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ABSTRACT

The unprecedented spread of location-aware devices has resulted
into a plethora of location-based services in which huge amounts
of spatial data need to be efficiently processed. To process large-
scale data, MapReduce has become the de facto framework for
large-scale computing clusters. Existing cluster-based systems for
processing spatial data are oblivious to query-workload, and hence
are not able to consistently provide good performance. The reason
is that typical spatial query-workloads exhibit skewed access pat-
terns, where certain spatial areas receive queries more frequently
than others. To close this gap, we present AQWA, an adaptive and
query-workload-aware data partitioning mechanism that minimizes
the processing time of spatial queries over large-scale spatial data.
AQWA does not assume prior knowledge of the query-workload.
Instead, AQWA adapts to the query-workload, and in an online
fashion. As queries get processed, the data partitions are incremen-
tally updated. With extensive experiments using real spatial data of
Billions of points from OpenStreetMap, and thousands of spatial
range and k-nearest-neighbor queries executed over a cluster run-
ning Hadoop, we demonstrate that AQWA can achieve orders of
magnitude gain in query performance compared to standard spatial
partitioning structures.

1. INTRODUCTION

The ubiquity of location-aware devices, e.g., smartphones and
GPS-devices, has led to a large variety of location-based services
in which large amounts of geo-tagged information are created ev-
ery day. Meanwhile, the MapReduce framework [10] has proven
to be very successful in processing large datasets on large clusters,
particularly after the massive deployments reported by companies
like Facebook, Google, and Yahoo!. Moreover, tools built on top of
Hadoop [34], the open-source implementation of Mapreduce, e.g.,
Pig [25], Hive [31], Cheetah [6], and Pigeon [12], make it easier for
users to engage with Hadoop and run queries using high-level lan-
guages. However, one of the main issues with MapReduce is that
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executing a query usually involves scanning very large amounts of
data that can lead to high response times. Not enough attention has
been devoted to addressing this issue in the context of spatial data.

As noted in several research efforts, e.g., [26, 32, 8], account-
ing for the query-workload can achieve significant performance
gains. In particular, regions of space that are queried with high
frequency need to be aggressively partitioned in comparison to the
other less popular regions. This fine-grained partitioning of the
in-high-demand data can result in significant savings in query pro-
cessing time.

Existing cluster-based systems for processing spatial data em-
ploy traditional spatial indexing methods that can effectively parti-
tion the data into multiple buckets, but that are not query-workload
aware. For instance, SpatialHadoop [11, 13] supports both space-
partitioning as well as data-partitioning schemes to handle spatial
data on Hadoop. However, both partitioning schemes are static and
do not adapt to changes in query-workload.

In this paper, we present AQWA, an adaptive and query-
workload aware data partitioning mechanism that minimizes the
query processing time of spatial queries over large-scale spatial
data. An important characteristic of AQWA is that it does not pre-
sume any knowledge of the query-workload. Instead, AQWA can
detect, in an online fashion, the pattern(s) of the query-workload,
e.g., when certain spatial regions get queried more frequently than
other spatial regions. Accordingly, AQWA reorganizes the data in
a way that better serves the execution of the queries by minimizing
the amount of data to be scanned. Furthermore, AQWA can adapt
to changes in the query-workload. Instead of recreating the parti-
tions from scratch, which is a costly operation because it requires
reading and writing the entire data, AQWA incrementally updates
the partitioning of the data in an online fashion.

Observe that the number of ways one can partition the underlying
spatial data is large. Finding the boundaries of the partitions that
would result in good performance gains for a given query-workload
is challenging. The process of searching for the optimal partition-
ing involves excessive use of two operations: 1) Finding the num-
ber of points in a given region, and 2) Finding the number of queries
that overlap a given region. A straightforward way to support these
two operations is to scan the whole data (in case of Operation 1)
and all queries in the workload (in case of Operation 2), which is
quite costly. The reason is that: i) we are dealing with big data in
which scanning the whole data is costly, and ii) the two operations
are to be repeated multiple times in order to find the best partition-
ing. To address this challenge, AQWA employes various optimiza-
tions to support the above two operations efficiently. In particular,
AQWA maintains a set of compact aggregate information about the



data distribution as well as the query-workload. This aggregate in-
formation is kept in main-memory, and hence it enables AQWA to
efficiently perform its adaptive repartitioning decisions.

Unlike traditional spatial index structures that can have un-
bounded decomposition until the finest granularity of data is
reached in each split (i.e., block), AQWA tries to limit the num-
ber of partitions (i.e., files) because allowing too many small par-
titions can be very harmful to the overall health of a computing
cluster. The metadata of the partitions is usually managed in a cen-
tralized shared resource. For instance, the name node is a central-
ized resource in Hadoop that manages the metadata of the files in
the Hadoop Distributed File System (HDFS), and handles the file
requests across the whole cluster. Hence, the name node is a criti-
cal component in Hadoop, and if overloaded with too many (small)
files, it slows down the overall cluster (e.g., see [2, 18, 22, 33,
35]). Being of vital importance to a Hadoop cluster, the latest re-
leases of Hadoop try to maintain more than one replica of the name
node in order to increase the cluster availability in case of failures.
However, replication of the name node does not help distribute the
overhead of maintaining the data partitions, and hence in AQWA,
we limit the number of data partitions in order to overcome this
challenge.

AQWA employs a simple yet powerful cost function that models
the cost of executing the queries and also associates with each data
partition the corresponding cost. To incrementally update the data
partitions and maintain a limited number of partitions, AQWA se-
lects some partition(s) to be split (if queried with high frequency)
and other partition(s) to be merged (if queried with low frequency).
To efficiently select the best data partitions to split and merge,
AQWA maintains dual priority queues in main-memory; one pri-
ority queue stores the cost gain corresponding to splitting a data
partition (a max-heap), and the other priority queue stores the cost
loss corresponding to merging data partitions (a min-heap).

AQWA is resilient to abrupt or temporary changes in the work-
load. Based on the cost model, an invariant relationship guards the
operation of the dual priority queues to make sure that no redundant
split/merge operations take place. However, when the workload
permanently shifts from one hotspot area (i.e., one that receives
queries more frequently, e.g., downtown area) to another hotspot
area, AQWA is able to react to that change and update the partition-
ing accordingly. To achieve that, AQWA employs a time-fading
counting mechanism that alleviates the weights corresponding to
older query-workloads.

