
Distrib Parallel Databases (2011) 29: 217–238
DOI 10.1007/s10619-010-7070-7

Irregularity in high-dimensional space-filling curves

Mohamed F. Mokbel · Walid G. Aref

Published online: 17 November 2010
© Springer Science+Business Media, LLC 2010

Abstract A space-filling curve is a way of mapping the discrete multi-dimensional
space into the one-dimensional space. It acts like a thread that passes through every
cell element (or pixel) in the discrete multi-dimensional space so that every cell is
visited exactly once. Thus, a space-filling curve imposes a linear order of the cells in
the multi-dimensional space. There are numerous kinds of space-filling curves. The
difference between such curves is in their way of mapping to the one-dimensional
space. Selecting the appropriate curve for any application requires knowledge of the
mapping scheme provided by each space-filling curve. Irregularity is proposed as a
quantitative measure for the ordering quality imposed by space-filling curve mapping.
The lower the irregularity the better the space-filling curve in preserving the order
of the discrete multi-dimensional space. Five space-filling curves (the Sweep, Scan,
Peano, Gray, and Hilbert) are analyzed with respect to irregularity. Closed formulas
are developed to compute the irregularity in any dimension k for a D-dimensional
space-filling curve with grid size N . A comparative study of different space-filling
curves with respect to the irregularity is conducted and results are presented and dis-
cussed. We find out that for an application that is biased toward one of the dimensions,
the Sweep or the Scan space-filling curves are the best choice. For high-dimensional
applications, the Peano space-filling curve would be the best choice. For applications
that require fairness among various dimensions, the Hilbert and Gray space-filling
curves are the best choice.
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1 Introduction

Mapping from the multi-dimensional space into the one-dimensional domain pro-
vides a pre-processing step for multi-dimensional applications. Examples of these
applications include Multimedia databases, geographic information systems (GIS),
QoS routing, and image processing. The main idea is to keep the existing algorithms
and data structures independent of the data dimensionality. The objective of the map-
ping is to represent a point from the multi-dimensional space by a single integer value
that reflects the various dimensions of the original space.

Space-filling curves (SFCs) have been extensively used as a mapping scheme
from the discrete multi-dimensional space into the one-dimensional space (e.g., see
[6, 9, 11, 15, 18, 24, 28, 30, 36, 44]). A space-filling curve is a thread that goes
through all the points in the discrete space while visiting each point only one time.
Thus, a space-filling curve imposes a linear order of points in the discrete multi-
dimensional space. There are two different objectives of the mapping imposed by
space filling curves, namely, locality-preserving mapping and order-preserving map-
ping. In locality-preserving mapping, if two points are near to each other in the multi-
dimensional space, then they will be near to each other in the one-dimensional space.
On the other side, in the order-preserving mapping, if two points are in a certain order
in the multi-dimensional space with respect to a certain dimension, then they will be
mapped in the same order in the one-dimensional space. The choice of a space-filling
curve is mainly based on the underlying application. For example, locality-preserving
mappings are more suitable for clustered-based applications (e.g., range queries,
nearest-neighbor queries, declustering, and clustering). Order-preserving mappings
are more suitable for sorting-based application (e.g., scheduling, indexing, and sort-
ing).

In particular, declustering is an important issue in distributed and parallel data-
bases. Good declustering can significantly improve the performance of database
search queries when relations are distributed over several nodes, disks, or multi-
processors. Faloutsos and Bhagwat [16] have proposed to use the Hilbert space-filling
curve to impose a linear order on a file of M units. Then, the units are traversed in
their assigned order where each unit is assigned to a disk in a round-robin fashion.

In this paper, we go through three main steps:

1. We introduce the notion of irregularity as a quantitative measure of goodness for
the order imposed by space-filling curves.

2. We analyze the behavior of five commonly used space-filling curves, namely, the
Sweep, Scan, Peano, Gray, and Hilbert SFCs in the multi-dimensional space.
These curves are given in Figs. 1 and 2 for the two-dimensional and three-
dimensional spaces, respectively.

3. We develop closed formulas to compute the irregularity vector VI = (I0, I1, . . . ,

ID−1), where Ik is the number of irregularities in dimension k, 0 ≤ k ≤ D − 1,
and total irregularity IT (N,D) = ∑D−1

k=0 Ik for each space-filling curve with grid
size N .
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Fig. 1 Two-dimensional space-filling curves

Fig. 2 Three-dimensional space-filling curves

The rest of this paper is organized as follows. Section 2 surveys related work.
Section 3 introduces irregularity as a quantitative measure of goodness for the order
imposed by space-filling curves. Section 4 analyzes the Sweep, Scan, Peano, Gray,
and Hilbert SFCs, and develops closed formulas to compute the irregularity vector of
each space-filling curve. Section 5 conducts a comprehensive comparison among dif-
ferent space-filling curves with respect to the irregularity. Finally, Sect. 6 concludes
the paper.

2 Related work

Although space-filling curves were discovered in the nineteenth century
[23, 38, 43], their use in computer science applications is not discovered until re-
cently. The use of space-filling curves is motivated by the emergence of multi-
dimensional applications. Space-filling curves are used for multi-dimensional spa-
tial join [40]. Multi-dimensional data is transformed into the one-dimensional do-
main using the Z-order [41]. The transformed data is stored in a one-dimensional
data structure, the B+-Tree [14], and a one-dimensional spatial join algorithm [40]
is applied. Multi-dimensional range queries utilize the clustering properties of the
Gray [15] and Hilbert [24] SFCs to minimize the number of retrieved disk pages for
the query answer. Space-filling curves are used as a spatial access method where the
multi-dimensional data is stored in one-dimensional media (disk) using the Hilbert
SFC [17, 18]. R-tree packing [27, 28] use the Hilbert SFC where a set of rectangles
are sorted according to the Hilbert order, and then are packed into the R-Tree nodes.

