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Abstract This paper addresses the problem of continuous aggregate nearest-neighbor

(CANN) queries for moving objects in spatio-temporal data stream management sys-

tems. A CANN query specifies a set of landmarks, an integer k, and an aggregate

distance function f (e.g., min, max, or sum), where f computes the aggregate distance

between a moving object and each of the landmarks. The answer to this continuous

query is the set of k moving objects that have the smallest aggregate distance f . A

CANN query may also be viewed as a combined set of nearest neighbor queries. We

introduce several algorithms to continuously and incrementally answer CANN queries.

Extensive experimentation shows that the proposed operators outperform the state-of-

the-art algorithms by up to a factor of 3 and incur low memory overhead.
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Fig. 1 Examples of Aggregate Nearest Neighbor Queries
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1 Introduction

The widespread of location-detection devices makes it possible to exploit new func-

tionalities that result in new personalized services based on user locations. These new

functionalities go way beyond the simple object finder services that are represented by

either simple range or nearest-neighbor queries. In this paper, we focus on one of these

new functionalities, in particular, the continuous aggregate k-nearest-neighbor queries.

While traditional nearest-neighbor queries aim to find the k-nearest objects to only

one certain point, the aggregate k-nearest-neighbor queries aim to find the k-nearest

objects to a set of multiple points. In that sense, the query answer to the aggregate

k-nearest-neighbor query needs to be defined through an aggregate to define how an

object is considered close-by to the set of multiple points.

In general, the aggregate k-nearest-neighbor query problem can be formulated as

follows: Given two sets of data points O and L, find the closest k points from O to

all points in L based on a certain aggregate function f . Figure 1 illustrates the use

of three different aggregate functions that may be used to define the query answer. In

this figure, L1, L2, and, L3 are the set of multiple points L that we need to compute

their aggregate k-nearest objects among the set of points O that includes objects O1

to O15. Figures 1(a), 1(b), and 1(c) represent the cases where the aggregate function

f is sum, max, and min, respectively. For simplicity, we consider k = 1. In this case,

Figure 1(a) considers the sum nearest neighbor query where O14 is the object whose

sum of distances to L1, L2, and, L3 is minimal. On the other side, Figure 1(b) considers

the case of maximum nearest-neighbor query where O9 is the object whose maximum

distance to any of L1, L2, and, L3 is minimal. Finally, Figure 1(c) depicts the case of

minimum nearest-neighbor query where O6 is the object whose minimum distance to

any of L1, L2, and L3 is minimal.

The term “aggregate nearest-neighbor query” is coined in the literature in the

context of spatial databases [29,36] to refer to the case of several parties that look

for a meeting point while minimizing a certain aggregate function with respect to all

parties in the Euclidean space [29] and road networks [36]. Both proposed solutions

in [29,36] focus only on the case of snapshot queries, i.e., they do not maintain the

result in case of location updates.
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In this paper, we overcome the limitations and overhead of re-evaluating previous

snapshot-based approaches upon location updates. Indeed, we consider the problem of

continuous k-aggregate nearest-neighbor queries (CANN) where we aim to continuously

find the closest k moving objects from the set O to a set of stationary points L—the

landmarks. The set of moving objects O are continually changing their locations. We

aim to provide an incremental algorithm in which we maintain an initial answer with

slight overhead rather than reevaluating the query with each movement update. Our

problem setting has several real life applications. For example, consider a franchise

with L locations that wants to send k e-coupons every few minutes to a set of close-by

customers among all customers O who are driving their vehicles. It is of interest to

the franchise to carefully select these k customers as the current close-by customers to

the L locations. The close-by customers can be represented as either sum, minimum,

or maximum distance. As an illustration, consider that L1, L2, and L3 in Figure 1 are

the locations of a certain franchise that aims to send one e-coupon. The coupon can be

sent to that customer with minimum sum, max, or, min distance to the three franchise

locations. It is up to the franchise to choose any of the three aggregate functions as

any of them will make sense in terms of choosing the best k customers. Thus, we aim

to incorporate the three aggregate functions in our approach.

Our proposed algorithms for the continuous k-aggregate nearest-neighbor queries

rely on combining the aggregate computation with the sorting and top-k selection in a

way that limits the expensive aggregate computations and sorting to only few objects

that have the potential to be part of the answer, i.e., top-k. In this context, we propose

two algorithms, namely, H-CANN and P-CANN. The first algorithm is a holistic algo-

rithm; it takes into account all landmarks when it decides whether or not to prune an

object from being part of the answer. On the other hand, P-CANN is a best-effort pro-

gressive algorithm that eagerly prunes moving objects, even during the computation

of the aggregate distance of the moving objects to the landmarks. P-CANN exploits

some interesting geometric properties of the aggregate distance functions to assign a

threshold to each landmark. These assignments impose an optimization problem, which

is to have an interesting landmark order. We give several heuristics to retrieve the best

order, and show through experiments the best policy to use for each aggregate function.

P-CANN is a “best-effort” algorithm, it might only produce the k′ aggregate nearest

neighbors, where k′ < k. In the experimental section, we show that, on the average,

k′ ≈ 0.95k.

None of the proposed algorithms need to recompute the query answer to maintain

the query answer continuously. In fact, all the proposed algorithms update the query

answer on the fly whenever a location update is made available from the underlying

infrastructure.

The contributions of this paper can be summarized as follows:

– We propose two algorithms (H-CANN and P-CANN) to retrieve the aggregate-

nearest neighbors of a set of landmarks in a moving object database.

– We introduce several policies (first-fit, best-fit, and worst-fit) to determine the order

of landmarks upon assigning pruning thresholds to each landmark in P-CANN.

– We perform an extensive performance evaluation of the proposed algorithms, and

state the cases in which each algorithm is performing best. Experimental results

show a factor of up to 3 improvement in performance over existing state-of-the-art

algorithms.
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The rest of the paper is organized as follows. Section 2 highlights related work. Sec-

tion 3 gives some preliminaries, including the system emvironment, the formal prob-

lem definition, and a classification of the aggregate distance functions. We propose

H-CANN and P-CANN in Sections 4 and 5, respectively. In Section 6, we evaluate the

proposed techniques through an extensive experimental study. We conclude the paper

by a summary and final remarks in Section 7.

2 Related Work

Over the last decade, there has been several works that address the issue of con-

tinuous queries over moving objects (e.g., [8,9,12,14,16,17,20,22,25,26,30–32,35,37]).

However, most of these works focus on the case of range queries [8,12,14,25] and

nearest-neighbor queries [9,16,26,27,30,32,35,37]. Recently, there has been increasing

interest in supporting other kinds of continuous queries, e.g., density queries [13,18],

reverse-nearest-neighbor queries [19,34], closest pair queries [33], medoid queries [33],

and skyline queries [15]. Up to the authors’ knowledge, the problem of continuous

k-aggregate nearest-neighbors has not been addressed before.

