

References <RequestId> [Cascade];

where RequestId references the unique request id that
is assigned to each request in PendingActivity. The pro-
cedure for executing the Resume Function command is
presented in Figure 9. If the request has a status of either
completed, overwritten, or compensating, then the procedure
terminates without further processing (Lines 1-3). If there
are previous pending requests targeting the same des-
tination table cell and the optional Cascade keyword is

not specified, then the procedure terminates because, in
this case, requests have to be served in order (Line 6). If
Cascade is included, then any previous pending requests
are marked as overwritten and the current request is
served (Line 8). Lines 12 and 14 update the value of
the destination table cell, and depending on whether or
not there are requests more recent than the one currently
at hand, the destination table cell either remains invalid
(Line 12) or gets validated (Line 14).

7 PERFORMANCE ANALYSIS
We implemented HandsOn DB via extensions to Post-
greSQL that include: (1) adding new SQL syntax for
creating the real-world activity functions and modeling
the dependencies, (2) adding new data manipulation
operations, i.e., invalidate() and validate(), (3) augmenting
mechanisms for automatically creating (or deleting)
triggers when dependencies are added (or deleted), (4)
introducing new query operators in PostgreSQL with
the semantics presented in Section 5, and (5) adding the
Resume Function() command for resuming pending activ-
ities. In this section, we study the overheads associated
with these extensions and demonstrate the feasibility and
practicality of HandsOn DB.

Datasets: We use three datasets: Genobase, a real bio-
logical database of size approximately 40MB, PubChem-
substance, a real chemical database of size approximately
300MB, and a synthetic dataset of size approximately
450MB. Genobase stores the gene details of the Ecoli
organism along with different mutation types. PubChem-
substance stores information about chemical substances,
e.g., substance ids, sources, synonyms, compounds, and
atoms. The synthetic dataset is designed primarily to
stress on the cascading effect of the dependencies as will
be explained later. It consists of 10 tables, i.e., R1, ..., R10.
Each table consists of ten attributes, i.e., c1, c2, ..., c10,
in addition to the primary and foreign keys. Each table
Ri+1 contains two foreign keys that point to the primary
keys of tables Ri and Ri−1.

Storage: In Figure 10, we study the storage overhead
imposed from adding the status (one bit) and depen-
dency id (two-bytes integer) columns for each database
column. The figure illustrates that the storage overhead
ranges from 2% to 7% of the database size. As expected,
the storage overhead is relatively insignificant. The rea-
son is that scientific databases typically store many large-
size attributes such as text and sequence fields that
dominate the storage overhead. PubChem-substance shows
the highest storage overhead because the average length
of its attributes is smaller than those of the other two
databases.

Adding Dependency: In Figure 11, we study the average
time needed for adding a new dependency. This time
involves detecting whether or not a cycle exists, and
creating the required triggers. In this experiment, we vary
the number of generated dependencies from 25 to 211

(the X-axis) distributed over 5 tables with an average
cascading length of 2. One half of the generated depen-
dencies has a single source table while the other half

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

0

2

4

6

8

Genobase PubChem Synthetic

%
 o

f
 s

t
o

r
a
g

e
 o

v
e
r
h

e
a
d

Databases

Storage overhead

Fig. 10. Storage overhead

0

0.5

1

1.5

2

2.5

3

3.5

4

32 64 128 256 512 1024 2048

A
v

g
.

T
im

e
 i
n

 s
e
c

Number of dependencies in DB

Avg. Time for Adding a Dependency

Without "Inv-Dest" (Genobase) With "Inv-Dest" (Genobase)

Without "Inv-Dest" (Synthetic) With "Inv-Dest" (Synthetic)

Without "Inv-Dest" (PubChem) With "Inv-Dest" (PubChem)

Fig. 11. Adding dependency

0

5

10

15

20

25

30

32 64 128 256 512 1024

A
v
g

.
T

im
e
 i
n

 s
e
c

Number of destination table cells

Avg. Time for Dropping a Dependency
Without "Inv-Dest" (Genobase) With "Inv-Dest" (Genobase)

Without "Inv-Dest" (Synthetic) With "Inv-Dest" (Synthetic)

Without "Inv-Dest" (PubChem) With "Inv-Dest" (PubChem)

Fig. 12. Dropping dependency

has two source tables. To create multiple non-overlapping
dependencies over a single destination attribute, we di-
vide this attribute into disjoint subsets and assume that
each subset is inferred or computed using a different
function. In the experiment, we study the two cases
where the newly defined dependency either invalidates
the destination table cells (labeled as ‘With Inv-Dest’)
or keeps them as valid (labeled as ‘Without Inv-Dest’).
Figure 11 illustrates that the size of the database does
not significantly affect the execution time. The reason
is that the time taken to detect whether or not a cycle
exists and to create the required triggers is not influenced
much by the size of the underlying database. Also, the
figure illustrates that the average time taken in the case
of invalidating the destination table cells is higher than
that where the destination table cells are kept valid. The
reason is that invalidating the destination table cells will
propagate this invalidation to all dependent data items
which may span multiple tables.