In summary, the contributions of the paper are as follows.

e We introduce AQWA, a new dynamic data partitioning
scheme that is query-workload-aware. AQWA is able to:
1) partition the data without prior knowledge of the query-
workload, 2) incrementally update the partitions (according
to the workload) rather than rebuilding the partitions from
scratch, and 3) automatically adapt to changes in the work-
load, e.g., when the workload shifts over time from one spa-
tial hotspot to another hotspot.

e We present efficient algorithms for supporting two basic op-
erations that are at the core of AQWA's partitioning mecha-
nism, namely finding the number of points in a given region,
and finding the number of queries in a workload that overlap
a given region.

e We adopt a cost-based dual priority queue mechanism that
manages the process of repartitioning the data by taking into
consideration the cost saving/loss associated with each pos-
sible split/merge of a data partition.

e We evaluate the performance of AQWA on a Hadoop cluster
by executing various query-workloads of spatial range and
k-nearest-neighbor queries over 2.7 Billion points of Open-
StreetMap [1] data. Experimental results demonstrate up to
two orders of magnitude improvement in query performance
in comparison to standard spatial data partitioning structures,
e.g., uniform grid or k-d tree partitioning.

The rest of this paper proceeds as follows. Section 2 discusses
the related work. Section 3 gives an overview of the problem,
the proposed solution, and the cost model. Section 4 introduces
AQWA along with its partition construction algorithms and its self-
organizing mechanisms in response to query-workload changes.
Section 5 provides an experimental study of the performance of
AQWA. Section 6 includes concluding remarks.

2. RELATED WORK

Work related to AQWA can be categorized into three main cate-
gories: 1) centralized data indexing, 2) data indexing in distributed
platforms, and 3) query-workload awareness in database systems.

In centralized indexing, e.g., B-tree [7], R-tree [17, 19, 4], Quad-
tree [30], Interval-tree [9], k-d tree [5], the goal is to split the data
in a centralized index that resides in one machine. Most of the in-
dexes in this category aim at distributing the size of the data among
a set of blocks, without accounting for the query-workload. In
most cases, there is no restriction on the number of blocks that
can be used. Consequently, in these indexes, the structure of the
index can have unbounded decomposition until the finest granular-
ity of data is reached in each split (i.e., block). For instance, the
R-tree recursively splits the data into rectangles until the number
of points in each rectangle is less/greater than a certain threshold.
This model of unbounded decomposition works well for any query-
workload distribution; the very fine granularity of the splits enables
any query to retrieve its required data by scanning minimal amount
of data with very little redundancy. However, as explained in Sec-
tion 1, in a typical distributed file system, e.g., HDFS, it is impor-
tant to limit the number of files (i.e., partitions) because allowing
too many small partitions can be very harmful to the overall health
of a computing cluster (e.g., see [2, 18, 22, 33, 35]). Therefore,
AQWA keeps the number of partitions below a certain limit.

In the second category, distributed indexing, e.g., [11, 14, 15, 16,
21, 23, 24], the goal is to split the data in a distributed file system
in a way that optimizes the distributed query processing by mini-
mizing the I/O overhead. Unlike the centralized indexes, indexes in
this category are usually geared towards fulfilling the requirements
of the distributed file system, e.g., the number of splits (e.g., blocks
in Hadoop) being within a certain bound. For instance, the Eagle-
Eyed Elephant (E3) framework [14] avoids scans of data partitions
that are irrelevant to the query at hand. However, E3 considers
only one-dimensional data, and hence is not suitable for spatial
two-dimensional data/queries. [11, 13] present Spatial Hadoop;
a system that processes spatial two-dimensional data using two-
dimensional Grids or R-Trees. A similar effort in [21] addresses
how to build R-Tree-like indexes in Hadoop for spatial data. How-
ever, none of these efforts is query-workload aware. [28, 27, 20]
decluster spatial data into multiple disks to achieve good load bal-
ancing in order to reduce the response time for range and partial
match queries. However, their proposed data declustering schemes
are not adaptive to the underlying query-workload.

In the third category, query-workload awareness in database
systems, several research efforts have emphasized on the im-
portance of taking the query-workload into consideration when
designing the database and when indexing the data. [26, §]
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Figure 1: An overview of AQWA.

present query-workload aware data partitioning mechanisms in dis-
tributed shared-nothing platforms. However, these mechanisms are
geared towards one-dimensional data and do not suit spatial two-
dimensional data. [32] presents a query-workload aware indexing
scheme for continuously moving objects. However, [32] assumes
a centralized platform, and hence the proposed indexing scheme
cannot be directly applied to distributed file systems, e.g., HDFS.

3. PRELIMINARIES

3.1 Overview

We consider range and k-nearest-neighbor queries over a set, say
S, of data points in the two-dimensional space. Our goal is to parti-
tion S into a given number of partitions, say P partitions, such that
the amount of data scanned by the queries is minimized, and hence
the cost of executing the queries is minimized as well. The value
of P is a system parameter.

Figure 1 gives an overview of AQWA that is composed of three
main components: 1) a k-d tree decomposition' of the data, where
each leaf node is a partition in the distributed file system, 2) a set
of main-memory aggregates to maintain statistics about the distri-
bution of the data and the queries, and 3) dual priority queues that
maintain information about the partitions. Three main processes
define the interactions among the components of AQWA, namely,
Initialization, Query Execution, and Repartitioning.

o Initialization: During this phase, we collect statistics about
the data distribution, and accordingly, create an initial parti-
tioning layout. Thus, the initialization consists of two steps
that are repeated only once:

1. Counting: We collect regional (spatial) statistics about
the data. In particular, we divide the space into a grid,
say G, of n rows and m columns. Each grid cell, say
Gli, j]. will contain the total number of points whose
coordinates are inside the boundaries of G[i, j]. The
grid is kept in main-memory and is used later on to find
the number of points in a given region in O(1).

2. Initial Partitioning: Based on the counts determined
in the Counting step, we identify the best partitioning

'The ideas presented in this paper do not assume a specific data
structure and are applicable to R-Tree or quadtree decompositions.

layout that evenly distributes the points in a kd-tree de-
composition. We create the partitions using a MapRe-
duce job that reads the entire data and assigns each data
point to its corresponding partition.

e Query Execution: This process selects the partitions that
are relevant to, i.e., overlap, the invoked query. Then, the
selected partitions are passed as input to a MapReduce job
to determine the actual data points that belong to the answer
of the query. Afterwards, the query is logged into the same
grid that maintains the counts of points. The entries in the
dual priority queues are also updated accordingly. After this
update, we may (or may not) take a decision to repartition
the data as we explain next.

e Repartitioning: Based on the history of the query-workload
as well as the distribution of the data, we determine the parti-
tion(s) that, if altered (i.e., further decomposed), would result
into better execution time of the queries. If we find any such
partitions, we reshuffle the partitioning layout.