Most related to our work are the group-nearest-neighbor query (GNN) and the

aggregate-nearest-neighbor query (ANN). The GNN query retrieves the object whose

sum of distances to group members is minimal (e.g., [21,28]). The ANN query (e.g., [29,

36]) is a generalization of the GNN query: besides the sum function, other aggregate

functions are considered such as the maximum and the minimum of the distances to

group members. This problem has been investigated for both spatial data that uses

Euclidean distances [29] and for road networks [36] where the distance between two

points is the sum of the road segments that constitute the shortest path between these

two points. The algorithms in [29] and [36] are progressive where one uses an iterator

interface on top of them and call “getNext()” to retrieve the next aggregate nearest

neighbor. However, they are not incremental. They work on snapshot queries. If the

objects are to change their location, the query has to be recomputed from scratch. The

proposed techniques are focused on continuous queries.

There has been not much work on the continuous version of the aggregate nearest

neighbor problem. Conceptual partitioning algorithm (CPM), which is originally de-

signed for the continuous monitoring of nearest neighbor queries, has been extended

to the aggregate nearest neighbor queries [26]. Since we are comparing against CPM

in the experimental section, we summarize CPM in the following section.

2.1 Conceptual Partitioning Algorithm

The conceptual partitioning algorithm (CPM) is an efficient method for monitoring

continuous nearest neighbor queries. It assumes that the moving objects are indexed

by a main-memory grid. The size of each grid cell is the same, say δ× δ. Each grid cell

is associated with the moving objects located therein.

The main module of CPM is the nearest-neighbor computation algorithm. For each

submitted query, this module is invoked to compute the initial results of the query. CPM

organizes the grid cells based on their proximity to the query region. This organization

provides a natural order of the grid cells to be processed so as to minimize the probed

cells during the search. The probed cells are refered to as the influence region.
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(a) Partitioning into Rectangles (b) Influence Region

Fig. 2 Conceptual Partitioning (CPM) Algorithm

With the arrival of the location updates from the moving objects, only these up-

dates affecting the influence region are considered for the maintenance of the query

results.

The CPM algorithm is extended to answer the aggregate nearest neighbor queries

as shown in Figure 2. The minimum bounding rectangle (mbr) of the query points

{L1, L2, L3} is calculated, and the space is partitioned around it as rectangles as shown

in Figure 2(a). After the initial aggregate nearest neighbor computation, the influence

region is determined. Figure 2(b) shows the influence region for this query when the

aggregate function f = sum. For details, the reader is referred to [26].

Both the CPM algorithm and our proposition use the Euclidean distance as the

distance metric when computing the aggregate distance function.

2.2 The Spatio-temporal Histogram (ST-Histogram)

Introduced in [11], the ST-Histogram provides for the selectivity estimation of mov-

ing objects. Rather than examining and/or sampling all incoming location updates,

ST-Histograms are built and maintained by monitoring the actual selectivities of the

outstanding continuous queries. The ST-Histogram returns the selectivity of the objects

located inside any polygon-shape.

The ST-Histogram is a grid-based selectivity estimator. Each grid cell contains the

selectivity of the objects residing within. Using a feedback from the query processor

about the actual selectivity of a query, the grid cells are updated accordingly to reflect

this feedback on the estimator.
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3 Preliminaries

3.1 System Environment

For the rest of this paper, we assume an environment where each of the moving objects

is equipped with a location detection device, e.g., a GPS. The moving objects will

report their location periodically every time unit.

For the continuous query evaluation of spatio-temporal queries, there are two mod-

els of handling the location updates. (1) The updates are pushed into the query pro-

cessor as soon as they are available (e.g., as in [24]). (2) The query processor pulls

the current location of the objects for execution in order to update the query answer

(e.g., as in [25]). In this paper, we assume the first model, where the query answer gets

updated whenever location updates are made available to the algorithm.

3.2 Formal Problem Definition

The continuous aggregate nearest neighbor query is defined as follows. The query is

defined with the following parameters: (1) A set of N landmarks L = {L1, L2, . . . , LN},
(2) a set of M moving objects O = {O1, O2, . . . , OM}, whose location updates arrive as

a stream, and (3) an aggregate distance function f . The query continuously retrieves

the object Oc whose aggregate distance according to L is minimum. The aggregate

distance of any object Oi is denoted by Di and is computed from the Euclidean distance

between the moving object and all the landmarks. Therefore,

Di = fNk=1(||Oi − Lk||)

3.3 Classification of Aggregate Functions

We classify the aggregate functions into two classes, A and B, based on their evaluators

(defined below).

Definition 1 The evaluator E with order m of an aggregate function f (that takes a

vector X as its parameter) is defined as the value of the aggregate function f on the

first m components of X, i.e.,

E(f(X),m) = f(x1, x2, . . . , xm)

The evaluator E of a function f with order m is monotonically increasing with respect

to m iff m ≥ m′ ⇒ E(f,m) ≥ E(f,m′).

Definition 2 Class A aggregate function (e.g., sum and max) is an aggregate function

whose evaluator is monotonically increasing with respect to its order. Class B aggregate

function (e.g., min) is an aggregate function whose evaluator is not monotonically

increasing with respect to its order.

The aggregate functions that are described in this paper are aggregate distance

functions, where the aggregation occurs on the Euclidean distance between an object

and each landmark. The first holistic algorithm, H-CANN, may be applied using any

aggregate distance function. However, P-CANN works only for Class A aggregate dis-

tance functions. Class A aggregate distance functions have interesting properties that

will be exploited in Section 5.
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(a) sum (b) max (c) min

Fig. 3 Family of Equal Aggregate Distance Shapes

3.4 Loci of Aggregate Distance Functions

Aggregate functions whose parameters are Euclidean distances from a point to a set of

landmarks have interesting loci [29]. We use the properties of these loci in the design

of P-CANN.

The loci of the points in space with the same sum aggregate distance form a closed

shape. The landmarks form the foci of this shape. The resulting shape for sum is

smooth; i.e., it is differentiable.

Similarly, the loci of the points in space with the same max aggregate distance

form a closed shape. The landmarks form the foci of this shape. For N foci and for an

aggregate distance d, the resulting shape is the intersection of N circles with radii d.

The centers of these circles are the foci.

Nevertheless, the loci of the points in space with the same min aggregate distance

form a shape that is not necessarily closed. The landmarks form the foci of this shape.

The resulting shape may contain holes and it may be non continuous. Typically, for N

foci and for an aggregate distance d, the resulting shape is the union of N circles with

radii d. The centers of these circles are the foci.

These loci form a family of concentric curves. The number and location of the

landmarks as well as the aggregate distance function determine the shape of the family

of curves. For Class A aggregate distance functions, the loci are closed and convex.

Moreover, the center of the convex shape is the centroid of the aggregate distance

function.

Figures 3(a)–3(c) show the families of curves for different aggregate distance func-

tions when the number of landmarks is 3. An outer locus in these figures corresponds

to a larger aggregate distance than an inner locus.

3.5 Frequently Used Symbols

Table 1 summarizes the primary symbols used throughout the paper.

4 H-CANN: A Holistic CANN Algorithm

In this section, we present a holistic algorithm (H-CANN) that computes the CANN

query. H-CANN gets its input as a stream of location updates of the moving objects.