The Z-order [41] is used as a spatial access method to enhance the perfor-
mance of spatial join [11]. Spatial objects located in a disk are ordered according
to their Z-order value to minimize the number of times a given page is retrieved
from the disk. Similar use of space-filling curves is presented in the context of the
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Hilbert SFC [44]. Other uses of space-filling curves include nearest-neighbor queries
[30, 45], multi-dimensional indexing [29], indexing moving objects [12, 25], location
privacy [20, 26], disk scheduling [5, 36], declustering [16], image processing [48, 50],
memory management [46], the travelling salesman problem [7], bandwidth reduction
for sampling signals [8], and graphics display generation [42].

Due to its wide applicability, numerous algorithms are developed for efficiently
generating various space-filling curves. Recursive algorithms are proposed for gener-
ating the Hilbert SFC [10, 13, 21, 51] and the Peano SFC [13, 51]. Table-driven algo-
rithm are proposed for the Peano and Hilbert SFCs [21]. The properties of different
space-filling curves are studied extensively in the literature, e.g., see [1, 3, 4, 31, 33,
35, 37]. The clustering properties of the Hilbert SFC is analyzed by deriving closed
formulas for the number of clusters in a given query region [37]. General functions
that analyze the behavior of any space-filling curve in the multi-dimensional space is
recently introduced [33, 35]. However, these functions and analysis are applied for
medium dimensionality and do not reflect the quality of the sorting order imposed by
an SFC.

The Spectral mapping is presented [34] as an alternative to fractal space-filling
curves for locality-preserving mappings. The optimality of the spectral mapping is
proved [32] in the sense it aims to minimize the one-dimensional distance between
any two neighbor points in the multi-dimensional space. However, spectral mapping
is not order-preserving where there is no guarantee that any two points in the multi-
dimensional space would keep their order in the one-dimensional space.

3 Irregularity in space-filling curves

An optimal order-preserving space-filling curve is one that sorts multi-dimensional
points in ascending order for all dimensions. However, in reality, when a space-filling
curve attempts to sort the points in ascending order according to one dimension, it
fails to do the same for the other dimensions. A good space-filling curve for one di-
mension is not necessarily good for the other dimensions. In order to measure the
mapping quality of a space-filling curve, we introduce the concept of irregularity as
a measure of goodness for the order imposed by a space-filling curve. Irregularity
introduces a quantitative measure that indicates the non-avoidable reverse order im-
posed by space-filling curves for some or all dimensions. Irregularity is measured for
each dimension separately, and gives an indicator of how a space-filling curve is far
from the optimal. The lower the irregularity, the better the space-filling curve. Table 1
summarizes the used symbols in this paper.

Definition 1 For any two points, say Pi and Pj , in the D-dimensional space with
coordinates (Pi .u0,Pi .u1, . . . ,Pi .uD−1), (Pj .u0,Pj .u1, . . . ,Pj .uD−1), respectively,
and for a given space-filling curve S, if S visits Pi before Pj , we say that an irregu-
larity occurs between Pi and Pj in dimension k iff Pj .uk < Pi.uk .

Figure 3 demonstrates all possible scenarios that can lead to an irregularity in
the two-dimensional space, where the arrows in the curves indicate the order im-
posed by the underlying space-filling curve, i.e., point Pi is visited before point Pj .
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Table 1 Symbols

Symbol Description

D Number of dimensions

N Grid size; number of points in each dimensions

I (k,N,D) Number of irregularities for dimension k in a D-dimensional with grid size N

IT (N,D) Total number of irregularities in all the D dimensions with grid size N

VI Irregularity vector

Fig. 3 Irregularity in two-dimensional space

In Fig. 3a Pi.ux < Pj .ux and Pi.uy < Pj .uy , thus there is no irregularity in any of
the dimensions. In Fig. 3b, Pi.ux > Pj .ux which leads to only one irregularity in di-
mension x. Similarly, there is only one irregularity in dimension y in Fig. 3c where
Pi.uy > Pj .uy . The worst-case scenario occurs in Fig. 3d where there are two irreg-
ularities in both dimensions.

Definition 2 For a given D-dimensional space-filling curve with grid size N , the

number of irregularities for any dimension k is: I (k,N,D) = ∑ND

j=1
∑j−1

i=1 fij , where
fij = 1 if Pi.uk > Pj .uk , and fij = 0, otherwise.

An optimal space-filling curve for any dimension k would have no irregularity,
i.e., Ioptimal(k,N,D) = 0. In contrast, the worst-case scenario for any dimension k

is to sort all points in reverse order. The following lemma computes the number of
irregularities in a worst-case scenario of any D-dimensional space-filling curve.

Lemma 1 The worst-case scenario in dimension k of any D-dimensional space-
filling curve with grid size N would have Iworst(k,N,D) = 1

2N2D−1(N − 1) irregu-
larities.