While the Initialization and Query Execution phases can be im-
plemented in a straightforward way, the Repartitioning phase raises
the following performance challenges:

o Overhead of Rewriting: 1f the process of altering the par-
titioning layout reconstructs the partitions from scratch, it
would be very inefficient because it will have to reread and
rewrite the entire data. Hence, we propose an incremental
mechanism to alter only a minimal number of partitions.

o Efficient Search: We repeatedly search for the best change to
do in the partitioning in order to achieve good query perfor-
mance. The search space is large, and hence, we need an ef-
ficient way to determine the partitions to be further split and
how/where the split should take place. We present efficient
techniques for supporting two basic operations, namely, find-
ing the number of points in a given region, and finding the
number of queries in a workload that overlap a given region.
These two operations are at the core of the process of find-
ing the best partitioning layout as they are repeated multiple
times during the search process. In particular, we maintain
main-memory aggregate statistics about the data distribution
based on the Counting stage. We also maintain similar aggre-
gate statistics about the query-workload distribution. These
aggregates enable AQWA to efficiently determine the parti-
tioning layout via main-memory lookups.

o Workload Changes and Thrashing Avoidance: AQWA needs
to efficiently adapt to changes in the query-workload. How-
ever, we need to ensure that AQWA is resilient to sudden and
temporary changes in the query-workload. AQWA should be
robust to avoid unnecessary repartitioning of the data, and
hence avoid thrashing, i.e., avoid the case where the same
partitions get split and merged successively. At the same
time, AQWA should respond to permanent changes in the
query-workload, and accordingly alter the partitions.

o Keeping a Limited Number of Partitions: For practical con-
siderations, it is important to limit the number of partitions
because allowing too many small partitions can introduce a
performance bottleneck (e.g., see [2, 18, 22, 33, 35]). Hence,
we need to ensure that our incremental partitioning scheme
keeps the number of partitions constant. Dual priority queues
are kept in main-memory to ensure that for every partition to
be split, there are two partitions to be merged, and hence the
overall number of partitions remains constant.
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Figure 2: P = 2. Possible partitioning layouts and the corresponding cost (i.e., quality) according to the given query-workload.

3.2 Cost Model

In AQWA, given a query, our goal is to avoid unnecessary scans
of the data. We estimate the cost of executing a query by the num-
ber of records it has to read. Given a query-workload, we esti-
mate the cost, i.e., quality, of a partitioning layout by the number of
points that the queries of the workload will have to retrieve. More
formally, given a partitioning layout composed of a set of partitions,
say L, the overall query execution cost can be computed as:

Cost(L) = Z Oq4(p) x N(p),

VpeL

&)

where O, (p) is the number of queries that overlap Partition p, and
N (p) is the count of points in p.

Theoretically, the number of possible partitioning layouts is ex-
ponential in the total number of points because a partition can take
any shape and can contain any subset of the points. For simplicity,
we consider only partitioning layouts that have rectangular-shaped
partitions. Our goal is to choose the cheapest partitioning layout
according to the above equation. The following example illustrates
the variance in the cost, i.e., quality, of the different possible par-
titioning layouts. Consider a small space in which points are dis-
tributed uniformly such that each quadrant has ¢ points as shown
in Figure 2(a). The quadrants are numbered: 00 for the top-left, 01
for the top-right, and so on. Consider some range queries on the
given space that follow the following pattern: g3, which is repeated
7 times, overlaps Quadrants 00 and 10, gi, which is repeated 3
times, overlaps Quadrant 00, and g2, which is repeated once, over-
laps Quadrants 00 and 01. Assume that we want to organize the
data into 2 partitions, i.e., P = 2. Because we consider only rect-
angular partitions, as Figures 2(b) and 2(c) give, there are two pos-
sible partitioning layouts: 1) partition the space horizontally, and
2) partition the space vertically. According to Equation 1, these
two partitioning layouts have different costs as we explain below.

In the horizontal partitioning layout (Figure 2(b)), the upper par-
tition, which has 2c points, overlaps g1, g2, and g3, which are re-
peated 3, 1, and 7 times, respectively. Therefore, the cost corre-
sponding to the upper partition is 2¢ x (3 + 1 4+ 7) = 22¢. The
lower partition, which also has 2 points, overlaps g3 only. There-
fore, the cost corresponding to the lower partition is 2¢ X 7 = 14c.
Hence, the overall cost of the horizontal partitioning layout of Fig-
ure 2(b) is 36¢. Similarly, in the vertical partitioning layout (Fig-
ure 2(c)), the left partition, which has 2¢ points, overlaps queries
q1, g2, and g3, and hence the cost corresponding to the left parti-
tion is 2¢ X (3 + 1 + 7) = 22¢. The right partition, which also
has 2c¢ points, overlaps g1 only. Therefore, the cost corresponding
to the right partition is 2¢ X 1 = 2¢. Hence, the overall cost of the
vertical partitioning layout of Figure 2(c) is 24c.

The above example demonstrates that the choices of the shapes
of the partitions in the partitioning layout can significantly affect
the overall cost, i.e., performance, of a given query-workload.

4. AQWA

4.1 Initialization

The main goal of AQWA is to partition the data in a way that
minimizes the cost according to Equation 1. Initially, i.e., before
any query is executed, the number of queries that will overlap each
partition is unknown. Hence, we simply assume a uniform distribu-
tion of the queries across the data. This implies that the only com-
ponent of Equation 1 that matters at this initial stage is the number
of points in each partition. Thus, in the initialization phase, we par-
tition the data in a way that balances the number of points across
the partitions. In particular, we apply a k-d tree decomposition [5],
but with limited (i.e., constant) number of partitions.

F 5 G
D
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, B
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(a)

Figure 4: An example tree of P = 7 leaf nodes

The k-d tree is a binary tree in which every non-leaf node tries to
split the underlying space into two parts that have the same number
of points. Only leaf nodes contain the actual data points. The splits
can be horizontal or vertical and are chosen to balance the num-
ber of points across the leaf nodes. Splitting is recursively applied
until the number of points in each leaf node is below a threshold.
Initially, AQWA applies a similar decomposition strategy to that of
the k-d tree, except that the decomposition stops when the num-
ber of partitions reaches P, i.e., when P leaf nodes are created in
the tree. Figure 4 gives the initial state of an example AQWA with
P = 7 leaf nodes along with the corresponding space partitions.
Once the boundaries of each leaf node are determined, a MapRe-
duce job creates the initial partitions, i.e., assigns each data point to
its corresponding partition. In this MapReduce job, for each point,
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Figure 3: The aggregate counts that enable AQWA to determine the number of points in an arbitrary rectangle in O(1).

say p, the key is the leaf node that encloses p, and the value is p.
The mappers read different chunks of the data and then send each
point to the appropriate reducer, which groups the points that be-
long to the same partition, and ultimately writes the corresponding
partition file into HDFS.

The hierarchy of the partitioning layout, i.e., the k-d tree, is kept
for processing future queries. As explained in Section 3.1, once a
query, say g, is received, only the leaf nodes of the tree that overlap
q are selected and passed as input to the MapReduce job corre-
sponding to q.