These locations are updated periodically. H-CANN is “holistic” in that it considers the

aggregate distance to all landmarks in order to compute a threshold. This threshold
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Table 1 Frequently Used Symbols

Symbol Description
k The target answer set size
f The aggregate distance function
O The set of moving objects
L The set of landmarks
M The number of moving objects

N = |L| The number of landmarks

Oi The ith object

Li The ith landmark

di The distance to the ith landmark

Di The aggregate distance function of the ith object

O(k) The kth aggregate nearest neighbor object

D(k) The aggregate distance function of O(k)

m The order of the aggregate distance function evaluator
E(f,m) The evaluator of the aggregate distance function f with order m

R H-CANN threshold: The safety margin

Ri The threshold associated with the ith landmark

Ci The locus associated with the ith landmark

ri The ith probed values in the unbounded binary search for Ri

∆ The maximum distance between consecutive location updates of any object
δ The grid cell length/width of the CPM algorithm

will be used for deciding whether or not a moving object is part of the query answer.

The output of H-CANN is a stream of the object identifiers that belong to the query

answer at the current time period.

4.1 Algorithm Overview

In this section, we present a high level description of H-CANN before we give the

details subsequently.

H-CANN incrementally evaluates the continuous aggregate nearest neighbor queries.

It keeps the current query answers in an answer set. The answer set is represented by a

data structure called HashedHeap (described in Section 4.4). The HashedHeap is probed

to get the aggregate distance of the kth nearest neighbor to the landmarks, which is

used to compute a threshold, R, as given in Section 4.3.

The current answer set is updated according to the location updates of the moving

objects. When a moving object, Oi, reports its location, its current location is used to

compute its aggregate distance to all landmarks (Di). If the answer set size is less than

k, this object is added to the query answer. Otherwise, the moving object’s aggregate

distance is compared against the threshold R. This comparison yields to the following

situations:

If Oi does not belong to the answer set:

– If Di < R, this object replaces the kth aggregate nearest neighbor. (case i)

– If Di ≥ R, this object is pruned. (case ii)

If Oi belongs to the answer set:

– If Di < R, this object location is updated in the answer set. (case iii)
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– If Di ≥ R, there might be another candidate moving object, Oj , that does not

belong to the answer set but has an aggregate distance, Dj , such that Dj < Di.

(case iv)

We overcome the uncertainity resulting from case iv, by extending the answer

set. The extended answer set will contain information about these candidate objects.

Therefore, we can capture Oj as part of the answer set without any delays.

A moving object is candidate if there is a possibility that it becomes part of the

answer set if it continues its motion with the same speed and direction. The cache

region is the region that contains all the candidate objects. The safety margin is the

threshold R that will be used to prune the objects that are outside the cache region.

The computation of the cache region is given in Section 4.3. In the next section, we

illustrate a running example to show how H-CANN uses the extended answer set to

answer a continuous aggregate nearest neighbor query.

4.2 Running Example

A running example is shown in Figures 4(a)–4(e). The continuous aggregate nearest

neighbor query Q is submitted to the system with k = 2. Q has 3 landmarks (L1–

L3). The answer of Q should continuously report the current objects whose maximum

distance to all three landmarks is minimal. The first five location updates are being

illustrated. Each of these figures shows the execution of the algorithm upon the arrival

of the location update of one moving object.

The algorithm keeps track of the distance of the farthest object (the kth top object)

in the answer set from the landmarks. In fact, such object, referred to by O(k), is the

head of the HashedHeap and O(k)’s aggregate distance to all landmarks is D(k). The

top set of tables in Figure 4 shows the extended answer set after the update is handled.

Each object is shown along with its aggregate distance to the landmarks. Only the first

k = 2 objects represent the answer set. The other elements represent the cache region.

A line is drawn between each moving object and its corresponding farthest landmark

to show the aggregate distance: the maximum distance to the three landmarks for that

object.

In this example, we assume that the maximum distance between two consecutive

location updates for any moving object is bounded by ∆ = 3, which can be calculated

from the maximum speed of the moving object and the frequency with which it is

reporting its location. Therefore, the safety margin will be computed, as will be shown

in Section 4.3, by the formula R = D(k) +∆.

Assume that we start with a fresh system, where the result set is empty and no loca-

tion update has arrived yet. Upon the arrival of the first k = 2 location updates from O1

and then O2 (Figure 4(a)– 4(b)), both objects will be inserted in the HashedHeap since

the result set has not reached its capacity yet. Next, O3 reports its location. The head of

the HashedHeap is O(k) = O2, and the safety margin R = D2 +∆ = 6.083+3 = 9.083.

O3 will be stored in the cache region since D(k) < D3 < R

Next, O2 moves to a farther place and its location gets updated in the extended

answer set. Therefore, O3 is switched from the cache region to the answer set since

D3 < D2. Notice that O3 is the new head of the HashedHeap O(k). We compute the

new safety margin, R = D3 + ∆ = 8.062 + 3 = 11.062. Since the safety margin got

increased, all elements existing in the cache region will remain in it.
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Oi Di L(max)

O1 5.099 L3

Oi Di L(max)

O1 5.099 L3

O2 6.083 L1

Oi Di L(max)

O1 5.099 L3

O2 6.083 L1

O3 8.062 L1

(a) Object O1 appears (b) Object O2 appears (c) Object O3 appears

Oi Di L(max)

O1 5.099 L3

O3 8.062 L1

O2 8.944 L2

Oi Di L(max)

O1 5.099 L3

O4 5.831 L2

O3 8.062 L1

(d) Object O2 moves (e) Object O4 appears

Fig. 4 Execution of H-CANN with 3 landmarks ({L1, L2, L3}) and with an answer size k = 2
with a max aggregate-distance metric.

Last, a new object O4 reports its location (D4 = 5.831). Because D4 < D3, O4

makes it to the answer set and becomes the new head of the HashedHeap, pushing

O3 to the cache region. We recompute the new safety margin, R = 5.831 + 3 = 8.831.

Then, we truncate the cache region by removing O2 that has an aggregate distance

larger than the safety margin.

H-CANN uses one threshold (the aggregate distance of the farthest object in the

answer set) to prune the moving objects after it computes the aggregate distance. In

Section 5, we propose a progressive algorithm that associates a tight threshold for each

landmark. These thresholds will be used to prune objects during the computation of

the aggregate distance of the objects.

4.3 Computation of Cache Region

Assume that an object, say Oi, does not make it to the answer set because it has an

aggregate distance larger than that of the head of the HashedHeap, say Oj . Assume
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Fig. 5 Cache Region Computation.

that Oj moves and becomes farther from the landmarks than Oi. If we do not save the

previous location update of Oi, Oi will not be able to make it to the answer set until

Oi’s next location update. We solve this problem by storing some moving objects in a

cache region. In Figure 4.3, the distance between two location updates of an object O

is bounded by ∆, e.g., based on maximum object speed and the two consecutive time

durations between the object updates. Therefore, the new distance of this object to

any landmark (d′i) is bounded by the sum of ∆ and the old distance to this landmark,

di, (triangle inequality). In other words, d′i < di + ∆. Therefore, the new aggregate

distance (D′i) might at most be larger than the old aggregate distance (Di) by ∆ in

case of a min or max aggregate distance function; i.e., D′i < Di +∆. In the case of the

sum aggregate distance function, the difference will be at most ∆ times the number of

landmarks, N ; i.e., D′i < Di +N ∗∆.