Proof The worst-case scenario for a dimension k takes place when all multi-
dimensional points are projected on k and scanned in a reverse order. So, for any
two values i, j where 0 ≤ j < i ≤ k − 1, j would result in ND−1ND−1 irregulari-
ties with i. Recall that there are ND−1 points of each value along the grid (a total of
ND points in the space). Since there is i − 1 values less than i, then i would have
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N2D−2i irregularity. Thus, the worst case irregularity would be Iworst(k,N,D) =∑N−1
i=0 N2D−2i. This can be simplified to: Iworst(k,N,D) = 1

2N2D−1(N − 1). �

4 Case studies

In this section, we derive closed formulas that compute the irregularity for any dimen-
sion k in a D-dimensional space with grid size N . We focus on five commonly used
space-filling curves: the Sweep, Scan, Peano, Gray, and Hilbert SFCs. For each space-
filling curve, we derive two formulas; the first formula gives the number of irregulari-
ties Ik in each dimension k. Hence, the irregularity vector VI = (I0, I1, . . . , ID−1) can
be computed. The second formula gives the total number of irregularities IT (N,D)

over all dimensions.

4.1 Case study I: the Sweep SFC

Figures 1a and 2a give the Sweep SFC in the two- and three-dimensional spaces
with grid sizes eight and four, respectively. Applications of the Sweep SFC include
storing multi-dimensional arrays in memory and scheduling disk requests. A point
in the D-dimensional Sweep SFC with grid size N can be represented by a D-digit
number in a base-N system. The leftmost digit represents the last dimension (k =
D − 1), while the rightmost digit represents the first dimension (k = 0). Then, multi-
dimensional points are visited in the order imposed by the base-N system. Thus, the
first dimension is always keep changing from 0 to N − 1. We define the round of any
dimension in the Sweep SFC as the set of consecutive points that start with value 0
and end with value N − 1. The last dimension has only one round with ND points
while the first dimension has ND−1 rounds with N points in each round.

Lemma 2 The irregularity vector VI for the D-dimensional Sweep SFC with grid

size N is VI = (I0, I1, . . . , ID−1) where: Ik = ND+k

4 (ND−k−1 − 1)(N − 1).

Proof Considering the first dimension (k = 0), a point with value i in the j th (j > 0)

round would have (j − 1)(N − i − 1) irregularity. The term (N − i − 1) corresponds
to the number of points in each round that have a value larger than i while the term
(j − 1) represents the number of previous rounds. Given that the first dimension

has ND−1 rounds, then I (0,N,D) = ∑ND−1

j=1
∑N−1

i=0 (j − 1)(N − i − 1). This can

be simplified to: I (0,N,D) = ND

4 (ND−1 − 1)(N − 1).
For higher dimensions (k > 0), the kth dimension in a D-dimensional space can

be derived from the (k − 1)th dimension in the (D − 1)-dimensional space using
the recursive relation: I (k,N,D) = N2I (k − 1,N,D − 1). Solving this recursive

relation, we get: Ik = ND+k

4 (ND−k−1 − 1)(N − 1). �

Lemma 3 In a D-dimensional space with grid size N , the total number of irreg-

ularities over all dimensions for the Sweep SFC is: IT (N,D) = N2D

4 (D − 1) −
ND

4 (DND−1 − 1).
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Proof Using Lemma 2, we have IT (N,D) = ∑D−1
k=0 Ik . �

4.2 Case study II: the Scan SFC

The Scan SFC (Figs. 1b and 2b) is a slight variation of the original Sweep SFC. Sim-
ilar to the Sweep SFC, the first dimension in the Scan SFC has ND−1 rounds, each
with N points. In contrast to the Sweep SFC, the Scan SFC distinguishes between
even- and odd-numbered rounds. Rounds are numbered from 0 to ND−1 − 1. Even-
numbered rounds are the same as those of the Sweep SFC where points are visited in
the order 0 to N − 1. However, the odd-numbered rounds are visited in the reverse
order from N − 1 to 0.

Lemma 4 The irregularity vector VI for the D-dimensional Scan SFC with grid size

N is VI = (I0, I1, . . . , ID−1) where: Ik = N2D−1

4 (N −1) for k < D−1, and ID−1 = 0.

Proof Since the Scan SFC has the same concept of round as that of the Sweep SFC,
the irregularity in the Sweep SFC is inherited into the Scan SFC. In addition, odd-
numbered rounds in the Scan SFC results in an additional irregularity Iodd(k,N,D)

due to their reversed behavior. Using the result of Lemma 2, the irregularity in the

first dimension k = 0 for the Scan SFC is: I (0,N,D) = ND

4 (ND−1 − 1)(N − 1) +
Iodd(0,N,D).

A point with value i in an odd round has (N − i − 1) irregularity within the round.
Thus, the number of irregularities inside each odd round is

∑N−1
i=0 (N − i − 1) =

N(N−1)
2 . Given that half of the rounds are odd-numbered, then Iodd(0,N,D) =

ND(N−1)
4 . Therefore: I (0,N,D) = N2D−1

4 (N − 1). Similar to the Sweep SFC, the
last dimension in the Scan SFC has no irregularity: I (D − 1,N,D) = 0. Other
dimensions follow the recursive relation: I (k,N,D) = N2I (k − 1,N,D − 1) for
k < D − 1. Solving this recurrence relation: Ik = N2D−1

4 (N − 1) for k < D − 1, and
ID−1 = 0. �

Lemma 5 In a D-dimensional space with grid size N , the total number of irregular-

ities over all dimensions for the Scan SFC is: IT (k,N,D) = N2D−1

4 (N − 1)(D − 1).

