
The Palm-tree Index: Indexing with the crowd∗

Ahmed R. Mahmood
Purdue University

amahmoo@purdue.edu

Walid G. Aref
Purdue University

aref@cs.purdue.edu

Eduard Dragut
Purdue University

edragut@purdue.edu
Saleh Basalamah

Umm Al-Qura University

smbasalamah@uqu.edu.sa

ABSTRACT
Crowdsourcing services allow employing human intelligence in
tasks that are difficult to accomplish with computers such as image
tagging and data collection. At a relatively low monetary cost and
through web interfaces such as Amazon’s Mechanical Turk (AMT),
humans can act as a computational operator in large systems. Re-
cent work has been conducted to build database management sys-
tems that can harness the crowd power in database operators, such
as sort, join, count, etc. The fundamental problem of indexing
within crowdsourced databases has not been studied. In this paper,
we study the problem of tree-based indexing within crowd-enabled
databases. We investigate the effect of various tree and crowdsourc-
ing parameters on the quality of index operations. We propose new
algorithms for index search, insert, and update.

1. INTRODUCTION
Crowdsourcing is the practice of solving large problems by di-

viding them into smaller tasks, each of which is then solved by
humans from an online community. The tasks are usually difficult
to be performed automatically by a computer as they require hu-
man intelligence. Typical crowdsourcing tasks involve labelling,
ranking, data cleaning, data filtering, data collection, and entity
matching (e.g., see [11, 6, 2, 15, 5, 14]). Websites, e.g., Amazon’s
Mechanical Turk (MTurk) [1] provide an infrastructure for orga-
nizations to submit numerous micro-tasks and collect their results
after they are fulfilled by human workers recruited at those web-
sites. In a typical crowdsourced application, tasks are replicated
and are answered by multiple people to avoid single user errors.
Each person answering a task incurs a (monetary) cost. Thus, a
challenging problem for crowdsourcing is that of optimizing the
number of tasks while maintaining the accuracy of the results.

Consider the following scenario where a crowdsourcing tree-
based index can be useful. Assume that a car repair shop wants
to provide an online service that allows users to submit pictures of
their damaged cars to get an estimate of repair cost of their car. The

∗This work was partially supported by the National Science Foun-
dation under Grants III-1117766 and IIS-0964639.

Copyright © 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

repair shop maintains images of cars previously repaired associated
their actual repair cost. A good repair estimate would be the actual
repair cost of previously repaired car of similar condition. Building
a tree index on images of previously repaired cars sorted based on
their repair cost allows performing crowdsourcing-based similarity
queries on the index. These queries help users to find cars with
similar conditions and hence anticipate the same repair cost to their
own damaged car. The key to the success of this scenario is that
the cost of repair is directly proportional to the condition of the car.
The same idea can be applied when estimating the selling price of a
used car, the cleaning cost of rental rooms, the placement of a new
soccer player in player rankings or the ranking of new scientific
publications, etc.

In this paper, we introduce the palm-tree index; a crowdsourc-
ing tree-based index. We call our proposed crowdsourcing tree-
based index palm-tree index as real palm trees also need humans
in order to move the pollen from one male tree to the other female
trees to produce fruits (dates). The palm-tree index aims at index-
ing keys based on properties that need human intelligence, e.g., to
compare images against each other in order to descend and nav-
igate the index. Crowdsourcing-based tree indexing is useful for
(1) the ordering of a set of keys based on a subjective property,
(2) performing index nested-loops joins, and (3) answering range
queries, among other typical uses of an index. The problem of
crowdsourcing-based indexing is challenging because of the fol-
lowing issues. First, crowd-based comparisons are subjective and
are prone to error. Hence, we need to find strategies that give the
most accurate and consistent results. Second, comparison tasks per-
formed by the crowd incur a (monetary) cost. Hence, optimizing
the number of tasks while preserving accuracy is very important.

The contributions of this paper are summarized as follows:

• We introduce the problem of crowdsourcing tree-based in-
dexing as a technique for ordering a set of items with “sub-
jective” keys.

• We present a taxonomy for crowdsourcing tree-based in-
dexes.