Dropping Dependency: In Figure 12, we measure the
average time required for dropping a dependency. In
this experiment, we vary the number of destination ta-
ble cells that belong to the dropped dependency from
25 to 210 (the X-axis) and measure the required time
under the cases where the destination cells are either
invalidated (labeled as ‘With Inv-Dest’) or validated (la-
beled as ‘Without Inv-Dest’). The measured performance
depends on the initial status of the database cells, e.g.,
invalidating table cells that are already invalid is less
expensive than invalidating up-to-date cells, and the
same applies for validation. Therefore, we compute each
point in the figure as the average over five runs each
with a different percentage of the outdated values in
the destination column, i.e., {0%, 5%, 10%, 15%, 20%}.
Figure 12 illustrates that dropping a dependency can be
an expensive operation especially when invalidating a
large number of destination table cells. The overhead
associated with invalidating the destination parameters
of the dropped dependency is around three or four times
higher than that associated with validating the destina-
tion parameters. The reason for this difference is that
most of the data items in the database are already valid,
and hence the validation procedure is not as expensive
as the invalidation procedure. In general, dropping a
dependency is expected to be an infrequent operation
especially when the number of associated destination

table cells is large. Otherwise, the overhead involved
in re-verifying and re-validating these destination table
cells would probably dominate the overhead of the Drop
Dependency operation.

Manipulation Operations: The performance of the data
manipulation operations is presented in Figure 13. In
this experiment, we use only the synthetic database that
is designed primarily to enable creating long cascading
paths among the database tables. Each of the ten tables
contains a number of tuples that varies from 1,000 to
50,000. Each table Ri contains the following dependency
types among its attributes: (1) computable dependency
from c1 to c2, (2) real-world dependency from c2 and
c3 to c4, and (3) computable dependency from c4 to c5.
Each defined dependency targets a small subset of the
destination column, and hence multiple dependencies
can be defined over the destination column without
overriding each other. The database contains also cross-
table dependencies defined as follows: (1) computable
dependency from Ri.c5 to Ri+1.c1, and (2) real-world
dependency from Ri.c2 to Ri+1.c7. Using this database
design, the length of a cascading path varies from 0
to 40 operations. In Figure 13, we study the average
time needed to perform each of the update, invalidate,
validate, or Resume Function operations. For the first three
operations, each measurement represents the average
over 50 randomly-selected table cells (five from each
table). The figure illustrates that the update operation
involves the highest cost. The reason is that the update
procedure performs extra processing (including calling
the user-defined functions involved in the computable
dependencies) regardless of whether the updated table
cell is up-to-date or outdated. This is unlike the invalidate
and validate procedures that may take no actions if the
table cell is already invalid or valid, respectively. The
cost of the invalidate operation is less than that of the
update operation because if the invalidated table cell is
already outdated, then the procedure terminates without
any further processing. Otherwise, it involves the cost of
invalidating all dependent data items.

Query Operators: With respect to data querying, we
define extended semantics for the comparison operators,
e.g., =, =+, and =-, correspond to the true, false-positive,
and false-negative evaluation of the equality operators,
respectively. Other operators, e.g., >, <, and <>, are ex-
tended in the same way. Queries that involve the extend

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

0

1

2

3

4

5

6

7

8

9

10

32 64 128 256 1024 2048

A
v
g

.
T

im
e
 i

n
 s

e
c

Number of dependencies in the DB

Avg. Time of Data Manipulation Op.

Update()-Synthetic

Invalidate()-Synthetic

Resume Function()-Synthetic

validate()-Synthetic

Fig. 13. Manipulation operation

0

20

40

60

80

100

120

140

160

Equality
20%

Equality
80%

LargerThan
20%

LargerThan
80%

Inequality
20%

Inequality
80%

T
im

e
 i
n

 m
s
e
c

Comparison operators/Outdated %

Performance of Selection Operators

True selection False-positive selection False-negative selection

Fig. 14. Selection performance

0

1

2

3

4

5

6

7

8

NoCond
20%

NoCond
80%

TrueCond
20%

TrueCond
80%

PositiveCond
20%

PositiveCond
80%

L
o

g
1
0

(T
im

e
 i
n

 m
s

e
c

)

Additional Conditions/Outdated %

Performance of Equality Join Operators

True Join False-positive Join False-negative Join

Fig. 15. Join performance

operators are re-written using the standard operators
according to the re-writing rules presented in Figure 16.