Proof Using Lemma 4, we have IT (N,D) = ∑D−1
k=0 Ik . �

4.3 Case study III: the Peano SFC

The Peano SFC (Figs. 1c and 2c) is introduced by Peano [43] and is also termed
Morton encoding [39], quad code [19], bit-interleaving [47], N-order [49], locational
code [2], or Z-order [41]. The Peano SFC is constructed recursively as in Fig. 4. The
basic shape (Fig. 4a) contains four points in the four quadrants of the space. Each
quadrant is represented by two binary digits. The most significant digit is represented
by its x position while the least significant digit is represented by its y position. The
Peano SFC orders space quadrants in ascending order (00, 01, 10, 11). Figure 4b
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Fig. 4 The Peano SFC

Table 2 An example of two- and three-dimensional Peano orders with grid size 8 in each dimension

Point Dimensions Bit- Decimal Point Dimensions Bit- Decimal

0 1 interleaving Order 0 1 2 interleaving Order

(2, 1) 010 001 001001 9 (0, 1, 3) 000 001 011 000001011 11

(5, 3) 101 011 100111 39 (2, 1, 4) 010 001 100 001100010 98

(7, 0) 111 000 101010 42 (7, 0, 7) 111 000 111 101101101 365

contains four blocks of Fig. 4a at a finer resolution and is visited in the same order as
in Fig. 4a. Similarly, Fig. 4c contains four blocks of Fig. 4b at a finer resolution.

Figure 4d represents the bit interleaving in the two-dimensional Peano SFC.
Each point is represented by a binary number that results from interleaving bits
of the two dimensions. The bits are interleaved according to an interleaving vec-
tor Tv = (0,1,0,1). Tv indicates that the first and third bits are taken from dimen-
sion 0 (x) while the second and fourth bits are taken from dimension 1 (y). For a
D-dimensional space with four points in each dimension (i.e., N = 4), the interleav-
ing vector is Tv = (0,1,2, . . . ,D − 1,0,1,2, . . . ,D − 1). For a grid size of N points
in each dimension, the term 0,1,2, . . . ,D − 1 is repeated LogN times. The points
are visited in ascending order according to their binary number representation. Ta-
ble 2 gives an example of computing the Peano order for two- and three-dimensional
points with a grid size of eight points in each dimension.

Lemma 6 The irregularity vector VI for the D-dimensional Peano SFC with

grid size N is VI = (I0, I1, . . . , ID−1) where: Ik = ND(ND−1)(2D−2D−k−1−1)

4(2D−1)
−

ND(ND−1−1)
4 .

Proof Considering the two-dimensional Peano SFC in Fig. 4, the four blocks are
visited in the linear order LP = (00,01,10,11). We define a vector vk for dimension
k as the projection of LP on k. So, v0 = (0,0,1,1) and v1 = (0,1,0,1). Then, we
can distinguish the following three sources of irregularities (Fig. 5):

1. IP 1(k,N,D): The irregularity of the Peano SFC in the D-dimensional space
within each subblock of grid size N/2 (I1 in Fig. 5).

2. IP 2(k,N,D): For each vk , the blocks with value zero/one affect other blocks with
the same value (I2 in Fig. 5).
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Fig. 5 Block irregularity for x,
y dimensions in the
two-dimensional Peano SFC

3. IP 3(k,N,D): For each vk , the blocks with value one affects blocks with value
zero. In Fig. 5a, I3 does not appear in dimension x since vx = (0,0,1,1). For
dimension y, vy = (0,1,0,1), there is a block with value one that affects a block
with value zero (I3 in Fig. 5b).

The total irregularity IP (k,N,D) is the sum of the previous three irregularities:
IP (k,N,D) = IP 1(k,N,D) + IP 2(k,N,D) + IP 3(k,N,D).

IP 1(k,N,D): For a D-dimensional space with grid size N , there are 2D blocks
with grid size N/2. Therefore, IP 1(k,N,D) = 2DIP (k,N/2,D).

IP 2(k,N,D): In a D-dimensional space with grid size N , each block contains
(N/2)D points distributed evenly over N/2 values, i.e., there are (N/2)D−1 points
for each value. Consider any two blocks b1 and b2 with the same value (0/1)
in any vk , and b1 is visited before b2. A point with value i in b2 would have
(N/2)D−1 ∗ (N/2)D−1 ∗ (N/2 − i − 1) irregularities. The first (N/2)D−1 represents
the number of points with value i in b2. The second (N/2)D−1 represents the number
of points with value j in b1, where i < j . The term (N/2 − i) represents the j values
where i < j . Summing over all the values, the irregularity between any two blocks
is:

∑N/2−1
i=0 (N/2)D−1 ∗ (N/2)D−1 ∗ (N/2 − i − 1). Since each dimension contains

2D blocks half of them with value one, and the other half with value zero, there-
fore, we have 2D−1 blocks with value zero. The j th visited block with value zero
is affected by the next 2D−1 − j − 1 blocks. There is an equal number of blocks
with value one as with value zero, so the total irregularity is multiplied by two. Thus,

IP 2(k,N,D) = 2(N
2 )D−1(N

2 )D−1 ∑N/2−1
i=0 (N/2 − i − 1)

∑2D−1−1
j=0 (2D−1 − j − 1).

This can be simplified to: IP 2(k,N,D) = 2D−2(N
2 )2D−1(N

2 − 1)(2D−1 − 1).
IP 3(k,N,D): The last part of the irregularity is the effect of visiting blocks with

value one in vk before blocks with value zero in vk . As a result, all points in the
zero block will have irregularity with all points in the one block. So, the irregularity
between any two such blocks is (N/2)D ∗ (N/2)D . Any vector vk has a base se-
quence sk that is the maximum sequence of consecutive zero blocks followed by
consecutive one blocks. vk is constructed by concatenating several copies of sk .
For example, in the three-dimensional Peano SFC, the third dimension (k = 2) has
s2 = (01), v2 is constructed by four copies of s2, i.e., v2 = (01010101). Similarly,
s1 = (0011) and s0 = (00001111). In the D-dimensional space, for any dimension
k, sk contains 2D−k−1 zeros followed by 2D−k−1 ones, vk is constructed by hav-
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Fig. 6 The Gray SFC

ing 2k copies of sk . The ith copy of sk results in (N/2)D ∗ (N/2)D ∗ 2D−k−1 ∗
2D−k−1 ∗(2k − i−1) irregularities. Therefore, IP 3(k,N,D) = (N

2 )D(N
2 )D(2D−k−1 ∗

2D−k−1)
∑2k−1

i=0 2k − i − 1. That can be simplified to: IP 3(k,N,D) = 2k−1
2k+3 N2D .