• We introduce the palm-tree index, a crowdsourced index,
along with several accompanying index traversal algorithms.

• We study the quality of the results retrieved using the palm-
tree index.

The rest of this paper is organized as follows. Section 2 intro-
duces the taxonomy for crowdsourcing tree-based indexes. Sec-
tion 3 presents notations used throughout the paper. Section 4
presents the palm-tree index and its search algorithms. Section 5
analyzes the proposed algorithms. Preliminary experimental results

1

are given in Section 6. Related work is presented in Section 7. Sec-
tion 8 contains concluding remarks.

2. PROBLEM TAXONOMY
In this section, we introduce a taxonomy for crowdsourcing tree-

based indexes. This taxonomy can be seen as extension to the
one presented in [8], which addresses only worker motivation, task
replication and task assignment. Our taxonomy adds concepts re-
lated to tree indexing (e.g., tree height) and to crowdsourcing in
general (e.g., worker experience). Figure 1 depicts the taxonomy.

Crowdsourcing

tree-based

indexingTree

height

Task
assignment

Task
submission

Worker

experience

Worker

motivation

· Balanced

· Unbalanced

· User select

· Sever Assign

· Batch

· Sequential

· Hybrid

· Equal

· Variable

· Malicious

· Volunteer

· Rewarded

Cost

bounds

· Unlimited

· limited

Task
replication

· Single

· Replicated

Number of

Dimensions

· One

· Multi

Figure 1: A taxonomy of crowdsourcing tree-based indexing. The
concepts utilized in this paper are shown in boldface.

Tree height It specifies whether the tree is balanced or not. The
proposed palm-tree index is a balanced B+-tree-like struc-
ture to obtain predictive query cost. More detail about query
cost is given in Section 3.

Number of dimensions An index can be either one-dimensional
or multi-dimensional. In this paper we consider one-
dimensional indexing.

Worker motivation In some situations, workers may be willing
to perform tasks for free, e.g., see [8], However, in most in-
stances workers seek rewards for their services. This raises
several issues, e.g., budget estimation and the presence of
low quality work due to workers solving tasks quickly to ob-
tain more money. In this paper we consider rewarded work-
ers.

Worker experience A simple model to describe workers is to as-
sume that all workers have equal experience, e.g., as in [11].
An alternative and viable model is to differentiate workers
based on their level of expertise, e.g., as in [3]. In the palm-
tree index, workers are assumed to have indistinguishable,
i.e., equal, expertise. We plan to extend our analysis to the
general case when workers have variable experience. One
special type of workers is a malicious worker. A malicious
worker aims at degrading output quality by providing inten-
tionally faulty and misleading answers. Coping with mali-
cious workers is not addressed in this paper.

Task assginment There are two cases to consider: (1) The worker
chooses the tasks to work on, or (2) the tasks are automati-
cally assigned to the worker without the workers interference
in the selection. This dimension is particularly important
when workers are of variable expertise. For example, it is
important to avoid assigning difficult tasks to inexperienced
workers. In this paper, we assume Case 2, above.

Task replication In a single task no-replication model, workers
are trusted to deliver high quality answers. In many other
situations, workers’ responses incur error. The Replicated
task model allows aggregating multiple workers’ opinions to
increase the quality of the results. In this paper, we assume
the replicated model.

Task submission model A task submission model describes how
replications of the same task are submitted to workers. One
alternative is to submit all task replicas in a single batch. This
technique can reduce the response time to get the final results
as task replicas are solved by multiple workers concurrently.
Nonetheless, one may end up submitting more tasks than
needed. In order to reduce the cost needed for simple tasks,
the replicas of same task can be submitted sequentially. In
the sequential model, a replica of a task is submitted only
when the outcome of the previous replicas does not produce
results that are of acceptable quality. The sequential tech-
nique increases the task response time as replicas wait for
each other. A hybrid submission model is a middle-ground
between both alternatives. In the hybrid model, small-sized
batches of the same task are submitted sequentially. In this
paper, we only consider the batch task submission model,
i.e., that replica tasks are submitted in parallel to the desig-
nated workers at the same time.