If D(k) is the aggregate distance of the head of the HashedHeap, the safety margin,

say R, will have the value of R = D(k) + ∆ in the case of max or min aggregate

distance function. When the aggregate distance function is sum, the safety margin will

be R = D(k) + N ∗ ∆. An object O that does not qualify into the answer set will

be inserted into the cache region if O’s aggregate distance does not exceed the safety

margin.

4.4 Data Structures

We use a data structure, termed HashedHeap, to maintain the answer set of the pro-

posed algorithms. A HashedHeap consists of a descending priority queue (a heap) and

a hash table that hashes into the elements inside the priority queue. The objects are

ordered in the priority queue according to the aggregate distance from a set of land-

marks. The hash table provides a way to efficiently locate internal nodes in the priority

queue using the moving-object identifier. The head of the HashedHeap, which is the

front of the priority queue, has the largest aggregate distance.

The answer set is extended with a cache region. The cache region stores moving

objects that are not part of the answer set, but may become part of it in case a member

of the answer set moves farther away from the landmarks. The cache region, which was

previously used in [22], is stored in another data structure called HashedList. The
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Fig. 6 The Extended Answer Set.

HashedList consists of a sorted doubly linked list and a hash table that hashes into the

elements inside the sorted doubly linked list using the moving-object identifier. The

objects are ordered in an ascending order in the list according to the aggregate distance

from a set of landmarks. The head of the HashedList, which is the front of the doubly

linked list, has the smallest aggregate distance in the list. The tail of the HashedList

has the largest aggregate distance in the list.

The Extended Answer Set. In the following, we refer to the union of the answer

set (HashedHeap) and the cache region (HashedList) by the extended answer set (see

Figure 6). When we insert a new moving object Oi in the extended answer set, we try

to insert it into the HashedHeap first. If the HashedHeap does not reach its capacity,

say k, the object gets inserted successfully. Otherwise, we compare Oi with the head

of the HashedHeap, O(k). The object that has a smaller aggregate distance will remain

in the HashedHeap, whereas the other object will be inserted into the cache region, the

HashedList. At any point in time, the cache region will be truncated according to the

safety margin.

The same logic holds in the following cases: (1) if an object in the HashedHeap

updates its location, it is compared with the head of the HashedList. (2) if an object in

the HashedList updates its location, it is compared with the head of the HashedHeap.

In these two cases, the object that has a smaller aggregate distance will remain in

the HashedHeap, whereas the other object will be inserted into the cache region, the

HashedList.

4.5 Algorithm Details

H-CANN has three inputs. The first input is k, the answer set size. The second

input is the set of moving objects that will report their location updates periodically.

The third input is the set of landmarks to which the aggregate distance is computed.

Algorithm 1 gives the pseudocode of H-CANN. Whenever a CANN query is issued, the

extended answer set is initially empty (Lines 2–3). For each arriving location update

loc, the algorithm proceeds as follows (Lines 5–23). Let the object Oi be the object

whose location is loc. We compute its aggregate distance to all landmarks in Line 7.

First, consider when Oi does not exist in the extended answer set (Lines 9–16).

We compute the safety margin (Line 9). We have two cases: (1) the extended answer
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Algorithm 1 Holistic Algorithm for CANN

1: Function H-CANN(int k, MovingObjects O, Landmarks L)
2: S is the extended answer set (S := HashedHeap ∪ HashedList)
3: S = φ
4: while the query is active do
5: look for a newly received location update loc
6: Oi is the object whose location update is loc
7: Di ← the aggregate distance of Oi to L
8: if Oi /∈ S then
9: R← the safety margin

10: if |S| < k or Di < R then
11: S = S ∪ {Oi}
12: if Oi = S.HashedHeap.head then
13: R← re-compute the safety margin
14: truncate S.HashedList
15: end if
16: end if
17: else
18: update Oi’s location in S
19: R← re-compute the safety margin
20: if S.HashedHeap.head has changed or Di > R then
21: truncate S.HashedList
22: end if
23: end if
24: end while

set size is less then k, and (2) the aggregate distance of Oi to all landmarks is smaller

than the safety margin. In these two cases, Oi is added into the extended answer set

(Line 11). This means that Oi is either added to the HashedList (for Case 2) or to

the HashedHeap (for Case 1) (possibly pushing an object from the HashedHeap to the

HashedList as described before). In Case 1, if Oi becomes the head of the HashedHeap,

we recompute the safety margin, and possibly truncate the HashedList accordingly

(Lines 12–15).

Next, consider when Oi already exists in the extended answer set (Lines 17–23).

We update the location of Oi in the extended answer set S (Line 18). This update

may incur moving its position within either the HashedHeap or the HashedList, or even

across them. Then, we re-compute the safety margin in Line 19. If the head of the

HashedHeap has changed, we truncate the HashedList (Line 21).

5 P-CANN: A Progressive Algorithm for CANN

In this section, we propose P-CANN, a best-effort progressive algorithm for computing

and maintaining the answer of CANN over a period of time. P-CANN is designed

for Class A aggregate functions. Having a monotonically-increasing evaluator for the

aggregate function is necessary for the correctness of this algorithm that has superior

performance than H-CANN (see Section 6).

P-CANN is a best-effort algorithm. It achieves great improvement in performance.

However, it might produce the k′ aggregate nearest neighbors, where k′ < k. In Sec-

tion 6, we show that P-CANN may produce about 95%–98% of the target answer

size.

P-CANN is a progressive algorithm. A threshold is associated with each landmark.

This threshold is used to prune the moving objects from being part of the query answer.
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(a) E(sum, 1) ≤ R1 (b) E(sum, 2) ≤ R2

(c) E(sum, 3) ≤ R3 (d) E(sum, 4) ≤ R4

Fig. 7 Progressive Reduction of P-CANN Search Space. The silver stars represent the foci of
the locus of E(sum, i) ≤ Ri.

In contrast to H-CANN that has one threshold for pruning the objects, P-CANN has

a threshold per landmark that provides tighter bounds for pruning.

We start with an overview of P-CANN in Section 5.1. Next, we give the P-CANN

algorithm that answers a continuous aggregate nearest neighbor query in Section 5.2.

Finally, we show how to compute the thresholds associated with each landmark in

Section 5.3.

5.1 Overview of P-CANN

In this section, we present an overview of the logic of P-CANN. First, a suitable ordering

of the landmarks is determined and a threshold is associated with each landmark.

The thresholds are computed such that they are used to prune the objects during,

and not after, the evaluation of the aggregate distance function. The landmarks are

ordered in such a way to reduce the distance computations. The details of computing

the thresholds and figuring out a good landmark ordering are given in Sections 5.3

and 5.4, respectively.

We illustrate, in Figures 7(a)-7(d), the search space and its progressive reduction

using a running example of four landmarks L1, L2, L3, L4 and a sum aggregate dis-

tance function. The thresholds associated with these landmarks are R1, R2, R3, R4,

respectively. In each of the figures, the black-colored region represents the domain of
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the objects with an evaluator E(sum, i) that has a value larger than Ri. The enclosed

white-colored region is the domain of the objects with an evaluator E(sum, i) ≤ Ri.