By combining the equations for IP 1, IP 2, and IP 3 we obtain the following recur-
rence relation: IP (k,N,D) = 2DIP (k, N

2 ,D)+ 2D−2(N
2 )2D−1(N

2 − 1)(2D−1 − 1)+
2k−1
2k+3 N2D , IP (k,1,D) = 0, where there is no irregularity when N = 1. Solving

this recurrence relation results in: Ik = ND

4(2D−1)
((ND − 1)(2D − 2D−k−1 − 1) −

(ND−1 − 1)(2D − 1)). �

Lemma 7 In a D-dimensional space with grid size N , the total number of irregular-

ities over all dimensions for the Peano SFC is: IT (N,D) = ND

4 (DND−1(N − 1) −
ND + 1).

Proof Using Lemma 6, we have IT (N,D) = ∑D−1
k=0 Ik . �

4.4 Case study IV: the Gray SFC

The Gray SFC (Figs. 1d and 2d) uses the Gray code representation [22] in contrast
to the binary code representation as in the Peano SFC. Figure 6 gives the recursive
construction of the Gray SFC. The basic shape (Fig. 6a) contains four points in the
four quadrants of the space. The Gray SFC visits the space quadrants in ascending
order according to the Gray code (00, 01, 11, 10). Figure 6b is constructed by having
the first and fourth blocks as those of Fig. 6a, while the second and the third blocks
are the rotation of the blocks in Fig. 6a by 1800. Similarly, Fig. 6c is constructed from
two blocks of Fig. 6b at a finer resolution and two blocks of the rotation of Fig. 6b by
180°.

Figure 6d represents the bit interleaving in the two-dimensional Gray SFC. Table 3
gives an example of computing the Gray order for two- and three-dimensional points
with grid size eight (i.e., eight points) in each dimension.

Lemma 8 The irregularity vector VI for the D-dimensional Gray SFC with grid size

N is VI = (I0, I1, . . . , ID−1) where: I0 = N2D−1

4 (N
2 − 1), and Ik = N2D−1

4 (N − 1) for
k > 0.
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Table 3 An example of two- and three-dimensional Gray orders with grid size 8 in each dimension

Point Dimensions Bit- Decimal Point Dimensions Bit- Decimal

0 1 interleaving Order 0 1 2 interleaving Order

(2, 1) 011 001 001011 13 (0, 1, 3) 000 001 010 000001010 12

(5, 3) 111 010 101110 52 (2, 1, 4) 011 001 110 001101110 75

(7, 0) 100 000 100000 63 (7, 0, 7) 100 000 100 100000100 384

Proof Considering the two-dimensional Gray SFC in Fig. 6, the four blocks are
visited in the linear order LG = (00,01,11,10). We define a vector vk for dimen-
sion k as the projection of LG on k. So, v0 = (0,0,1,1) and v1 = (0,1,1,0).
Similar to the Peano SFC, the irregularity in the Gray SFC has three component:
IG(k,N,D) = IG1(k,N,D) + IG2(k,N,D) + IG3(k,N,D).

IG1(k,N,D): In the D-dimensional Gray SFC, the blocks of grid size N are
composed of 2D−1 blocks b of grid size N/2 and 2D−1 blocks br as the rotation
of b by 1800 (Fig. 6). For any dimension k, the points in br are visited in the re-
verse order of those of b. For any pair of blocks (b, br ) with grid size N/2, the
total number of irregularities caused by these two blocks is the worst-case irreg-
ularity Iworst(k,N/2,D) (Lemma 1). Since we have 2D−1 such pairs, therefore,
IG1(k,N,D) = 2D−1Iworst(k,N/2,D). That can be simplified to: IG1(k,N,D) =
2D−2(N

2 )2D−1(N
2 − 1).

IG2(k,N,D): The second component of irregularity is the effect of blocks with
similar value (zero or one) on each other. Since, we have the same number of
zeros/ones as in the Peano SFC, then, we have: IG2(k,N,D) = IP 2(k,N,D) =
2D−2(N

2 )2D−1(N
2 − 1)(2D−1 − 1).

IG3(k,N,D): The third component of irregularity is the effect of the one blocks
on the zero blocks. As a property of the Gray code [22], the number of one blocks
that affect the zero blocks for all dimensions k > 0 is independent of k. For exam-
ple, in the three-dimensional Gray SFC, v1 = (00111100), v2 = (01100110) results
in eight irregular blocks. Based on this property, it is enough to get the irregularity
IG3(k,N,D) for the second dimension only (k = 1) and the result will be valid for
any k > 0. v1 starts by 2D−2 zeros, followed by 2D−1 ones, then 2D−2 zeros. Each
block contains (N/2)D points resulting in (N/2)D ∗ (N/2)D ∗ 2D−1 ∗ 2D−2 irregu-

larities. Thus, IG3(0,N,D) = 0, and IG3(k,N,D) = N2D

8 for k > 0.
Combining the equations for IG1, IG2, and IG3 results in: IG(0,N,D) =

2D−2(N
2 )2D−1(N

2 − 1) + 2D−2(N
2 )2D−1(N

2 − 1)(2D−1 − 1); IG(k,N,D) =
2D−2(N

2 )2D−1(N
2 − 1) + 2D−2(N

2 )2D−1(N
2 − 1)(2D−1 − 1) + N2D

8 , k > 0. That can

be simplified to: I0 = N2D−1

4 (N
2 − 1), and IG = N2D−1

4 (N − 1), k > 0. �

Lemma 9 In a D-dimensional space with grid size N , the total number of irregular-

ities over all dimensions for the Gray SFC is: IT (N,D) = N2D−1

4 (DN − D − N
2 ).