In Figure 14, we study the performance of the three
types of selection operators over a table consisting of
50,000 tuples from the synthetic database. The select
statement is in the form of Select * From R Where
R.a OP <const>, where OP is one of the extended
selection operators. The values in the selection column
R.a have a duplication factor that varies uniformly over
the range from 1 to 10. Since the performance of the
selection operators depends on the percentage of the
outdated values in R.a, we run each experiment over two
different percentages of the outdated values, 20% and
80%, as illustrated in Figure 14. We build B+-tree indexes
over both the data column involved in the where clause,
i.e., R.a, and R.a’s corresponding status column, i.e.,
R.a status. In the experiment, we consider three different
types of comparison operators: equality, larger than, and
inequality. In the case of equality, the true and false-positive
selections have relatively lower overhead (compared to
false-negative) because they make use of the index on the
value columns to find the matching values. The false-
negative operator utilizes the index on the status field (in
the case of 20% outdated values), but performs a full-scan
(in the case of 80% outdated values) which explains the
difference in the execution time illustrated in Figure 14.
The inequality comparison has the inverse behavior of
the equality comparison.

With respect to joins, we focus on studying the perfor-
mance of the three types of equality joins as depicted
in Figure 15. We use two relations R and S from the
synthetic database, each consisting of 50,000 tuples. The
Select statement is in the form of Select * From R,
S Where R.a OP S.b And <ExtraCond>, where OP
is one of the extended equality join operators. The values
in the join attributes R.a and S.b are randomly generated
over the range from 1 to 10,000 with a duplication factor
that varies uniformly over the range from 1 to 10. Both
columns and their corresponding status attributes have
B+-tree indexes. In Figure 15, we consider three different
scenarios that trigger different query plans: (1) the sce-
nario where there are no extra conditions in the select
statement, called NoCond, (2) the scenario where there is
a true equality selection condition on R.a, called TrueCond,
and (3) the scenario where there is a false-positive equal-

Extended operator Re-writing rule

Unary
operators

R.a = <constant> R.a = <constant> and R.a_status = 0

R.a =+ <constant> R.a = <constant> and R.a_status = 1

R.a =- <constant> R.a <> <constant> and R.a_status = 1

Binary
operators

R.a = S.b R.a = S.b and (R.a_status = 0 and S.b_status = 0)

R.a =+ S.b R.a = S.b and (R.a_status = 1 or S.b_status = 1)

R.a =- S.b R.a <> S.b and (R.a_status = 1 or S.b_status = 1)

 Other comparison operators, e.g., ‘>’, ‘<’, ‘<>’, have similar rules *

Fig. 16. Re-writing rules of the extended operators

ity selection condition on R.a, called PositiveCond. Each
scenario is evaluated under 20% and 80% percentages of
outdated values in the joined columns, i.e., R.a and S.b.
The Y-axis in the figure is a logarithmic scale.

In the case where the query includes only the join
condition (NoCond case), the true and false-positive join
operators use a hash-based join algorithm since the join
condition is an equality between R.a and S.b. The true join
has less execution time in the case where the outdated
percentage is 80% because the query optimizer uses the
index on the status column to retrieve only the 20%
up-to-date values that can contribute to the join. In
contrast, the false-negative join operator uses a nested-
loops join and that is why it involves high overhead.
In the case where the query includes a true equality
selection on R.a(TrueCond), the values from R.a that satisfy
the selection predicate are all up-to-date. Hence, for the
false-positive and false-negative joins, the values from S.b
column have to be outdated. In this case, the re-written
predicates for the false-positive and false-negative joins will
only contain conjunctive predicates. In the case where
the query includes a false-positive equality selection on
R.a(PositiveCond), the values from R.a that satisfy the
selection predicate are all outdated. Hence, the result set
from the true join is always empty because the true join
requires the joined values to be both up-to-date. This
explains the very low overhead involved in this join type.