Cost bounds Having unlimited cost per worker is a rare occur-
rence. It may occur when the quality of the result is of major
importance. Typically, cost for tasks are limited and opti-
mizing the overall task error within cost bounds is of major
importance. In this paper, we consider the limited cost case.

3. PRELIMINARIES AND INDEX MODEL

3.1 Problem definition
Let S be a set of N items and q be a query item. The keys of

these items are subjective or imprecise (e.g., the item is the photo
of a damaged car and the key is the cost of repair for this car). We
need to address the following issues:

• Order the items in S according to their keys.

• Construct (build) an index on S.

• Submit query q on S to the crowd.

• Aggregate crowds responses to query q to produce a final
result .

3.2 Index model
The structure of the palm-tree index is composed of two compo-

nents: the index manager and a B+-tree. Figure 2 gives the main
components of the palm-tree index. We distinguish between two
main concepts in the palm-tree; jobs and tasks. A job is the unit
of work submitted by a palm-tree user to perform either a query or
an insertion on the indexed data. A task or HIT (Human Intelligent
Task) is the smallest unit of work assigned to a worker. Typically,
a job involves generating multiple tasks.

3.2.1 The B+-tree Component
The palm-tree index is built on top of a B+-tree index. Each

node in the B+-tree has n ordered keys and represents one task.
[11] observes that human beings are capable of performing n-ary
operations with ease. Therefore, we give to a worker a sorted list
A of n items, e.g., images or videos, along with the query item q,

2

Index Components
Queries

Index manager
Insertions

B+-tree

…….

Data

Files

Figure 2: palm-tree index model.

e.g., a query image or video, and ask the worker to place q in A
based on how q compares to the items in A. For instance, A can be
a list of 5 pictures of cars sorted according to the extent to which
the car is damaged, while q can be the picture of a new damaged
car. The fanout f of the B+-tree (the maximum allowed children
of a node other than the root) naturally captures the maximum n-
ary operations that a human can accomplish with ease. Clearly, a
human being can handle a lot easier a list A with 5 pictures than one
with 20. Determining the optimal f for a given problem requires
an initial phase of training. We discuss this issue in more detail in
Section 5.

Construction (building) of the palm-tree depends on the type of
indexed keys. We have two types of keys: quantitative and quali-
tative keys.

DEFINITION 3.1. A quantitative key is a key to be indexed
that has two proportional properties, namely, a subjective property
and an assessed value. For quantitative keys, the palm-tree index
can be constructed by sorting keys based on the assessed values
then bulkload the index.

DEFINITION 3.2. A qualitative key is a key to be indexed
based on a subjective property only. It does not have any asso-
ciated assessed value. For qualitative keys, a palm-tree index can
be constructed only using successive insertions and human-based
comparisons.

One example of a quantitative key is images of damaged cars as-
sociated with actual repair costs. The degree of car damage is the
subjective property of the key while the repair cost is the quantita-
tive key. An example of a qualitative key is images of butterflies
with an ordering based on beauty as a subjective property. Reg-
ular B+-tree splitting/merging algorithms are used during inser-
tion/deletion into/from the B+-tree. For both types of keys, queries
use human intelligence to make comparisons needed to search the
B+-tree. All comparisons are based on the subjective property only.

3.2.2 Index manager
The palm-tree index manager is responsible for tree construc-

tion and query processing within the palm-tree. It initiates jobs for
users’ requests, generates tasks for every job, assigns tasks to work-
ers, and aggregates workers’ responses. We use majority voting to
aggregate responses of workers.

In the palm-tree index, a task consists of items (e.g., pictures) in
a node in the B+-tree. A worker is asked to choose the best location
for a query item among these items. Figure 3 gives an example task

Table 1: Palm-tree index operations

Operation Quantitative keys Qualitative keys
Query Crowd-search Crowd-search

Insert B+-tree insert Crowd-search then
B+-tree insert

Build Bulk loading or
Successive inserts

Successive inserts

Delete Query then
B+-tree delete

Query then
B+-tree delete

Update Delete then insert Delete then insert

for estimating the repair cost of a car. The image on top represents
the query image, while the images below are the items in a node
in the tree. The worker assess where the query key fits among the
current nodes keys.

k1 k2

Query

item

k3

Less

Expensive

More

Expensive

N
o

d
e

C
o

n
te

n
t

Q
u

e
ry

C
o

n
te

n
t

Figure 3: Sample task for choosing the best branch to estimate the
car repair cost.