Efficient Search via Aggregation

An important question to address during the initialization phase is
how to split a leaf node in the tree. In other words, for a given
partition, say p, what is the best horizontal or vertical line that can
split p into two parts such that the number of points is the same
in both parts? Furthermore, how can we determine the number of
points in each split, i.e., rectangle? Because the raw data is not par-
titioned, one way to solve this problem is to have a complete scan
of the data in order to determine the number of points in a given
rectangle. Obviously, this is not practical to perform. Because
we are interested in aggregates, i.e., count of points in a rectan-
gle, scanning the individual points involves redundancy. Thus, in
the initialization phase, we preprocess the raw data in a way that
enables quick lookup (in O(1) time) of the count corresponding
to a given rectangle. In particular, we hash the points into a vir-
tual two-dimensional grid that has a very fine granularity. The grid
does not contain the data points, but rather maintains aggregate in-
formation. In particular, we divide the space into a grid, say G, of
n rows and m columns. Each grid cell, say G[i, j], initially con-
tains the total number of points whose coordinates are inside the
boundaries of G[¢, j]. As explained in Section 3.1, this is achieved
through a single MapReduce job that reads the entire data and de-
termines the count for each grid cell. Afterwards, we aggregate
the data corresponding to each cell in GG as follows. Refer to Fig-
ure 3 for illustration. For every row in GG, we scan the cells from
column O to column m and aggregate the values as we go, i.e.,
Gli, j] = Gli, 1+ G[i, j — 1]V j € [2, m] (Figure 3(a)).
Afterwards, we repeat the same process on the column level, i.e.,
Gli, j] = G[i, jl+ Gli — 1, j] Vi € [2, n] (Figure 3(b)). At
this moment, the value at each cell, say G[i, 7], will correspond
to the total number of points in the rectangle bounded by G0, 0]
(top-left) and G[i, j] (bottom-right). For example, the number of
points in the red rectangle of Figure 3(c) can be determined in O(1)
by simply retrieving the value of the shaded cell that corresponds
to the bottom-right corner of the rectangle.

To compute the number of points corresponding to any given
partition, i.e., rectangle, bounded by Cell G[b, r] (bottom-right)
and Cell Gt, [] (top-left), we add/subtract the values of only four

cells, i.e., perform an O(1) operation in the following way. As Fig-
ure 3(d) illustrates, the number of points, say N, in Rectangle(b,
I, t, 1) is:

No(b, 7, t, 1) = Gb, 1] = G[t — 1, r] — G[b, | — 1]
+G[t—1,1-1]. )

The above formulation can be explained as follows. The value at
Cell G[b, r] includes the sum of the points in the rectangle whose
top-left corner is (0, 0) and whose bottom-right corner is (b, 7).
Thus, to get the sum of the number of points in Rectangle(b, 1, t, 1),
we need to subtract from G[b, r] the sum of the number of points
corresponding to two rectangles: 1) the rectangle whose top-left
corner is (0, 0) and whose bottom-right corner is (¢ — 1, r), as
well as 2) the rectangle whose top-left corner is (0, 0) and whose
bottom-right corner is (b, I — 1). However, if we subtract these
two values, the sum corresponding to the rectangle whose top-left
corner is (0, 0) and whose bottom-right corneris (¢t —1, [ —1) will
be subtracted twice. Hence, we add the value of G[t — 1, [ — 1].

In addition to the above optimization, instead of trying all the
possible horizontal and vertical lines to determine the median line
that evenly splits the points in a given partition, we apply binary
search on each dimension of the data. Given a rectangle of r rows
and c columns, first, we try a horizontal split of the rectangle at
Row 7 and determine the number of points in the corresponding
two splits (in O(1) operations as described above). If the number
of points in both splits is the same, we terminate, otherwise, we
recursively repeat the process with the split that has higher number
of points. The process may be repeated for the vertical splits if no
even splitting is found for the horizontal splits. If no even split-
ting is found for the vertical splits, the we choose the best possible
splitting amongst the vertical and horizontal splits, i.e., the split that
minimizes the absolute value of the difference between the number
of points in the emerging splits.

The above optimizations of grid-based pre-aggregation are es-
sential for the efficiency of the initialization phase as well as the
repartitioning phase that we describe in the next section. With-
out pre-aggregation, e.g., using a straightforward scan of the entire
data, the partitioning would be impractical.

4.2 Query-Workload Awareness

AQWA is query-workload aware. After a query is executed, it
may (or may not) trigger a change in the partitioning layout by
splitting a leaf node (i.e., a partition) in the kd-tree into two nodes,
and merge two nodes that share the same parent in the kd-tree into
one leaf node. The decision of whether to apply such change or not
depends on the cost function of Equation 1. Three factors affect
this decision, namely, the cost gain that would result after splitting
a partition, the cost loss that would result after merging two parti-
tions, and the overhead of reading and writing the contents of these



partitions. Below, we explain each of these factors in detail.

1. The cost reduction that would result if a certain partition

is further split into two splits. Observe that a query usu-
ally partially overlaps few partitions. For instance, in Fig-
ure 5(a), q1 partially overlaps partitions A, D, and £. When
q1 is executed, it reads the entire data of these overlapping
partitions. However, not all the data in these overlapping
partitions is relevant, i.e., there are some points that are re-
dundantly scanned in the map phase of the MapReduce job
corresponding to ¢;. Thus, it would be beneficial w.r.t. g; to
further decompose, i.e., split, Partitions A, D, and E so that
the amount of irrelevant data to be scanned is minimized. For
example, assume that Partitions A, F, and D contain 20, 30,
and 15 points, respectively. According to Equation 1, the
cost corresponding to the partitioning layout of Figure 5(a)
is 20 x 14+ 30 x 1 4+ 15 x 1 = 65. However, if Partition F
is split to Partitions E1 and -, such that E; and E have 15
points each (Figure 5(b)), the cost would drop to 50; g1 will
have to read only half of the data in Partition E (i.e., Partition
FE») instead of the entirety of Partition E. Thus, splitting a
partition may lead to a decrease in the cost corresponding to
a partitioning layout. More formally, assume that a partition,
say p, is to be split into two Partitions, say p1 and p>. We es-
timate the decrease in cost, say Cq, associated with splitting
p as follows:

Ca(Split, p, p1, p2) = C(p) — C(p1) — C(p2). (3)

(@) (b)

Figure 5: Incremental repartitioning of the data. Partition F is
split while Partitions B and C' are merged.

2. The cost increase that would result if two partitions are

merged. We need to keep the number of partitions, i.e., leaf
nodes in the tree, constant. Thus, if we ever split a leaf node
into two leaf nodes, we increase the overall number of parti-
tions by one. Hence, in response to this change and to keep
the total number of partition constant, we need to merge two
other leaf nodes in the kd-tree that have the same parent. In
contrast to a split, a merge may result in a performance loss
because some queries in the workload may need to read more
data as partitions get merged. For example, consider the par-
titioning layout in Figure 6(a). g3 reads the entire data of Par-
tition A, and hence it is beneficial w.r.t. g3 to split Partition
A to Partitions Ay and As as illustrated in Figure 6(b). How-
ever, splitting Partition A would increase the overall number
of partitions. Thus, we need to merge Partitions F' and G (or
similarly, merge Partitions E:; and E5). Merging Partitions
F and G would slow down the execution of g2 because in-
stead of reading the small Partition G as in Figure 6(a), g2

will have to read the entirety of the merged partition, i.e.,
Partition F'G. Thus, merging two partitions may lead to an
increase in the cost corresponding to a partitioning layout.
Similarly to Equation 3, we estimate the cost loss, say Cj,
associated with merging two partitions, say p1 and p2, into a
single partition, say p as:

Ci(Merge, p1, p2, p) = C(p) — C(p1) — C(p2). 4
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Figure 6: Incremental repartitioning of the data. Partition A is
split while Partitions /" and GG are merged.