8 CONCLUSION
In this paper, we proposed HandsOn DB system for
supporting dependencies that involve real-world ac-
tivities while maintaining the consistency of derived
data under update and query operations. HandsOn DB
addresses several challenges that include: (1) keeping
track of the potentially invalid data items and reflecting

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

their status in the query results, (2) introducing new
semantics for query operators that enable evaluating
queries on either valid data only (no false-positives), or
both valid and potentially-invalid data (include false-
positives), (3) proposing new mechanisms for invali-
dating, revalidating, and curating the data items, and
(4) proposing dynamic techniques through database trig-
gers for enforcing the dependencies without materializ-
ing them. We also evaluated experimentally the perfor-
mance of HandsOn DB and demonstrated the feasibility
and practicality of its operations.

REFERENCES

[1] M. Eltabakh, M. Ouzzani, and W. Aref, “bdbms-database manage-
ment system for biological data,” in CIDR, 2007, pp. 196–206.

[2] M. Y. Eltabakh, M. Ouzzani, W. G. Aref, A. K. Elmagarmid,
Y. Laura-Silva, M. U. Arshad, D. E. Salt, and I. Baxter, “Managing
biological data using bdbms,” in ICDE, 2008, pp. 1600–1603.

[3] M. Y. Eltabakh, W. G. Aref, A. K. Elmagarmid, Y. N. Silva,
and M. Ouzzani, “Supporting real-world activities in database
management systems,” in ICDE, 2010, pp. 808–811.

[4] M. Eltabakh and et al., “HandsOn DB: Managing Data Dependen-
cies involving Human Actions,” Technical Report WPI-CS-TR-12-
04.

[5] D. Maier, “Theory of relational databases,” in Comp. Sci. Press,
1983.

[6] J. Ullman, “Principles of database and knowledge-base systems,”
vol. 1, 1988.

[7] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Conditional
functional dependencies for capturing data inconsistencies,” ACM
Trans. Database Syst., vol. 33, no. 2, pp. 1–48, 2008.

[8] U. Dayal, M. Hsu, and R. Ladin, “Organizing long-running activ-
ities with triggers and transactions,” SIGMOD Rec., vol. 19, no. 2,
pp. 204–214, 1990.

[9] H. Molina and K. Salem, “Sagas,” SIGMOD Rec., vol. 16, no. 3, pp.
249–259, 1987.

[10] A. Aiken, J. Widom, and J. Hellerstein, “Behavior of database
production rules: Termination, confluence, and observable deter-
minism,” in SIGMOD, 1992, pp. 59–68.

[11] U. Dayal, “Active database management systems,” SIGMOD Rec.,
vol. 18, no. 3, pp. 150–169, 1989.

[12] J. Widom and S. Ceri, Eds., Active Database Systems: Triggers and
Rules For Advanced Database Processing. Morgan Kaufmann, 1996.

[13] D. Lomet, R. Barga, M. Mokbel, and G. Shegalov, “Transaction
time support inside a database engine,” in ICDE, 2006, pp. 35–46.

[14] A. Ailamaki and et. al., “Scientific workflow management by
database management,” in SSDBM, 1998, pp. 190–199.

[15] S. Shankar, A. Kini, D. J. DeWitt, and J. Naughton, “Integrating
databases and workflow systems,” SIGMOD Rec., vol. 34, no. 3,
pp. 5–11, 2005.

[16] M. Ranft, S. Rehm, and K. Dittrich, “How to share work on shared
objects in design databases,” in ICDE, 1990, pp. 575–583.

[17] J. Galindo, A. Urrutia, and M. Piattini, “Fuzzy databases: Model-
ing, design, and implementation,” Idea Group Publishing, 2006.

[18] S. Singh and et al., “Database support for probabilistic attributes
and tuples,” ICDE, pp. 1053–1061, 2008.

[19] D. Wang, E. Michelakis, M. Garofalakis, and J. Hellerstein,
“BAYESSTORE: Managing large, uncertain data repositories with
probabilistic graphical models,” in PVLDB, 2008.

[20] J. Widom, “Trio: A system for integrated management of data,
accuracy, and lineage,” CIDR, pp. 262–276, 2005.

[21] D. Bhagwat, L. Chiticariu, and W. Tan, “An annotation manage-
ment system for relational databases,” in VLDB, 2004, pp. 900–911.

[22] P. Buneman, A. Chapman, and J. Cheney, “Provenance manage-
ment in curated databases,” in SIGMOD, 2006, pp. 539–550.

[23] P. Buneman, S. Khanna, and W. Tan, “Why and where: A charac-
terization of data provenance,” Lec. Notes in Comp. Sci., vol. 1973,
pp. 316–333, 2001.

[24] P. Buneman and et. al., “On propagation of deletions and annota-
tions through views,” in PODS, 2002, pp. 150–158.