4. ALGORITHMS
Table 1 describes how the build, insert, update, delete, and query

operations are performed in the palm-tree index. Regular B+-tree
algorithms (i.e, insert-split) are performed directly and do not in-
volve the crowd. We focus on the crowd-search operation (i.e.,
querying the palm-tree index using the crowd) because the other
operations depend on it.

The original search algorithm for the B+-tree index is not di-
rectly applicable for the crowdsourced palm-tree index. The palm-
tree search algorithm is dependent on the way the palm-tree is
traversed and the way the workers answers are aggregated. We
identify three search strategies for the palm-tree search algorithm.
All three search strategies share the following two steps. The first
step is root task generation that generates tasks at the root level
and is common for all three strategies. The second step is the re-
sponse handler that generates tasks at the lower levels of the tree
and varies according to the three strategies. Algorithm 1 describes
the root task generation step.

Algorithm 1: generate root tasks(Tree tree,Key q)
k← get replications(tree,h)
solved← 0 // zero solved so far
for i = 1 to k do

w← choose worker()
h← tree.height // tasks at the root level
t← create task(tree,h,q,w)
submit task(t,response handler)

end

4.1 Leaf-Only Aggregation Strategy

3

In this technique, a job is replicated to K workers. A worker
performs the index search by descending the tree from the root to
the leaf based solely on this workers own decisions or assessments
to find the best match to the query item. All workers responses and
final results are aggregated only at the leaf level. Algorithm 2 gives
an outline of the leaf-only aggregation strategy.

Algorithm 2: handle leaf only aggregation(Task t)

if t.level 6= 0 then // task at non-leaf level
tree← get subtree(t.response,t.tree)
t← create task(tree,t.level-1,t.q,t.w)
submit task(t,handle leaf only aggregation)

else
solved++
if solved == k then // all workers finished

result =← aggregate all results
return result

end
end

4.2 All-levels Aggregation Strategy
An alternative search strategy is to move down the tree level by

level. The path from the root to the final search position is collec-
tively determined by the crowd as follows. The search is started at
the root where K0 tasks are generated at this level. After all work-
ers complete their tasks at the root level, their answers are aggre-
gated, say by majority voting, and the child node that corresponds
to the item with the highest vote is selected. Let this node be v. We
generate K1 new tasks for v. We aggregate the answers from the
K1 workers and decide which of the children of v to go to next. We
repeat the process until we reach the leaves.

There are two variations of this search technique: uninformed
and informed workers. In the former, a worker is not aware of
the other workers’ decisions. In the latter, a worker is allowed to
view a summary of the other workers’ responses to the current task.
Algorithm 3 provides an outline of this search procedure.

Algorithm 3: handle all levels aggregation(Task t)
solved++
if solved == k then // all workers finished at
this level

result =← aggregate all results
if t.level 6= 0 then // task at non leaf level

k← get replications(tree,t.level-1)
tree← get subtree(result,t.tree)
for i = 1 to k do

w← choose worker()
t← create task(tree,t.level-1,t.q,w)
submit task(t,handle all levels aggregation)

end
else

return result
end

end

4.3 All-levels Aggregation Strategy with
Backtracking

The two search procedures above, namely the leaf-only and all-
levels aggregation strategies, cannot compensate for an error. Back-
tracking is one way to correct potentially wrong decisions of the

workers. A priority queue of pointers to the unexplored nodes in
the index. Unexplored nodes are ordered in the priority queue ac-
cording to their height (or level) in the tree. Nodes at the same
level in the B+-tree index are ordered by the percentage of votes
given to these nodes. To detect bad decisions, workers are shown
progressively the leaf node bounds of the current sub-tree at hand.
If the workers indicate that the position of the query key falls out-
side the range of the keys in leaf nodes, then the current sub-tree is
abandoned and another node is picked from the top of the priority
queue to resume the search.