Proof Using Lemma 8, we have IT (N,D) = ∑D−1
k=0 Ik . �
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Fig. 7 The Hilbert SFC

4.5 Case study V: the Hilbert SFC

Figure 7 gives the recursive construction of the Hilbert SFC. The basic block of the
Hilbert SFC (Fig. 7a) is the same as that of the Gray SFC (Fig. 6a). The basic block
is repeated four times at a finer resolution in the four quadrants, as given in Fig. 7b.
The quadrants are visited in their gray order. The second and third blocks in Fig. 7b
have the same orientation as in Fig. 7a. The first block is constructed from rotating
the block of Fig. 7a by 900, while the fourth block is constructed by rotating the
block of Fig. 7 by −900. Similarly, Fig. 7c is constructed from Fig. 7b.

Lemma 10 The irregularity vector VI for the D-dimensional Hilbert SFC with grid

size N is VI = (I0, I1, . . . , ID−1) where: I0 = N(22D−2−1)
4 (N2D−1−1

22D−1−1
− N2D−2−1

22D−2−1
), and

Ik = N2D−1

4 (N − 1) for k > 0.

Proof As in the Gray SFC, the Hilbert SFC has special treatment for the first di-
mension (k = 0) while all other dimensions are treated evenly. For all other di-
mensions k > 0, the proof of irregularity is the same as in the Gray SFC, so:

I (k,N,D) = N2D−1

4 (N − 1) for k > 0.
The first dimension in the Hilbert SFC with grid size N is composed of

2D blocks of the Hilbert SFC with grid size N/2. Only two of these blocks
come from the first dimension at grid size N/2. So, the total number of ir-
regularities can be written in the following recursive relation: IH (0,N,D) =
2IH (0,N/2,D)+ (2D −2)I (k,N/2,D)+ IH2(k,N,D), where IH2(k,N,D) is the
irregularity that comes from arranging different blocks together. With the same proof
as in the Peano and Gray SFCs: IH2(k,N,D) = IG2(k,N,D) = IP 2(k,N,D) =
2D−2(N

2 )2D−1(N
2 −1)(2D−1 −1). So, we can write the following recurrence relation

as: IH (0,N,D) = 2IH (0,N/2,D) + (2D − 2)I (k,N/2,D) + 2D−2(N
2 )2D−1(N

2 −
1)(2D−1 − 1), I (0,2,D) = 0. Solving the recurrence relation results in: I0 =
N(22D−2−1)

4 (N2D−1−1
22D−1−1

− N2D−2−1
22D−2−1

). �

Lemma 11 In a D-dimensional space with grid size N , the total number of irreg-

ularities over all dimensions for the Hilbert SFC is: IT (N,D) = DN2D−1(N−1)
4 −

22DN(N2D−1−1)

16(22D−1−1)
.

Proof Using Lemma 10, we have IT (N,D) = ∑D−1
k=0 IS(k,N,D). �
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Table 4 The normalized irregularity and total irregularity for each space-filling curve

SFC Percent of I (k,N,D) Percent of IT (N,D)

Sweep 50(1 − Nk−D+1) 50 − 50(ND−1)

DND−1(N−1)

Scan I (k,N,D) = 50, k < D − 1 50(D−1)
D

I (D − 1,N,D) = 0

Peano 50 − 25×2D−k(ND−1)

ND−1(N−1)(2D−1)
50 − 50(ND−1)

DND−1(N−1)

Gray I (0,N,D) = 25(N−2)
N−1 50 − 25N

D(N−1)

I (k,N,D) = 50, k > 0

Hilbert I (0,N,D) = 50(22D−2−1)

N2D−2(N−1)
( N2D−1−1

22D−1−1
− N2D−2−1

22D−2−1
) 50 − 25×22D−1(N2D−1−1)

DN2D−2(N−1)(22D−1−1)

I (k,N,D) = 50, k > 0

5 Performance evaluation

In this section, we perform comprehensive experiments to compare the performance
of the Sweep, Scan, Peano, Gray, and Hilbert SFCs with respect to irregularity. For
comparison purposes, we compute the percentage of irregularity and percentage of
total irregularity for each space-filling curve. The percentage of irregularity is com-
puted by normalizing the number of irregularities in each space-filling curve (the
closed formulas in Sect. 4) by the upper bound irregularity from Lemma 1. The per-
centage of total irregularity is computed as the average percentage of irregularity
over all dimensions. Table 4 gives the closed formulas for the percentage of irreg-
ularity and percentage of total irregularity for the Sweep, Scan, Peano, Gray, and
Hilbert SFCs. It is important to note that all the experiments in this section discuss
the properties of each space-filling curve, regardless of the underlying data. At the
end, space-filling curves map the multi-dimensional space into a one-dimensional
space regardless of where the data is located in the multi-dimensional space. If the
data distribution is uniform/skewed in the multi-dimensional space, the mapped data
will sill be uniform/skewed in the one-dimensional space.