First, the evaluator with Order 1 is computed and compared against R1. An object

is pruned during the evaluation of its aggregate distance if it lies in a black-colored

region. Otherwise, we continue computing the evaluator with the higher order. This

process continues until the evaluator with Order 4 is reached (number of landmarks is

N = 4). The CANN query answer consists of objects with an evaluator E(sum, 4) ≤
R4.

Algorithm 2 Compute Aggregate Distance for P-CANN

1: Function ComputeAggDistOrPrune(MovingObject Oi, Landmarks L, Thresholds R)
2: f is the aggregate function
3: aggV alue = 0
4: N = |L|
5: for k = 1 · · ·N do
6: d← distance from Oi to Lk

7: aggV alue← f(aggV alue, d)
8: if aggV alue > Rk then
9: /*aggV alue = E(f, k)*/

10: return ∞
11: end if
12: end for
13: return aggV alue

Algorithm 2 shows how the thresholds are used within the computation of the

aggregate distance (ComputeAggDistOrPrune), which will return infinity if the

object may be pruned. Typically, after updating the running aggregate value (Line 7),

the running aggregate value is checked against a threshold associated with the current

landmark. If the running value exceeds the threshold, the object is pruned without the

need to continue its aggregate distance computation (Lines 8–11).

5.2 P-CANN Algorithm

Algorithm 3 gives the outline of P-CANN. The algorithm maintains the answer set

in a HashedHeap. This set is initialized at the beginning of the algorithm (Lines 2–4).

First, we start by optimizing P-CANN. This optimization consists of computing the

thresholds that will be assigned to each landmark in Line 5, and will be used to prune

the moving objects. The algorithm proceeds by looking for the newly arriving location

updates of the moving objects. The thresholds assigned to each landmark are used to

prune objects upon the computation of their aggregate distance from the landmarks

(Line 9). For an object that belongs to the answer set, if it is to be pruned, it is removed

from the HashedHeap (Lines 11–13). However, if the object is not pruned, its location

will be updated in the answer set (Lines 15–16).

On the other hand, for the non-pruned objects, the following occurs. If the answer

set contains less than k objects, the object is added to the HashedHeap (Lines 18–

19). Otherwise, the aggregate distance of any such object will be compared with the

aggregate distance of the farthest object in the answer set. The object with the smaller

aggregate distance will dominate and will remain in the answer set. The other object

gets pruned (Lines 21–25).
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Algorithm 3 Progressive Algorithm for CANN

1: Function P-CANN(int k, MovingObjects O, Landmarks L)
2: S is the HashedHeap containing the answer set
3: N = |L|
4: S = φ
5: R[1 · · ·N ]← ComputeThresholds(L)
6: while stopping condition not met do
7: look for a newly received location update loc
8: Oi is the object whose location update is loc
9: Di ← ComputeAggDistOrPrune(Oi, L,R)

10: if Di =∞ then
11: if Oi ∈ S then
12: remove Oi from S
13: end if
14: else
15: if Oi ∈ S then
16: update the location of Oi in S
17: else
18: if |S| < k then
19: insert Oi in S
20: else
21: Ok is the furthest object in S from L
22: Dk ← the aggregate distance of Ok to L
23: if Di < Dk then
24: replace Ok by Oi in S
25: end if
26: end if
27: end if
28: end if
29: end while

Computing tight thresholds for the landmarks to prune many objects is essential

for P-CANN to achieve high performance. This process involves two main steps. The

first step is to determine the order of the landmarks that will be used in computing

the aggregate function in ComputeAggDistOrPrune. The second step is computing

the thresholds given the landmarks order determined in the first step. We start with

the second step in Section 5.3, and defer the details of the first step to Section 5.4.

5.3 Computing the Thresholds

Overview

The order of the landmarks that is used in the aggregate distance evaluator is reversed

when we compute the thresholds. For N landmarks, RN is computed before RN−1,

which in turn is computed before RN−2, and so on. We highlight the main idea of such

computation as:

– RN is computed such that at least k moving objects have their aggregate distance

less than RN ; i.e., their evaluator E(f,N) < RN .

– For the threshold Ri, where 1 ≤ i < N : Any moving object, whose evaluator

E(f, i + 1) < Ri+1, must have its evaluator E(f, i) < Ri. Otherwise, the moving

object will be incorrectly pruned in ComputeAggDistOrPrune.
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(a) The black shape, E(sum, 4) ≤ R4,
contains k objects

(b) The circumference of the black
shape, E(sum, 3) = R3, is tangent to
the white shape, E(sum, 4) ≤ R4

(c) The circumference of the black
shape, E(sum, 2) = R2, is tangent to
the white shape, E(sum, 3) ≤ R3

(d) The circumference of the black
shape, E(sum, 1) = R1, is tangent to
the white shape, E(sum, 2) ≤ R2

Fig. 8 Calculating the Thresholds: Overview

Therefore, with the help of a selectivity estimator (details below), RN may be

calculated by searching for it such that the locus of DN = E(f,N) < RN forms a

shape that contains at least k objects. Moreover, Ri may be calculated by searching

for it such that the locus of E(f, i) < RN forms a shape that contains the shape

representing the locus of E(f, i + 1) < Ri+1. Figures 8(a)–8(d) illustrate the steps to

compute the thresholds in our running example.

Running Example

In Line 7 of ComputeAggDistOrPrune, the threshold of any landmark Li is com-

pared against f(d1, d2, . . . , di), where di is the distance between the moving object and

the ith landmark.

We show the details of the computation of the thresholds using two parallel ex-

ample queries in the case of sum and max aggregate distance functions. Figures 9(a)

and 9(b) show the loci of aggregate distance functions in the case of the landmarks

{L1, L2, L3, L4} for both functions, sum and max, respectively. The light gray curve,

C4, represents the locus of the points in space whose aggregate distance from the land-

marks {L1, L2, L3, L4} is R4. The black curve, C3, represents the locus of the points in

space whose aggregate distance from {L1, L2, L3} is R3. Similarly, the white curve, C2,

represents the locus of the points in space whose aggregate distance from {L1, L2} is

R2. Finally, the dark gray curve, C1, represents the locus of the points in space whose

aggregate distance from landmark L1 is R1 (N = 4 in this example).
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(a) f = sum (b) f = max (loci thickened for
illustration

Fig. 9 Use of the Loci of Aggregate Distance Functions in Computing the Thresholds. Ci

represents E(f, i) = Ri

Fig. 10 Unbounded Binary Search to Compute RN .

Details: Computing RN

We start by searching for RN using a spatio-temporal selectivity estimator called the

ST-Histogram [11]. The ST-Histogram performs an unbounded binary search [6] to find

out the value RN of the aggregate distance function f(d1, d2, . . . , dN ) whose locus con-

tains at least k objects. The unbounded binary search is a logarithmic algorithm. In this

search, the current probed value of the aggregate distance defines the current probed

locus. Figure 10 shows an example of applying the unbounded binary search to find a

threshold RN , where the probed values of the aggregate distance are r1, r2, . . . , r6.
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The ST-Histogram estimates the selectivity of the moving objects that exist in any

polygon. A polygon approximating the locus of each aggregate distance function is sent

to the ST-Histogram to return its selectivity. The vertices of the polygon are sampled

from the locus. For a Class A aggregate function, the center of the convex shape is the

centroid of the aggregate distance function. We perform a rotational plane sweep from

the centroid to get the samples. After each degree of rotational sweep, one sample is

collected using another unbounded binary search starting from the centroid and in the

direction of the sweep. Points that exist inside the locus will have a smaller aggregate

distance value, whereas points outside the locus will have a larger aggregate distance

value. A point P is a sample vertex of the polygon when P minimizes the distance

between the aggregated value of the probed locus and P ’s aggregate distance on the

segment from the centroid and in the direction of the sweep. The other vertices will be

retrieved in the same way after rotating more degrees in the rotational sweep.