Figure 4 gives an example of the backtracking search strategy. In
Figure 4(a), a palm-tree of fanout 2 is used to index keys 1 through
8. Figure 4(b) illustrates the steps of traversing the tree. The search
starts at the root node A. Node B is at the top of the priority queue
withas 60% of the workers indicate this node. The priority queue
keeps track of other alternatives besides B. In next step we show the
range (i.e., the min and max) of the keys in the sub-tree rooted at B,
that is from 1 to 4. Assume that the workers indicate that the query
key is larger than 4; then we have an error. Hence, we backtrack
to node C. We insert in the queue node D. Algorithm 4 outlines the
search steps.

Algorithm 4: handle backtrack all levels aggregation(Task
t)

solved++
if solved == k then // all workers finished at
this level

result =← aggregate all results
if result outside range of current subtree then

tree← pop queue()
else

tree← get subtree(result,t.tree)
end
push queue(other voting alternatives)
if t.level 6= 0 then // task at non-leaf level

k← get replications(tree,t.level-1)
for i = 1 to k do

w← choose worker()
t← create task(tree,t.level-1,t.q,w)
submit task(t,handle backtrack all levels aggregation)

end
else

return result
end

end

5. ANALYSIS
In this section, we study how to set the parameters of the palm-

tree index: tree order and cost distribution. We also introduce
the main performance metrics of the palm-tree index, mainly, error
and cost.

5.1 Performance metrics
The location of a key is the rank of the key in the ordered list

of keys at the leaf level of the tree. Let q be a query key with a
ground truth location, say loctruth, at the leaf level, and locret be
the retrieved location using one of the search strategies.

DEFINITION 5.1. Error E is the distance between ground
truth location and retrieved location of the query key
E= | loctruth − locret |

4

P5

P7P3

P2 P4 P6 P8

1 432 5 876

A

B C P5step 1

60% 40%

P3step 2 P1 P4

30% 70%

P7step 3 P5 P8

Priority queue

D

{}

{<C,60%>}

{<D,30%>}

(a) (b)

Figure 4: Backtracking all-levels aggregation strategy.

DEFINITION 5.2. Cost C is the total number of tasks to com-
plete a job.

5.2 Tree order and height
The order (fanout) of a regular B+-tree index is usually con-

strained by the size of the disk page. In contrast, in the palm-tree
index, the order of the B+-tree depends on the ability of workers
to process at once (in a single task) a specific number of keys (see
Section 3).

Notice that increasing the order of the tree increases a worker’s
probability of making a wrong decision at a given node. However,
from a different point of view, in order to get a correct final result,
correct decisions must be made at all levels of the tree. Increasing
the tree order reduces number of levels required to be correct and
hence reduces the final probability of error.

5.3 Cost selection
We adopt majority voting to aggregate workers decisions. There-

fore, increasing the number of replicated tasks increases the quality
of the aggregated decisions. However, there is almost a satura-
tion point beyond which, increasing the number of replicated tasks
would be of little, if any, benefit.

5.4 Cost distribution
Assume that there is a cost bound, say C, to search the index. An

important issue is how this cost is distributed among tasks in terms
of the number of replicas per tree level as tasks are assigned to
workers. In the leaf-only aggregation strategy, every worker has to
perform exactly h tasks from the root level to the leaf level. Hence,
we can only have k = bC

h
c workers at most.

In the all-levels aggregation strategy, we propose two techniques
to distribute tasks among level, namely even and probabilistic dis-
tribution. In the even distribution technique, every level in the
palm-tree index is assigned bC

h
c tasks. Even cost distribution as-

sumes equal importance of all the levels of the palm-tree index.
However, tree levels are of different importance e.g., when a wrong
decision is made at the higher levels (closer to the root level) of
the palm-tree index, it would result in a higher final error. This is
not the case when wrong decisions are made at the lower levels of
the palm-tree index. On the other hand, wrong decisions are more
likely to occur at the lower levels than at the higher levels. The
reason is that spacing in-between the keys within a node decreases
as we descend the tree.