[25] W.-C. Tan, “Containment of relational queries with annotation
propagation,” in DBPL, 2003.

[26] M. Y. Eltabakh, W. G. Aref, A. K. Elmagarmid, M. Ouzzani, and
Y. N. Silva, “Supporting annotations on relations,” in EDBT, 2009,
pp. 379–390.

[27] S. B. Davidson and J. Freire, “Provenance and scientific workflows:
challenges and opportunities,” in SIGMOD, 2008, pp. 1345–1350.

[28] S. Bowers and et.al., “Kepler/pPOD: Scientific Workflow and
Provenance Support for Assembling the Tree of Life,” in Provenance
and Annotation Workshop (IPWA), 2008, pp. 70–77.

[29] J. Frew and et.al., “Automatic Provenance Collection and Publish-
ing in a Science Data Production EnvironmentEarly Results,” in
Provenance and Annotation Workshop (IPWA), 2010, pp. 27–33.

[30] Y. Amsterdamer and et.al., “Putting lipstick on pig: Enabling
database-style workflow provenance,” VLDB, vol. 5, no. 3, pp.
346–357, 2011.

[31] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen, “Update
exchange with mappings and provenance,” in VLDB, 2007, pp.
675–686.

[32] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir, “Orchestra:
Rapid, collaborative sharing of dynamic data,” in CIDR, 2005.

[33] e. a. Todd J. Green, “Provenance in orchestra,” IEEE Data Eng.
Bull., vol. 33, no. 3, pp. 9–16, 2010.

[34] J. Green, G. Karvounarakis, G. Ives, and V. Tannen, “Update
exchange with mappings and provenance,” in VLDB, 2007, pp.
675–686.

[35] M. Stonebraker and et. al, “Requirements for science data bases
and scidb,” in CIDR Perspectives, 2009.

[36] E. N. Hanson and et al., “Scalable trigger processing,” in ICDE,
1999, pp. 266–275.

Mohamed Eltabakh is a professor of computer science at Worcester
Polytechnic Institute (WPI). His research interest is in the broad area
of Database Management Systems and Information Management. In
particular, his work is in the areas of query processing and optimization,
indexing techniques, scientific data management, and large-scale data
analytics. Eltabakh received his Ph.D. degree in Computer Science from
Purdue University in May 2010, and he received his MSc. and BSc
degrees from Purdue University in May 2005 and Alexandria University,
Egypt in May 1999, respectively. Prof. Eltabakh is a member of ACM and
IEEE.

Walid Aref is a professor of computer science at Purdue. His research
interests are in extending the functionality of database systems in
support of emerging applications, e.g., spatial, spatio-temporal, multi-
media, biological, and sensor databases. He is also interested in query
processing, indexing, data mining, and geographic information systems
(GIS). Professor Aref’s research has been supported by the National
Science Foundation, the National Institute of Health, Purdue Research
Foundation, CERIAS, Panasonic, and Microsoft Corp. Professor Aref is
a member of Purdue’s CERIAS and Discovery Park Cyber Center. He is
a senior member of the IEEE, and a member of the ACM.

Ahmed Elmagarmid is the inaugural executive director of the Qatar
Computing Research Institute at Qatar Foundation. Before joining Qatar
Foundation in 2010, he was founder and director of both the Cyber
Center in Discovery Park and the Indiana Center for Database Systems
at Purdue University. He was a full professor of computer science at Pur-
due, where he had been actively involved in teaching and research for 22
years. Early in his career he received the National Science Foundations
Presidential Young Investigator award from President Ronald Reagan.
The University of Dayton and Ohio State University have both named
him among their distinguished alumni. He is an IEEE fellow and an
ACM distinguished scientist and is a member of Sigma Xi American
Association for the Advancement of Science (AAAS). Dr. Elmagarmid
received his B.S. in computer science from the University of Dayton
and his M.S. and Ph.D from Ohio State University. He has held faculty
positions at Pennsylvania State University, the University of Padova, and
Purdue University.

Mourad Ouzzani is a Senior Scientist with the Qatar Computing Re-
search Institute (QCRI), Qatar Foundation. He is interested in research
and development related to data management and scientific data and
how they enable discovery and innovation in science and engineering.
He conducts research in data integration, data quality, spatio temporal
data management, and database systems for scientific data. He is the
architect of several cyberinfrastructure platforms to support multidis-
ciplinary research. Mourad received the Purdue University Seeds of
Success Award in 2010. Mourad received his PhD degree from Virginia
Tech and his BS and MS degrees both from USTHB, Algeria.