Details: Computing Ri, 1 ≤ i < N

In the case where the aggregate distance function is max, the locus of the aggregate

distance function is the intersection of N circles, all of which have the same radius.

Therefore, the thresholds of the subsequent landmarks, R1, R2, . . . , RN−1, are the same

as the threshold of the N th landmark.

On the other hand, for the sum aggregate distance function, the thresholds of the

subsequent landmarks are computed as follows in the order RN−1, . . . , R2, R1. First,

the N th landmark is eliminated and we compute RN−1 from the other landmarks.

Next, the (N − 1)st landmark is also eliminated and we compute RN−2 from the

remaining landmarks, and so on.

To compute Rj , we perform an unbounded binary search [6] to find out the value

of Ri = f(d1, d2, . . . , dj) whose locus contains the locus of Rj+1 = f(d1, d2, . . . , dj+1).

Consequently, Rj will not prune any moving object that passes Rj+1.

The loci of f(d1, d2, . . . , dj+1) = Rj+1 and of f(d1, d2, . . . , dj) = Rj are approxi-

mated with polygons during the containment test.

For a convex polygon to be contained in another convex continuous locus, only

the vertices of the first polygon need to be tested for containment inside the locus.

The test for containment is simply to check the sign of the difference between the

current threshold, Rj , and the aggregate distance function to the first j’s landmarks,

f(d1, d2, . . . , dj). If the sign is positive, the vertex is inside the second locus, and vice

versa.

Figure 11(a) shows a containment test of a locus C5 inside a locus C4. This figure

shows that the approximation of the locus C5 using an inscribed polygon A0A1A2A3 . . .

may produce a false-positive containment test. This is why we use the circumscribing

polygon that is formed by the tangents to the locus at the sample locus points. Fig-

ure 11(b) shows the containment test of C5 inside C4 using the circumscribing polygon

B0B1B2 . . ., which does not produce any false-positive tests.

We compute the tangents of the locus of the sum aggregate distance function

analytically as follows. Let X be a sample point on the locus of f(X) =
∑
||X − Li||.

For any point X = (x, y) and landmark Li = (Li.x, Li.y), the following equations are

used to compute the slope of the tangent at X.
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(a) Inscribed polygon A0A1A2A3 · · · may
produce false-positive containment test

(b) Circumscribing polygon B0B1B2 · · ·
does not produce false-positive containment
test

Fig. 11 Approximating the locus of the curve for the containment test

f(x, y) =

N∑
i=1

√
(x− Li.x)2 + (y − Li.y)2

∂f(x, y)

∂x
=

N∑
i=1

x− Li.x√
(x− Li.x)2 + (y − Li.y)2

∂f(x, y)

∂y
=

N∑
i=1

y − Li.y√
(x− Li.x)2 + (y − Li.y)2

5f(x, y) =
[∂f(x, y)

∂x
,
∂f(x, y)

∂y

]
dy

dx
= −∂f(x, y)/∂x

∂f(x, y)/∂y
(1)

In Section 6, we show that the time required to compute the thresholds and to

figure out the order of the landmarks is very small.

5.4 Determining the Order of the Landmarks

The order of the landmarks in computing the aggregate distance function in Com-

puteAggDistOrPrune determines how many moving objects are pruned after com-

puting the distance to each landmark. Different orderings lead to different loci, which

lead into a different total number of distance computations. Notice that the moving

objects that are located inside any locus have their aggregate distance within the cor-

responding threshold. Therefore, all moving objects are tested against R1. Only those

that are located inside the dark gray circle in Figure 9 are tested against R2; the oth-

ers are pruned. Similarly, only those moving objects inside the white curve are tested

against R3, and so on. Consequently, the number of distance computations against any

threshold is proportional to the selectivity of the enclosing locus.

As pointed out in Section 5.3, we need to figure out an elimination order for the

landmarks. The N landmarks can be ordered in N ! different ways. However, it is
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prohibitively expensive to perform an exhaustive search on the order amongst the N !

to find the order producing the least total execution cost. We propose three elimination

order policies to achieve a practical elimination order for the landmarks. We term the

three policies are first-fit, best-fit, and worst-fit elimination orders.

Definition 3 The first-fit elimination order is an elimination policy in which, at each

elimination decision, the first landmark in the remaining landmarks is chosen for elim-

ination.

Definition 4 The best-fit elimination order is an elimination policy in which, at each

elimination decision, the landmark, whose elimination results in a shape with smallest

number of distance computations, is chosen for elimination.

Definition 5 The worst-fit elimination order is an elimination policy in which, at each

elimination decision, the landmark, whose elimination results in a shape with largest

number of distance computations, is chosen for elimination.

The first-fit elimination order picks the next to-be-eliminated landmark in constant

time, and thus the total time for determining the landmarks order is O(N). On the

other hand, the best-fit and worst-fit elimination orders pick the next to-be-eliminated

landmark in a linear time (with respect to the number of landmarks), and hence require

a total time for determining the order to be O(N2).

The rational behind the best-fit elimination policy is to try to locally minimize

the number of distance computations for the current landmark given the already de-

termined landmarks. Nevertheless, the rational behind the worst-fit elimination policy

is to minimize the ratio of the number of distance computations performed against

a landmark and the number of distance computations performed against the prior

landmark.

For the sake of presentation, and without loss of generality, we assume in this para-

graph that the moving objects are uniformly distributed in the space. For the general

case, ST-Histogram is consulted to get the selectivity of any locus as described earlier

in the paper. Under such assumption, the number of distance computations against a

landmark is proportional to the area of the locus associated with prior landmark. Fig-

ures 12(a)–12(d) show the shapes corresponding to three landmarks L1, L2, L3 when

the best-fit and worst-fit elimination policies are adopted for both aggregate distance

functions. In the best-fit elimination policy, the landmarks are eliminated in the order

L2 and then L3 producing the loci B1, B2, and B3 respectively. Consequently, the

thresholds corresponding to the landmarks L1, L3, and then L2 are probed in this

order. On the other hand, in the worst-fit elimination policy, the landmarks are elim-

inated in the order L3 and then L2. Therefore, the thresholds corresponding to the

landmarks L1, L2, and then L3 are probed in this order.

5.5 Re-optimizing P-CANN

The P-CANN query optimization process results in the execution plan that will be

used to evaluate the continuous aggregate nearest neighbor query answer. The output

of the optimization consists of:

– The order of the landmarks that will be used in computing the aggregate distance

of the moving objects.
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sum max

(a) best-fit

(b) worst-fit

(c) best-fit

(d) worst-fit

Fig. 12 Examples of different elimination orders for sum (a)–(b) and max (c)–(d).