To accommodate for the effect of nodes level on error severity
is to replicate tasks in a way that is proportional to the expected
distance error per level.

DEFINITION 5.3. Probability of distance d error at level l
(Pdl) is the probability of deviating d branches from the ground
truth branch at level l.

We estimate the final error that would result from a distance d
error at level l to be d × f l−1. For example, a distance 1 error at
level 1 (i.e., the leaf level) deviates the final result from the correct
one by distance 1. A distance 1 error at level h (i.e., the root level)
deviates final result about the number of leaf keys in a child subtree
of the root node, that is fh−1. We calculate the expected distance
error at level l (EEl) to be

∑
d

d× Pdl × f l−1.

Techniques for cost distribution for level-by-level voting with
backtracking is left for future investigation.

6. EXPERIMENTAL EVALUATION
In order to test the palm-tree index and its search strategies, we

implement a web site to submit tasks to workers. This helps in fur-
ther studying the problem under controlled settings. Two datasets
are used in the experiments; the first dataset is a set of 200 square
images of different sizes. The second dataset is a set of 1300 used
cars images with desired selling prices. A custom-built web crawler
is used to collect the dataset of cars from a website of used car ads.

 0

 1

 2

 3

 4

 5

 6

 7

2 3 4

M
ea

n
Er

ro
r

Tree Fanout

all-levels_3
all-levels_5
leaf-only_3
leaf-only_5

(a) Squares dataset

 0

 100

 200

 300

 400

 500

2 3 4

M
ea

n
Er

ro
r

Tree Fanout

all-levels_3
all-levels_5
leaf-only_3
leaf-only_5

(b) Cars dataset

Figure 5: Mean error while changing tree fanout.

Figures 5 and 6 give the experimental results of the mean er-
ror rate and mean cost for the uninformed all-levels aggregation
and leaf-only aggregation search strategies. The parameters of the
palm-tree index are set as follows. The fanout ranges from 2 to 4
and task replication is set to 3 and 5.

Figure 5 gives the mean error rates for the two search algorithms
when applied to the cars and squares datasets. The error rate for
either algorithm is much higher on the squares dataset than on the

5

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 3 4

M
ea

n
Co

st
 (

N
um

be
r

of
 T

as
ks

)

Tree Fanout

all-levels_3
all-levels_5
leaf-only_3
leaf-only_5

(a) Squares dataset

 0

 20

 40

 60

 80

 100

 120

 140

 160

2 3 4

M
ea

n
Co

st
 (

N
um

be
r

of
 T

as
ks

)

Tree Fanout

all-levels_3
all-levels_5
leaf-only_3
leaf-only_5

(b) Cars dataset

Figure 6: Mean cost while changing tree fanout.

cars dataset. The reason is that it is easier for ordinary users to
compare images of squares based on their sizes than it is to com-
pare cars based on their prices. It is also clear that all-levels aggre-
gation outperforms leaf-only aggregation in both datasets. The rea-
son is that in the leaf-only aggregation strategy, if a worker makes a
wrong decision at a higher level of the tree, this error affects more
significantly his/her answer in the lower levels of the tree.

In the all-levels aggregation, if a worker makes a wrong deci-
sion, then other workers can usually compensate for it (We use the
majority principle). It is also evident from Figure 5 that increasing
the number of workers reduces the error rate.

Figure 6 gives the mean cost needed to perform a query on the
palm-tree. The cost for search algorithms is higher on the squares
dataset than on the cars dataset. The reason is that the size (and
accordingly tree height) of the cars dataset is larger than the that of
the squares dataset. It is evident that increasing the number of repli-
cations increases the cost needed. It is also evident that increasing
the tree fanout generally reduces the cost as the height of the tree
decreases. One technique used to reduce the cost is to allow work-
ers to stop at not leaf levels if they agree that a key at a non-leaf
node matches the search key.