3. The cost of read/write during the split and merge processes.
Should we decide to split a partition and merge two other
partitions, the entire data of these three partitions will have to
be read and then written in order to create the new partitions.
More formally, assume that a partition, say p, is to be split.
We estimate the read/write cost associated with the splitting
process as:

Crw(p) =2 X N(p), S)

where N (p) is the number of points in p. Similarly, when
two partitions, say p1 and p», are to be merged, the read/write
cost associated with the merging process is estimated as
Cruw(p1,p2) =2 X N(p1) +2 x N(p2).

According to Equations 3, 4, and 5, we decide to split a partition,
say ps, and merge two other partitions, say pp,1 and py,2 if:

Ca(Split, ps, ps1, ps2) > [Ci(Merge, pm1, Pm2, Pm)
+ Crw(ps) + Cruw(pm1, pm2)].  (6)

A query may overlap more than one partition. Upon the execu-
tion of a query, say ¢, the cost corresponding to the partitions that
overlap g changes. Also, for each of these partitions, the values
of cost decrease due to split (i.e., Cq) as well as the values of cost
increase due to merge (i.e., C;) will change. Two challenges exist
in this situation:

1. How can we efficiently determine the best partitions to be
split and merged? We need to choose the partition that, if
split, would reduce the cost the most. Similarly, we need to
choose two leaf partitions that, if merged, would increase the
cost the least.

2. How can we efficiently determine the best split of a parti-
tion w.r.t. the query-workload, i.e., according to Equation 1?
We already address this issue in Section 4.1, but w.r.t. to
the data distribution only, i.e., without considering the query-
workload.

We address the above challenges in the next sections.
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Figure 7: Priority queues of candidate partitions.

4.2.1 The Dual Priority Queues

To address the first challenge above, i.e., selecting the best par-
titions for the split and merge operations, we maintain two priority
queues of candidate partitions. The first priority queue maintains
the candidate partitions for the split operation, and the second pri-
ority queue maintains pairs of candidate partitions for the merge
operation. We refer to the former priority queue as the split-queue
and the latter as the merge-queue. Refer to Figure 7 for illustration.

On the one hand, partitions in the split-queue are decreasingly
ordered in a max-heap according to the cost reduction that would
result after the split operations. For each partition, say ps, in the
split-queue, we determine the best split that would maximize the
cost-reduction, i.e., Cg, that corresponds to splitting p,. We ex-
plain the process of selecting the best split in detail in the next
section. Notice that for each partition, we subtract the cost of the
read/write associated with the split operation from the value of the
cost-reduction. Thus, the value maintained for each partition in
the split-queue is Cy — 2 X N(ps). On the other hand, pairs of
partitions in the merge-queue are increasingly ordered in a min-
heap according to the cost increase, i.e., C;, that would result after
the merge operations. Similarly to the values maintained in the
split-queue, we subtract the cost of the read/write associated with
the merge operation from the value of the cost-increase. Thus, the
value maintained for each pair of partitions, say pm,1 and pma2, in
the merge-queue is C; — 2 X [N (pm1) + N(pm2)]-

After a query is executed, the overlapping partitions are deter-
mined and their corresponding values are updated in the priority
queues in the following way. According to Inequality 6, if the high-
est cost gain due to a split, i.e., the top value of the split-queue, is
greater than the lowest cost loss due to a merge, i.e., the top value
of the merge-queue, we initiate a split and a merge operation. We
repeat this step until the top value of the split-queue is less than
the top-value of the merge-queue. In this case, we determine that
further splits and merges are not expected to result in any perfor-
mance gains. Thus, our incremental repartitioning mechanism tries
to maintain an invariant throughout the lifetime of AQWA, which
is to always make sure that the slightest increase in cost due to
a merge is always greater than the highest expected gain due to
a split. If this invariant is not satisfied, we reorder the partitions.
Observe that the dual priority queues ensure that the number of
partitions is always constant because for each split, there is a si-
multaneous merge.

4.2.2 Efficient Search for the Best Split

As illustrated in Section 3.2, for a given partition, the different
choices for the position and orientation of a split can have different
costs. An important question to address is how to efficiently deter-
mine, according to the cost model of Equation 3, the best split of
a partition that would result in the highest cost gain. To compute
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Figure 8: The four counters maintained for each grid cell.

the cost corresponding to a partition and each of its corresponding
splits, Equation 1 embeds two factors that affect the cost corre-
sponding to a partition, say p, namely, 1) the number of points in
p, and 2) the number of queries that overlap p. In Section 4.1, we
demonstrate how to compute the number of points in any given par-
tition using an O(1) operation. Thus, in order to efficiently com-
pute the whole cost formula, we need an efficient way to determine
the number of queries that overlap a partition.

In Section 4.1 above, we demonstrate how to maintain aggregate
information for the number of points using a grid. However, ex-
tending this idea to maintain aggregate information for the number
of queries is challenging because a point resides in only one grid
cell, but a query may overlap more than one grid cell. Unless care-
ful aggregation is devised, over-counting may occur. We use the
same structure of the n x m grid G as in Section 4.1. At each grid
cell, say G[i, j] we maintain four additional counters, namely,

e (C1: acounter for the number of queries that overlap G[i, j],

e (C: a counter for the number of queries that overlap G|z, j],
but not G[¢, j — 1] (not in left),

e ('3: a counter for the number of queries that overlap Gz, j],
but not G[¢ — 1, j] (not in top), and

e (C4: a counter for the number of queries that overlap G|z, j],
but not G[¢ — 1, j] or G[i, j — 1] (neither in top nor left).

Figure 8 gives an illustration of the values of the four counters that
correspond to two range queries.

We aggregate the values of the above counters as follows. For
Cs, for each row in the grid, we horizontally aggregate the val-
ues in each grid cell from left to right as in Figure 3(a), i.e.,
Gli, j].C2 = GJi, j].C2 + Gli, 7 — 1].C2 V¥V j € [2, m]. For
Cs, for each column, we vertically aggregate the values in each
grid cell from top to bottom as in Figure 3(b), i.e., G[i, j].C3 =
G[i, jl.Cs+Gi—1, 1].C3 Vi € [2, n]. For C4, we horizontally
and then vertically aggregate the values in the same manner as we
aggregate the number of points (see Figure 3). As queries are in-
voked, the aggregate values of the counters are updated according
to the overlap between the invoked queries and the cells of the grid.
Although the process of updating the aggregate counts is repeated
per query, it does not incur overhead because the virtual grid that
maintains the counts resides in main-memory, and hence the virtual
grid is cheap to update.