5.1 Scalability of space-filling curves

In this section, we address the issue of scalability, i.e., when the number of dimen-
sions increases or when the number of points per dimension increases. The objective
of the following experiments is to get the threshold values for dimensionality td and
grid size tg for each space-filling curve such that increasing the dimensionality and/or
the grid size over td and tg , respectively, does not significantly affect the percentage of
irregularity for a space-filling curve. Table 5 gives an upper bound of the percentage
of total irregularity IT (N,D) with the increase of dimensionality and grid size.

Figure 8a gives the percentage of irregularity for up to 128 dimensions with grid
size 16 (the x axis is drawn in a log scale). According to Lemmas 3 and 7 the Sweep
and Peano SFCs have exactly the same performance. Also from Lemmas 9 and 11, the
Gray and Hilbert SFCs almost have the same performance. For low-dimensionality
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Table 5 The upper bound of
the percentage of total
irregularity with respect to D

and N

SFC limD→inf IT (N,D) limN→inf IT (N,D)

Sweep 50 50 − 50
D

Scan 50 50(D−1)
D

Peano 50 50 − 50
D

Gray 50 50 − 25
D

Hilbert 50 50 − 25
D

22D−1

22D−1−1

Fig. 8 Scalability of
space-filling curves

(up to 10 dimensions), the Peano and Sweep SFCs have the best performance. The
performance of the Scan SFC approaches the Peano and Sweep SFCs for medium
dimensionality (10 to 40 dimensions). In general the performance of the Gray and
Hilbert SFCs is the worst for up to 64 dimensions. All space-filling curves tend to
have the same performance for more than 64 dimensions. Notice that the percentage
of irregularity never exceeds 50% for any space-filling curve. The 50% irregularity
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matches with the analytical results in Table 5. From Fig. 8a, the threshold value td
for all space-filing curves is 128.

Figure 8b gives the result of the same experiment as that of Fig. 8a for the five-
dimensional space while increasing the grid size for up to 1024. As indicated in Ta-
ble 5, the steady state value for both the Gray and Hilbert SFCs is 45, while for the
Sweep, Scan and Peano SFCs is 40. The performance of the Gray and Hilbert SFCs
is worse than those of the Sweep, Scan and Peano SFCs for any grid size. For grid
sizes less than 128, the Peano and Sweep SFCs have better performance than the
Scan SFC. Notice that the performance of the Scan SFC is constant regardless of N ,
which is also reflected in Lemma 5 where the irregularity does not depend on N . The
threshold value for grid size tg is 128 for both the Gray and Hilbert SFCs, 4 for the
Scan SFC, and 256 for both the Sweep and Peano SFCs.

5.2 Fairness of space-filling curves

In this section, we test the fairness of space-filling curves. We say that a space-filling
curve is fair if it has similar behavior towards all dimensions in the multi-dimensional
space. We use the standard deviation of the percentage of irregularity over all dimen-
sions as our measure of performance. The lower the standard deviation the more fair
the space-filling curve is. For the experiments in this section, we use I (k,N,D) from
Table 4 to compute the percentage of irregularity for each dimension k. Figure 9a
gives the fairness of each space-filling curve for up to 128 dimensions with grid size
16. The Sweep and Scan SFCs have almost the same performance, which is worse
than all the other space-filling curves. The main reason is that both the Sweep and
Scan SFCs have zero irregularity in the last dimension (Lemmas 3 and 5) while they
have a high irregularity in the other dimensions. This variation of irregularity results
in a high standard deviation. However, with the increase of dimensionality, the effect
of the last dimension in the standard deviation is decreased. Thus, more fairness is
produced with the dimensionality increase.

The Gray and Hilbert SFCs have the same irregularity performance where they
have 50% irregularity for all dimensions except the first. For low dimensionality (up
to 8 dimensions), the Gray and Hilbert SFCS have a performance that is worse than
the Peano SFCs due to the first dimension that does not have 50% irregularity. With
the increase in dimensionality, the effect of the first dimension in both the Gray and
Hilbert SFCs is decreased, thus producing more fairness. For more than 10 dimen-
sions, the Gray and Hilbert SFCs have the best fairness performance. As the dimen-
sionality increases, the performance of the Gray and Hilbert SFCs is increased. As a
steady state value, the standard deviation of the irregularity for the Gray and Hilbert
SFC tends to be zero. The Peano SFC has the best performance for low dimension-
ality. Although the performance of the Peano SFC increases with the increase of
dimensionality, it does not have the same incremental rate as those of the Gray and
Hilbert SFCs.

Figure 9b performs the same experiment as in Fig. 9a for the five-dimensional
space while increasing the grid size for up to 1024. The Peano SFC gives the best
fairness for all grid sizes. The Sweep and Scan SFCs have the worst performance for
all grid sizes. Regardless of the grid size, the Sweep and Scan SFCs have constant
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Fig. 9 Fairness of space-filling
curves

behavior. The other space-filling curves tend to have a constant performance after
grid size 128.

The experiments in this section are mainly useful for those applications that re-
quire fairness among different dimensions. For example, in a multimedia application
where images and videos are represented as high-dimensional vectors, a fair space-
filling curve is needed to layout these images or videos on the disk storage. As in
Fig. 9a, the Gray and Hilbert SFCs will be most appropriate.