– The thresholds associated with each landmark.

This optimization process depends on a selectivity estimator. Since CANN is a

continuous query, the selectivities of the moving objects will change over time. Conse-

quently, the query execution may be sub-optimal for two reasons: 1) There might be

too many objects that move towards the region containing the query answer. Therefore,

the pruning of many objects will be deferred during ComputeAggDistOrPrune un-

til more landmarks are probed. 2) If many objects, whose aggregate distance is below

RN , move farther away from the region containing the query answer, the query answer

size might be much less than the target k.

In these two cases, the P-CANN query needs to be re-optimized to get a better

execution plan. The frequency upon which we will need to re-optimize depends on

how the selectivities change over time. The first case is detected when the condition in

Line 23 of Algorithm 3 is invalid too frequently, which may be verified with a higher

selectivity estimation of the query answer region. The second case is trivially detected

when the query answer size gets much less than k for an extended period.

During the mid-query re-optimization, the execution for P-CANN is suspended.

The query is then re-optimized before the execution is resumed with the new plan.

P-CANN queries have a state associated with it: the answer set (HashedHeap). The

new query evaluation plan will have the same state of the old plan. However, they

differ in the thresholds associated with the landmarks, and possibly the order of the

landmarks used in the aggregated distance computation.
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Table 2 System parameters (ranges and default values)

Parameter Range Default
No. of landmarks: |L| 5, 10, 15, 20 5

Answer size: k 20, 40, 60, 80 20
worst-ever-fit (WEF),

Elimination Order first-fit (FF), FF
best-fit (BF),

worst-fit (WF)

Consider a continuous aggregate nearest neighbor query that runs for a period T

without the need for re-optimization. In Section 6.5, we show that the optimization cost

(in time units) is noticeably small compared to T . For instance, a query might remain

optimal during a rush hour, continues to execute, and then needs to be re-optimized

during a non rush hour.

6 Experimental Analysis

We perform extensive experiments to evaluate the performance of the proposed algo-

rithms. In these experiments, we compare the algorithms proposed in this paper with

the state-of-the-art algorithm for the continuous aggregate nearest neighbor queries

for moving objects; the conceptual partitioning (CPM) algorithm [26]1. We imple-

mented the proposed algorithms in PLACE, a prototype spatio-temporal data stream

management system [23]. We use the Network-based Generator of Moving Objects [7]

to generate a set of moving objects. The generator generates 50000 moving objects

that move on the road network of Berlin, Germany for 100 time units with additional

1000 objects per time unit. Other generator parameters are set to their default values.

Moving objects can be vehicles, cyclists, pedestrians, etc. Table 2 summarizes the pa-

rameters under investigation, their ranges and their default values. For any experiment,

we vary one parameter and set the other parameters to their default values. For all

experiments, we use a Xenon 2.0GHz CPU with 1GB of RAM.

We generate 600 continuous queries. Each of these queries is defined by k, f , and

the set of landmarks L. The landmarks are randomly selected with size |L| from the

dataset of work sites that is used in BerlinMOD, a benchmark for spatio-temporal

database management systems [10].

In the experiments, we compare among the conceptual partitioning (CPM) algo-

rithm, H-CANN, and P-CANN, where applicable. Our performance metrics are: (1)

The throughput, i.e., the number of update input tuples processed per second (better

performance corresponds to a higher throughput value). The average time to process an

update input tuple is the reciprocal of the throughput. In a dynamic system where the

moving objects report their locations frequently, the throughput shows how fast the

system can respond to the rate of input tuples. (2) The optimization time. (3) Mem-

ory requirements. We also study how approximate P-CANN is; i.e., what the average

output size of P-CANN is. For the CPM algorithm, we use a 128x128 grid as proposed

in [26] as the good tradeoff between the CPU time and the space requirements. We

show the experiments for the max and min cases. Since most of the experiments for

the sum case give similar results to those of the MaxDist case, the performance results

1 The authors of conceptual partitioning kindly provided us with their code of CPM.
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Fig. 13 Effect of |L| on Throughput

for SumDist are omitted for space limitation. We show the experimental results of

SumDist only when there is a difference between the two cases.

6.1 Effect of Number of Landmarks

First, we study the effect of the number of landmarks |L| on the performance of the

proposed algorithms. Fig. 13(a) gives the throughput (tuples processed per second)

when the number of landmarks |L| varies for the max aggregate function. The ratio

of throughput of any of the proposed algorithms and the CPM algorithm is between

280% and 360%. Fig. 13(a) gives the throughput of the three algorithms. P-CANN

outperforms all other algorithms. When the set of landmarks gets larger, the through-

put of all operators gets lower (around 24% for H-CANN and 1% for P-CANN). The

ratio of throughput of H-CANN is at least 280% that of CPM.

P-CANN performs much fewer distance computations than H-CANN and the CPM

algorithm. P-CANN allows for the progressive pruning of the search space without the

need to compute the distance to all individual landmarks.

For the min aggregate function case, there is no P-CANN corresponding to this

aggregate function since there is no monotonically increasing evaluator for min (see

Section 3). The performance of the min case when the number of landmarks changes is

given in Fig. 13(b) for the applicable techniques (H-CANN and CPM). In Fig. 13(b),

the throughput of H-CANN is more than 250% the throughput of the CPM algorithm.

Both techniques get lower throughput when the number of landmarks gets larger.

However, the throughput of the CPM algorithm decreases slower than the decrease in

the throughput of H-CANN.

Apart from the trivial case of only few objects reporting their location, we notice

from the experiments that the locus containing the query answer is usually much

smaller than the minimum bounding rectangle of the landmarks. This is why the search

space for CPM is much larger than the search space of P-CANN where most non-

qualifying objects are pruned very early. Similarly, for the case of H-CANN, the data

structures are not modified for almost all non-qualifying objects, in contrast with CPM
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Fig. 14 Effect of k on Throughput

where the grid index, with which the moving objects are associated, is maintained.

Moreover, the CPM book-keeping information (and data structures) is modified with

the updates while the influence region is much larger than the actual region containing

the answer set.

It is worth pointing out that the CPM algorithm may be improved by reducing

the influence region using similar techniques as in P-CANN. The influence region may

be the region containing the answer set, which is computed as the innermost locus in

Figure 9.

6.2 Effect of the Output Size (k)

Fig. 14(a) gives the throughput when the number of nearest neighbors k varies for the

max aggregate function. The ratio of throughput of any of the proposed algorithms

and the CPM algorithm is between 320% and 360%. Fig. 14(a) gives the throughput of

the three algorithms. P-CANN outperforms all other algorithms. As k gets larger, the

throughput of the two proposed algorithms decreases by 2–4%. The ratio of throughput

of H-CANN is at least 320% that of CPM.

P-CANN performs much fewer distance computations than H-CANN and the CPM

algorithm. The number of distance computations for H-CANN is invariant to the answer

size for a fixed number of landmarks. For any positive input update to H-CANN, the

distance of the moving object to all landmarks is computed before any other processing.

Moreover, for the CPM algorithm, the distance from any moving object in the influence

region to all landmarks is computed when this object reports its location update. We

have also discovered from the experiments that the influence region of the query is

larger than the region contained in the loci of P-CANN. This is because the loci are

aggressively computed such that they prune most of the objects that are not part of

the answer as quickly as possible.