To determine the number of queries that overlap a certain parti-
tion, say p, we perform the following four operations. 1) We de-
termine the value of C; for the top-left grid cell that overlaps p.
2) We determine the aggregate value of Cy for the top border of
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Figure 9: Determining the number of queries that overlap a
partition in O(1).

p except for the top-left cell, i.e., if the top border of p spans the
cells from [X, [] to [X, 7], we determine the aggregate value as
G[X, r].C2 — G[X, | + 1].C2. 3) We determine the aggregate
value of C3 for the left border of p except for the top-left cell, i.e.,
if the left border of p spans the cells from [¢, Y] to [b, Y], we deter-
mine the aggregate value as G[b, Y].Cs — G[t + 1, Y].C3. 4) We
determine the aggregate value of Cy for the remainder of p, i.e.,
every grid cell that overlaps p except for the left and top borders.
This can be achieved using the same computation of Equation 2.
The sum of the above values represents the number of queries that
overlap p. Refer to Figure 9 for illustration. Observe that each of
the above values is computed in O(1). Thus, we can determine
the number of queries that overlap a partition in an O(1) computa-
tion. This results in efficient computation of the cost function and
significantly improves the process of finding the best split of a par-
tition. Given a partition, to find the best split that evenly distributes
the cost between the two splits, we apply a binary search in a way
that is similar to the process we discuss in Section 4.1. The main
difference is that the number of queries is considered in the cost
function.

4.2.3 Accounting for Changes in Query-Workload

AQWA is resistant to abrupt or temporary changes to the query-
workload. Consider a scenario where a certain query-workload,
say W, is consistently received. As expected, the partitions that
overlap queries € W are split in a way that minimizes the execution
time of these queries. Assume that a certain area, say A, does not
belong to the areas that W hits, and that A; temporarily receives a
few queries, say W;. Because the workload corresponding to W;
is temporary and less frequent than W, AQWA does not ruin the
partitioning w.r.t. W, which is the required behaviour. In particular,
if the partitions that overlap A; make it to the top of the split-queue,
the partitions that overlap W will have higher weights in the merge-
queue, and hence the invariant will prevent any splitting and merge
operations to occur. The reason for this robust behaviour is that the
cost function gives higher weight for a partition, say p, according
to the frequency of the queries that overlap p.

Time-Fading Weights

AQWA keeps the history of all the queries that have been pro-
cessed. For every processed query, say ¢, grid cells overlapping
q are determined, and the corresponding four counters are incre-
mented for each cell (see Section 4.2.2). Although this mechanism
captures the frequency of the queries, it does not differentiate be-
tween fresh queries (i.e., those that belong to the current query-
workload) and relatively old queries; all queries have the same

weight. This can lead to poor performance in AQWA especially
when a query-workload changes. To illustrate, consider a scenario
where a certain area, say A,q4, has received queries with high fre-
quency in the past, but the workload has permanently shifted to
another area, say Ayc.,. Because the data partitions corresponding
to Asq have high weights in the merge-queue, these high weights
keep the invariant between the dual priority queues for a while,
and hence repartitioning with respect to Ay, will be delayed,
and hence AQWA would not recognize the new hotspot Ay, and
would not adapt to it in a timely fashion. The reason is that accord-
ing to the cost model we have presented so far, an old query has the
same weight as a new query.

To address this issue, we need a way to forget older queries, or
equivalently alleviate their weight in the cost function. To achieve
that, we differentiate between queries received in the last 7" time
units that we refer to as current queries, and queries received be-
fore T' time units that we refer to as old queries. T is a system
parameter. In particular, for each of the four counters (refer to cq
through c4 in Section 4.2.2) maintained at each cell in the grid,
we maintain separate counts for the old queries and the current
queries. The count corresponding to old queries, say Coiq, gets
decaying weight by being divided by c every 7" time units, where
¢ > 1is a system parameter. The count corresponding to current
queries, say Chrew, has no decaying weight. Every 7' time units,
Chew is added to Coi4, and then Cheyy i8S set to zero. At any time,
the number of queries in a region is determined as (Chew + Coia)-

Observe that every 7' time units, the sum (Chew + Coid)
changes, and this can change the weights of the partitions to be
split/merged. This requires revisiting each partition to determine
its new weight and its new order in the dual priority queues. A
straightforward approach is to update the values corresponding to
all the partitions and reconstruct the dual priority queues every T’
time units. However, this approach can be costly because it requires
massive operations to rebuild the queues. To solve this problem, we
apply a lazy-update mechanism, where we process the partitions in
a round-robin cycle that takes 7" time units to pass over all the par-
titions. In other words, if P is the number of partitions, we process
only % partitions every time unit. For each of the % partitions, we
recalculate the corresponding weights and reinsert these partitions
into the dual priority queues. Eventually, after 7" time units, all the
entries in the dual priority queues get updated.

4.2.4 Support for k-Nearest-Neighbor Queries

So far, we have only shown how to process spatial range queries,
and how to update the partitioning accordingly. Range queries are
relatively easy to process because the boundaries in which the an-
swer of the query resides are predefined (and fixed within the query
itself). Hence, given a range query, only the partitions that overlap
the query can be passed as input to the MapReduce job correspond-
ing to the query without worrying about losing the correctness of
the answer of the query. In contrast, for a k-nearest-neighbor query,
the boundaries that contain the answer of the query are unknown
until the query is executed. Hence the partitions that are needed
as input to the MapReduce job corresponding to the query are un-
known. In particular, the spatial region that contains the answer of a
k-nearest-neighbor query depends on the value of k, the location of
the query focal point, and the distribution of the data (see [3]). To
illustrate, consider the example in Figure 10. Partition p in which
q1 resides is sufficient to find gi’s k1-nearest-neighbors. However,
for ko > ki, Partition p is not sufficient, and two further blocks
(one above and one below) have to be considered. Similarly, Parti-
tion p is not sufficient to find the k-nearest-neighbors of g2 because
of the location of g» w.r.t. Partition p (i.e., being near one corner).
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Figure 10: The partitions that contain the k-nearest-neighbors
of a query point vary according to the value of &, the location
of the query focal point, and the distribution of the data.

[13] tries to solve this challenge by following a three-step ap-
proach, where execution of the query starts with a MapReduce job
that takes as input the partition, say p, in which the query?s focal
point, say g, resides. In the second step, which is a correctness-
check step, the distance, say r, between g and the k" neighbor is
determined, and a check is performed to make sure that the bound-
aries of p are within r distance from g, i.e., Partition p is sufficient
to guarantee the correctness of the answer. If it is not the case that
Partition p is sufficient, the third step is performed, where another
MapReduce job is executed with the partitions surrounding p being
added as input. The second and third steps are repeated until the
correctness-check is satisfied.