5.3 Intentional bias of space-filling curves

A critical point for SFC-based applications is how to assign the different parame-
ters to the space dimensions. In this section, we explore the intentional bias of each
space-filling curve towards one or more dimensions. We say that an SFC is intention-
ally biased towards a certain dimension k if the SFC has relatively higher irregularity
in dimension k with respect to other dimensions. Some applications may have only
one important dimension, while the other dimensions are not with the same signif-
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Fig. 10 Favored and worst
dimensions for space-filling
curve irregularity

icant importance. For example, in real-time applications, the most significant issue
is to satisfy the deadlines, other factors are not with the same importance. Also, in
disk scheduling, the most important factor is to optimize the disk head movement.
Assigning the appropriate dimension to the disk head has a great influence on the per-
formance of disk scheduling [5]. For such applications, we develop the experiment
given in Fig. 10. In Fig. 10a, the plotted dimension is the most favored dimension for
each space-filling curve, e.g., the one with the lowest percentage of irregularity. In
Fig. 10b, we plot the worst dimension, e.g., the one with the highest percentage of
irregularity. Figure 10 gives the experiments for up to 12 dimensions with grid size
16. All space-filling curves tend to have a constant performance after 10 dimensions.
Increasing the space dimensionality has no effect on performance. Thus, we consider
the 12-dimensional space results as the steady state performance.

An interesting result is that the Scan and Sweep SFCs have constant percentage of
irregularity 0% for the favored dimension (Fig. 10a) and 50% (Fig. 10b) for the worst
dimension. This is the main reason of why both the Scan and Sweep SFCs have the
worst fairness performance among all space-filling curves, as discussed in Sect. 5.2.



234 Distrib Parallel Databases (2011) 29: 217–238

For the recursive space-filling curves, the Peano SFC has the best performance, where
the percentage of irregularity ranges between 15% and 32% for low-dimensionality
and between 24% and 50% for the steady state value. The Gray SFC has the worst
performance where it has constant behavior for both the favored and worst dimen-
sions, 24% and 50%, respectively.

The experiments in this section are mainly useful for those applications that tend
to favor one particular dimension over all other dimensions. For example, in real-time
applications, the time deadline has much higher priority than any other dimension. In
this case, we may use either the Sweep or Scan SFC and assign the deadline dimen-
sion as the first dimension.

5.4 Irregularity in each single dimension

Figure 11 gives the percentage of irregularity for each dimension of the five-
dimensional space with grid size 16 for the Peano, Gray, Hilbert, Sweep, and Scan
SFCs. For the Peano SFC (Fig. 11a), there is a significant difference among all di-
mensions. This property makes the Peano SFC suitable for applications that have
different parameters with different levels of priorities. The Peano SFC favors the di-
mensions on some ascending order. The relative difference of performance between
any two consecutive dimensions decreases as the number of dimensions increases,
e.g., the difference between the third and fourth dimensions is less than the difference
between the first and second dimensions. The Gray SFC favors only one dimension
(Fig. 11b), namely, the first dimension while dealing with the remaining dimensions
fairly though with high irregularity. All dimensions except the first have 50% irregu-
larity. The Hilbert SFC (Fig. 11c) has almost the same performance of the Gray SFC.
Figure 11d gives the performance of the Sweep SFC. The first dimension has the best
performance (0% irregularity), while the second dimension has irregularity 37% for
grid size 4. The irregularity increases with the grid size till it reaches 50% for grid
size 128. All other dimensions reaches 50% irregularity with grid size 16. The Scan
SFC (Fig. 11e) has constant performance regardless of the grid size. Only the first
dimensions has 0% irregularity, while all other dimensions have 50% irregularity.

This experiment is particularly useful when deciding about which dimensions will
be assigned to which factors. For example, consider the problem of disk scheduling in
multimedia servers [5, 36]. In addition to maximizing the bandwidth of the disk, the
scheduler has to take into consideration the real-time constraints of the page requests,
e.g., as in the case of video streaming. If clients are prioritized based on quality-of-
service guarantees, then the disk scheduler might as well consider the priority of the
requests in its disk queue. Scheduler parameters can be assigned different priorities
and mapped to space dimensions based on the results in Fig. 11.

6 Conclusions

In this paper, we introduced the notion of irregularity as a quantitative measure of
the ordering quality of space-filling curve mappings. Five space-filling curves (the
Sweep, Scan, Peano, Gray, and Hilbert SFCs) are thoroughly analyzed with respect to
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Fig. 11 Irregularity for all dimensions

irregularity. Each D-dimensional space-filling curve with grid size N is described by
its irregularity vector VI = (I0, I1, . . . , ID−1), where Ik is the number of irregularities
in dimension k and its total irregularity IT (N,D). To avoid the brute force approach
for computing the irregularity vector VI and the total irregularity IT , closed formulas
are derived to compute VI and IT for the five studied space-filling curves.

A comprehensive study for the behavior of different space-filling curves with re-
spect to irregularity is conducted. The scalability, fairness, and intentional bias of
space-filling curves with respect to irregularity is analyzed. For scalability, we show
that after a certain dimensionality and a certain grid size, the irregularity behavior
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of all space-filling curves reaches its steady state value. Generally, the Peano SFC is
more scalable than the other SFCs where the Peano SFC has the lowest irregularity for
all dimensions and grid sizes. For fairness, we show that with the increase of dimen-
sionality, the Hilbert and Gray SFCs are more fair than the others. For intensional
bias, the Sweep and Scan SFCs have more intentional bias than other space-filling
curves. Thus, the choice of a certain space-filling curve for a multi-dimensional ap-
plication depends mainly on the nature of the application. For example, for an appli-
cation that requires intentional bias toward one of the dimensions (e.g., real time ap-
plications), the Sweep or the Scan SFCs is the best choice. For high-dimensional ap-
plications (extracting features from multimedia applications), a scalable space-filling
curve (e.g., the Peano SFC) is the best choice. A highlight of some practical appli-
cations for Network Attached Storage Devise (NASD) and multimedia-Aware disk
scheduling is presented.
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