Fig. 14(b) gives the throughput as a function of the answer size k for H-CANN

and the CPM algorithm when the aggregate distance function is min. From Fig. 14(b),

the ratio of the throughput of H-CANN and the CPM algorithm is more than 300%.
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Fig. 15 Percentage of k that is output of P-CANN (sum)

When k increases from 20 to 80, the throughput decreases by only 3%. (see Fig. 14(b)).

Nevertheless, the number of distance computations for H-CANN is invariant to the

answer size similar to the sum and max cases.

From the experiments, we see that the performance of P-CANN is much better that

the performance of H-CANN with the increase in the answer set size. We can see that

P-CANN outperforms H-CANN with a factor of 126% when k = 80. P-CANN takes

milliseconds for the optimization process, which directly affects the pruning strategies.

Once the query is optimized, the execution of P-CANN is very fast as the pruning

process itself is simply comparing a running aggregate distance against a threshold.

For the implemention effort of both algorithms, P-CANN uses a HashedList to

maintain the answer set. H-CANN uses an additional data structure, HashedList,

to maintain the cache region. The optimization of P-CANN involves many functions

(e.g., an unbounded binary search, a test for polygon inclusion, optimizing multivari-

ates functions) that are readily available in many libraries (e.g., OOL [1], LOPTI [2],

NEWUOA [3], CONDOR [4], and Extreme Optimization [5]).

6.3 Actual Output Size of P-CANN

Since P-CANN depends on a selectivity estimator to compute the thresholds associated

with each landmark, it is intrinsic that the output will be approximate. This approx-

imation does not produce wrong answers. In fact, the query answer is the aggregate

nearest neighbors of the landmarks. However, for a CANN query that asks for the k

aggregate nearest neighbors, P-CANN may produce less than k if the selectivity esti-

mator underestimates the selectivity of the inner locus in Figure 9. If the selectivity

estimator overestimates the selectivity, the k aggregate nearest neighbors are output.

Figure 15(a) gives the effect of this approximation with different values of requested

k. We measure this effect by the average percentage of k that gets output of P-CANN.

In the case of k = 20, the average value of the output size is 19.45; i.e., 97.25%. When

k = 80, the average value of the output size is 76; i.e., 95%. The number of landmarks

does not have a noticeable effect on the average percentage of k that gets output from
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Fig. 16 Performance of different elimination order policies (99% confidence level)

P-CANN as shown in Figure 15(b). The standard deviation of the percentage of k that

gets output does not exceed 4% and the obeserved minimum percentage does not fall

below 88% for the cases of k ∈ {20, 40, 60, 80} or |L| ∈ {5, 10, 15, 20}.
In Section 6.5, we show the low optimization cost that will be incurred if the

application wants to re-optimize to get better values for the thresholds in case the

selectivity estimator is refined and produces more accurate estimates over time.

6.4 Elimination Order Policies

Next, we study the performance of the various elimination order policies when using

P-CANN (see Section 5.4). The optimal elimination order is the order that produces

the least number of distance computations. For comparison purposes only, the optimal

order is achieved using an exhaustive search on the n! different elimination orders. This

experiment computes the penalty incurred for using an elimination order for P-CANN

other than the optimal order. With a 99% confidence level, the confidence interval for

the relative additional distance computations when using the first-fit, best-fit, worst-

fit policies as well as the worst-ever-fit order is computed. The worst-ever-fit order

is the elimination order that produces the worst number of distance computations.

While searching for the optimal order, we also find the worst-ever-fit order. In this

experiment, more than 3600 random sets of landmarks are used. For any set, the size

of the set is random, and the relative locations of the landmarks are also random. To

make the results of this experiment independent of the moving objects behavior and

selectivity in the city, we assume a uniform distribution of the moving objects. Under

this assumption, the number of distance computations inside each operator, which

is proportional to the selectivity of the moving objects inside the shape associated

with the operator, turns out to be proportional to the area of that shape. Since it is

prohibitively expensive to get the optimal order, a penalty is incurred when we use a

sub-optimal elimination order.

Fig. 16(a) gives the confidence interval for the additional distance computations for

the sum case. The additional distance computations directly reflects on the additional
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CPU time required to process the location updates. The penalty is less than 27% in the

worst case when we use the worst-ever-fit order. The first-fit elimination policy, which

calls for the elimination of the first remaining landmark (in a random landmark order)

incurs 16% more distance computations. The worst-fit elimination policy (despite its

name) outperforms all the other policies in the figure and it only incurs 14% additional

distance computations, whereas the best-fit elimination policy incurs 20% penalty.

Interestingly, the case for max is different. Fig. 16(b) gives the confidence interval for

the additional CPU cost for the max case. The worst-ever-fit order results in additional

130% CPU time over the optimal order. The first-fit elimination policy incurs 43%

more distance computations. The best-fit elimination policy outperforms all the other

policies in the figure and it only incurs 12% additional distance computations, whereas

the worst-fit elimination policy performs badly and incurs a penalty of 88%.

6.5 Optimization Cost

Fig. 6.5 gives the time required for optimizing the P-CANN algorithm for sum aggregate

distance function. This optimization consists of the time needed to retrieve the best

elimination order and the thresholds corresponding to each landmark. Recall from

Section 5.4 that the optimization cost using the first-fit elimination order policy is O(N)

and is O(N2) for either the best-fit or worst-fit elimination order policies, which is the

price shown in this figure. For all elimination order policies, the cost of optimization

is in milliseconds. It takes less than 120msec for optimizing the query pipeline in the

case of adopting the first-fit elimination order. This figure illustrates the applicability

of the P-CANN in the domain of continuous queries.

7 Conclusion

In this paper, we proposed two algorithms to be used for continuously answering the

aggregate nearest neighbor queries. H-CANN is a holistic algorithm. It decides whether

to prune an object after computing its aggregate distance to all landmarks. P-CANN
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is a best-effort progressive algorithm that associates thresholds with the individual

landmarks. These thresholds are used to eagerly prune the moving objects. Different

elimination order policies are identified to specify the order of the landmarks in the

computation of the aggregate distance in P-CANN. The optimization of P-CANN and

how to assign the thresholds are addressed.

From the performed extensive experiments, we achieve cases whose performance

is improved by up to a factor of 3 from the state-of-the-art algorithm. P-CANN out-

performs both H-CANN and the CPM algorithm (the state of the art). For the opti-

mization of P-CANNs, the worst-fit elimination policy gives the least penalty for sum

(additional 14% CPU cost away from optimal) when we do not use the prohibitively

expensive optimal order. On the other hand, the best-fit elimination policy gives the

least penalty for the max case. The optimization time of P-CANN is about 100 msec

for typical CANN queries. P-CANN, which is a best-effort algorithm might produce

95% of the required output size on the average.

As for future work, we will investigate the continuous aggregate nearest neighbor

queries on moving objects in road networks. On the one hand, we would like to de-

velop similar incremental algorithms using the road network distance instead of the

Euclidean distance between the objects. On the other hand, we would like to make a

first-class operator in a data stream management system such that the CANN operator

is considered while optimizing the query evaluation plan.
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