A major drawback of the above solution is that it may require
successive MapReduce jobs in order to answer a single query. To
solve this problem, we present a more efficient approach that re-
quires only one MapReduce job to answer a k-nearest-neighbor
query. In particular, we make use of the fine-grained virtual grid
that contains statistics about the data distribution. Given a k-
nearest-neighbor query, we determine the grid cells that are guar-
anteed to contain the answer of the query using the MINDIST and
MAXDIST metrics as in [29]. In particular, we scan the grid cells
in increasing order of their MINDIST from the query focal point,
and count the number of points in the encountered cells. Once
the accumulative count reaches the value k, we mark the largest
MAXDIST, say M, between the query focal point and any encoun-
tered cell. We continue scanning until the MINDIST of a scanned
block is greater than M. To illustrate, consider the example in Fig-
ure 11. Given Query g, count of the number of points in the cell
that contains ¢ is determined. Assuming that this count is > k,
the MAXDIST between ¢ and the cell in which it is contained is
determined. Cells that are within this MAXDIST are guaranteed to
enclose the k-nearest-neighbors of q.

After we determine the grid cells that contain the query an-
swer, we determine a rectangular region that bounds these cells. In
some sense, we have converted the k-nearest-neighbor query into
a range query, and hence our algorithms and techniques for split-
ting/merging and search can still handle k-nearest neighbor queries
in the same way range queries are handled.

After the rectangular region that bounds the answer is deter-
mined, the partitions that overlap that region are passed as input to
the MapReduce job corresponding to the query. Refer to Figure 12
for illustration. Partitions p1, p2, and p3 are passed as the input for
Query g2, while Partition p; is passed as the input for Query q;.

Observe that the process of determining the region that encloses
the k-nearest-neighbors is efficient because it is based on count-
ing of main-memory aggregates, and it does not require scanning
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Figure 11: Finding the grid cells (with fine granularity) that
are guaranteed to enclose the answer of a k-nearest-neighbor
query. The rectangular region that bounds these cells maps the
k-nearest-neighbor query into a range query.
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Figure 12: A k-nearest-neighbor query is treated as a range
query once the rectangular bounds enclosing the answer are
determined.

any data points. Moreover, because the granularity of the grid is
fine (compared to that of the partitions), the determined region is
compact.

4.2.5 Concurrency Control

As queries are received by AQWA, some partitions may need to
be altered. It is possible that while a partition is being split (or sim-
ilarly two partitions are being merged), a new query is received that
may also trigger another change to the very same partitions being
altered. Unless an appropriate concurrency control protocol is used,
inconsistent partitioning will occur. To solve this problem, we use
a simple locking mechanism to coordinate the incremental updates
of the partitions. In particular, whenever a query, say g, triggers a
change in the partitioning layout, before the partitions are updated,
q tries to acquire a lock on each of the partitions to be altered. If
q succeeds to acquire all the locks, i.e., no other query has a con-
flicting lock, then q is allowed to alter the partitions. The locks are
released after the partitions are completely altered. If ¢ cannot ac-
quire the locks due to a concurrent query that already has one or
more locks on the partitions being altered, then the decision to alter
the partitions is cancelled. Observe that canceling such decision
may negatively affect the quality of the partitioning, but only tem-
porarily because for a given query-workload, queries similar to g
will keep arriving afterwards and the repartitioning will eventually
take place.

A similar concurrency issue arises when updating the dual prior-
ity queues. Because the dual queues reside in main-memory, updat-
ing the entries of these queues is fast (requires a few milliseconds).
Hence, to avoid the case where two queries result in conflicting
queue updates, we serialize the process of updating the two priority
queues using a critical section.



S. EXPERIMENTS

In this section, we evaluate the performance of AQWA. We real-
ize a cluster-based test bed in which we implement AQWA as well
as the uniform grid and a static k-d tree partitioning. We choose
these two structures because we want to contrast the performance of
AQWA against two different extreme partitioning schemes: 1) pure
spatial decomposition, i.e., when using a Grid, and 2) data decom-
position, i.e., when using a k-d tree. Experiments are conducted on
a 16-node cluster running Hadoop over Red Hat Enterprise Linux
6.4. Each node in the cluster has four 1TB hard drives, 8GB of
RAM, and 4 cores Intel(R) Xeon(R) E31240 @3.30GHz. The
nodes of the cluster are all connected with 1Gbps networking.

We use a real spatial dataset from OpenStreetMap [1]. The num-
ber of data points in the dataset is 2.7 Billion points. The format of
each point is simply comma-separated longitude-latitude. We use
various query-workloads that were selected to follow the spatial
distribution of the data. The intuition behind selecting the query-
workload is that certain areas that have high density are likely to
receive more queries than less dense areas. Hence, we generated
10 different query-workloads that focus on 10 dense spatial areas.
We use range and k-nearest-neighbor queries.

5.1 Initialization

In this experiment, we study the performance of the initializa-
tion phase of AQWA (Section 4.1). Figure 13 gives the execution
time of the initialization phase for various values of P (the num-
ber of partitions). Observe that the initialization phase in AQWA is
equivalent to that of the k-d tree partitioning. Hence, in Figure 13,
the performance of the initialization phase for both AQWA and the
k-d tree are contrasted against the grid.

Observe that grid partitioning requires relatively high execution
time especially for low values of P. This is due to the skewness
of the data distribution, which causes certain grid cells, i.e., par-
titions, to receive more data points than other grid cells. In the
reduce phase, each reducer handles a set of grid cells and groups
the corresponding points. Thus, the load across the reducers will
be unbalanced. Because a MapReduce job does not terminate until
the last reducer completes, the unbalanced load leads to a relatively
poor performance for the grid (compared to the kd-tree). As the
number of partitions increases, the load gets better balanced, but
still the MapReduce job has to wait for the last reducer that has
the biggest partition. In contrast, in the k-d tree partitioning, which
is employed by AQWA, the initialization phase balances the data
sizes across all the partitions. Consequently, the reducers have bal-
anced load in the MapReduce job, and all of the reducers terminate
almost concurrently.

Index Tvpe Number of | Construction
yp Partitions (P) Time
10 2hrs, 20min
Space Partitioning .
(Uniform Grid) 100 1hr, 31 min
1000 59 min
Data Partitioning 10 45 min
(Static k-d tree 100 35 min
or
AQWA) 1000 35 min

Figure 13: Performance of the initialization phase.

5.2 Query-Workload Awareness

In the following experiments, we study the query performance of
AQWA. Because the goal of any partitioning scheme is to minimize
the amount of data to be scanned by a query, out main performance
measure is the total processing time across all mappers. We virtu-
ally split the space according to a 1000 x 1000 grid that represents
1000 normalized unit distance measures in each of the horizontal
and vertical dimensions. This represents the search space for the
partitions as well as the count statistics that we maintain. We fix
the number of partitions, i.e., P, to 100 in each of the grid, static k-
d tree, and AQWA. We issue range and k-nearest-neighbor queries
over each of these partitioning structures. To simulate a hotspot,
we concentrate the queries over one of the areas that we identi-
fied as having relatively high data density. The coordinates of the
ranges of the queries are chosen at random within the hotspot, but
are bounded to 100 x 100 unit distances of the virtual grid. The
coordinates of the k-nearest-neighbor queries are also chosen at
random within the hotspot, and the value of & is randomly chosen
between 1 and 1000.