We are in the process of implementing more extensive exper-
iments that will include larger crowds and other search strate-
gies (i.e., informed all-levels aggregation and all-levels aggregation
with backtracking). We plan to study the effect of cost distribution
alternatives (even and expected distance errors). We also plan to
study the quality of sorts and joins using the palm-tree index.

7. RELATED WORK
Lately, there has been an increasing interest in crowdsourcing.

Several crowd-powered database systems, e.g., [6, 15, 12, 11] have
been proposed to use human intelegance to perform database oper-
ations. These operations mainly focus on sorts and joins, e.g., [11],
counting, e.g., [10], and max-finding, e.g., [7, 16]. Other works
focus on algorithms to answer top-K, e.g., [4], skyline queries,
e.g., [9], and spatial queries, e.g., [8].

The problem of optimizing the number of questions needed to
find a set of target nodes within a general directed acyclic graph
(DAG) using yes/no questions is studied in [13]. However, the B+

tree within the palm-tree index posseses more specific properties
than a general DAG (i.e., balanced height, and multiple ordered
keys within nodes) that requires more specific strategies for tree
search and task aggregation methods (Section 4) than in the case
when yes/no questions are used.To our knowledge, this is the first
work to address the problem of indexing with the crowd.

8. CONCLUSION
In this paper, we study the problem of crowdsourcing-based in-

dexing. We motivate the problem with several application sce-
narios. We propose a taxonomy of the problem and highlight its
main challenges. We propose techniques for index construction
and querying. We intend to complete this study with an extensive
analysis and experimental evaluation.

Our current work focuses on one-dimensional indexing. We plan
to study other variations of crowdsourced indexing, such as mul-
tidimensional indexing, spatial and spatio-temporal indexing and
fuzzy indexing.

9. REFERENCES
[1] The Amazon Mturk website.

https://www.mturk.com, 2013.
[2] A. Bozzon, M. Brambilla, and S. Ceri. Answering search

queries with CrowdSearcher. In WWW, pages 1009–1018,
2012.

[3] A. Bozzon, M. Brambilla, S. Ceri, M. Silvestri, and G. Vesci.
Choosing the right crowd: expert finding in social networks.
In EDBT, pages 637–648, 2013.

[4] S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the
crowd for top-k and group-by queries. In ICDT.

[5] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux.
ZenCrowd: leveraging probabilistic reasoning and
crowdsourcing techniques for large-scale entity linking. In
WWW, pages 469–478, 2012.

[6] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. CrowdDB: answering queries with crowdsourcing. In
SIGMOD, pages 61–72, 2011.

[7] S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So who
won?: dynamic max discovery with the crowd. In SIGMOD,
pages 385–396, 2012.

[8] L. Kazemi and C. Shahabi. Geocrowd: enabling query
answering with spatial crowdsourcing. In Proceedings of the
20th International Conference on Advances in Geographic
Information Systems, pages 189–198. ACM, 2012.

[9] C. Lofi, K. El Maarry, and W.-T. Balke. Skyline queries in
crowd-enabled databases. In EDBT, pages 465–476, 2013.

[10] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh.
Counting with the crowd. In PVLDB, pages 109–120, 2013.

[11] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller.
Human-powered sorts and joins. VLDB Endow., 5:13–24,
2011.

[12] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C.
Miller. Crowdsourced databases: Query processing with
people. CIDR, 2011.

[13] A. Parameswaran, A. D. Sarma, H. Garcia-Molina,
N. Polyzotis, and J. Widom. Human-assisted graph search:
it’s okay to ask questions. VLDB Endow., 4:267–278, 2011.

[14] A. G. Parameswaran, H. Garcia-Molina, H. Park,
N. Polyzotis, A. Ramesh, and J. Widom. Crowdscreen:
algorithms for filtering data with humans. In SIGMOD,
pages 361–372, 2012.

[15] H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina,
N. Polyzotis, and J. Widom. Deco: A system for declarative
crowdsourcing. PVLDB, 5, 2012.

[16] P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis.
Max algorithms in crowdsourcing environments. In
Proceedings of the 21st international conference on World
Wide Web, WWW ’12, pages 989–998, 2012.

6