5.2.1 Adaptiveness to Query-Workload

In this experiment, we issue 100 range queries one after the other.
All the queries are selected inside a single hotspot area. Figure 14
gives the performance of AQWA compared to a static grid and a
static k-d tree. The x-axis represents the serial number of the query
being executed. Because we are executing the queries one at a time,
the x-axis can also be viewed as the timeline. As the figure demon-
strates, in the early stages, AQWA has the same performance as that
of the k-d tree because each of them share the same hierarchy ini-
tially. As queries get processed over time, AQWA repartitions the
data and starts to have better performance than the k-d tree and the
grid. Because the queries are chosen at random around the hotspot
area, some queries may hit a well-decomposed partition, while oth-
ers may hit a relatively big partition. Hence, the performance curve
exhibits some instability at the early stages, but it eventually stabi-
lizes after Query 50. From the figure, AQWA achieves 2 orders of
magnitude gain over the static k-d tree, and one order of magnitude
over the grid.

— Static Grid
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Processed Query

Figure 14: The performance of AQWA compared to a grid and
a k-d tree for a given query-workload. As the workload gets
learned, AQWA reorganizes the data leading to better perfor-
mance.

Figure 15 gives the overhead of repartitioning the data. On the
one hand, because the grid and the k-d tree are static, they have no
repartitioning cost. On the other hand, AQWA incurs repartition-
ing cost, but it is amortized across subsequent query executions.
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Figure 15: The overhead of repartitioning in AQWA.

For instance, Query 7 and Query 50 result in repartitioning of the
data, which incurs a spike overhead of slightly less than 100 sec-
onds. However, this repartitioning pays off for Query 51 and all the
subsequent queries. Notice that the alternative would have been to
perform a whole reconstruction of all the partitions, which exhibits
similar construction time to that of the initialization phase, i.e., in
the order of 45-60 minutes.

Although the repartitioning process incurs an overhead, it does
not interfere with the execution of the other concurrent or incoming
queries. Splitting a partition, say p, into two new partitions still
leaves p available to other concurrent queries until the two splits get
completely created. Hence, the overhead exhibited during splitting
a partition does not affect the performance of the other concurrent
or incoming range queries that reference p or that reference other
regions of the space that are not affected by the split. The same is
true for the merging process.

5.2.2 Handling Multiple Query-Workloads

In this set of experiments, we study the effect of having two or
more query-workloads. We generate 10 different query-workloads.
To have realistic workloads (where dense areas are likely to be
queried with high frequency), we identify 10 hotspot areas (each
of size 100 x 100 unit distances) that have the highest density of
data. Similarly to the above experiments, for each of these hotspot
areas, we generate 1000 range and k-nearest-neighbor, where the
coordinates of the queries are chosen to lie within the hotspot. The
coordinates of the ranges of the queries are chosen at random within
the hotspot, but are bounded to 100 x 100 unit distances of the vir-
tual grid. The coordinates of the k-nearest-neighbor queries are
also chosen at random within the hotspot, and the value of k is
randomly chosen between 1 and 1000.

In the experiments to follow, we have two modes of operation:

1. Interleaved Execution: In this mode, queries are exe-
cuted across the hotspots simultaneously (i.e., generated in
a round-robin across the hotspots). For instance, if we have
1000 queries and 2 hotspots, say h1 and he, the first query
will be executed at h1, the second query will be executed at
h2, the third query will be executed at k1, and so on.

2. Serial Execution: In this mode, queries are executed over
one hotspot at a time. In other words, we simulate the mi-
gration of the workload from one hotspot to another. For
instance, if we have 1000 queries and 2 hotspots, the first
500 queries will be executed over one hotspot, followed by
the other 500 queries executed over the other hotspot.

In the first experiment, we pick two hotspots and execute
100 queries using the interleaved mode of execution. As Fig-
ure 16 demonstrates, AQWA succeeds to adapt to two simultaneous
hotspots.
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Figure 16: Interleaved execution of the queries for two hotspot
areas.

In the second experiment, we pick two hotspots and execute 50
queries using the serial mode of execution. As Figure 17 demon-
strates, AQWA quickly adapts to the shift in the hotspot locations.
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Figure 17: Serial execution of the queries for two hotspot areas.

Observe that in the second experiment, 50 can be considered as
a few number of queries. As explained in Section 4.2.3, AQWA
can easily adapt to the change in the workload in this case. How-
ever, when the number of executed queries gets large, AQWA may
delay the repartitioning process due to the high weights that corre-
spond to partitions in the min-heap of the dual priority queues. To
study this issue, we repeat the above experiment (i.e., serial mode
of execution) with 1000 queries executed at each hotspot, and also
increase the number of hotspots to 9. We examine the time-fading
mechanism proposed in Section 4.2.3 that assigns lower weights to
older queries. We set 7' = 100 and the decay factor ¢ = 2, i.e.,
every 100 queries, the counts are demolished by a factor of % We
monitor the average speedup achieved by AQWA when compared
to a static kd-tree partitioning.

Figure 18 gives the performance of AQWA compared to a static
kd-tree partitioning. The y-axis represents the speedup achieved by
AQWA, while the x-axis represents the timeline of the serial exe-
cution of the 9 hotspots, i.e., all 1000 queries in Hotspot 1 are pro-
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Figure 18: The effect of time-fading weights on the serial execu-
tion of queries over 9 hotspot areas (1000 queries per hotspot).

cessed, followed by all the 1000 queries in Hotspot 2, and so on.
As the figure demonstrates, the time-fading mechanism achieves
orders of magnitude gain in performance. Without time-fading,
AQWA fails to achieve good performance gains when the work-
load shifts from one hotspot to another. For instance, for Hotspot
2, the weights of the partitions that result from Hotspot 1 prevent
AQWA from performing any repartitioning. In contrast, with time-
fading, the effect of older queries (from Hotspot 1) is alleviated,
and AQWA is able to appropriately update the partitions.

6. CONCLUDING REMARKS

AQWA is an adaptive query-workload-aware partitioning mech-
anism for large-scale spatial data. Without prior knowledge of
the query-workload, AQWA can incrementally update the data
partitioning layout in a way that minimizes the execution time
of spatial queries. AQWA has the ability to react to permanent
changes changes in the query-workload, and incrementally update
the data partitions accordingly. AQWA employs a time-fading cost
model that captures both the data distribution and the frequency of
the queries. AQWA maintains a set of main-memory structures,
namely a grid and dual priority queues, to efficiently manage the
process of repartitioning the data. Experimental results that are
based on real spatial data and various query-workloads demonstrate
that AQWA outperforms the standard spatial partitioning mecha-
nisms by up to two orders of magnitude in terms of query perfor-
mance.
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