PartLy: Learning Data Partitioning for Distributed
Data Stream Processing

Ahmed S. Abdelhamid and Walid G. Aref

{samy,aref}@purdue.edu
Department of Computer Science, Purdue University
West Lafayette, Indiana

ABSTRACT

Data partitioning plays a critical role in data stream pro-
cessing. Current data partitioning techniques use simple,
static heuristics that do not incorporate feedback about the
quality of the partitioning decision (i.e., fire and forget strat-
egy). Hence, the data partitioner often repeatedly chooses
the same decision. In this paper, we argue that reinforcement
learning techniques can be applied to address this problem.
The use of artificial neural networks can facilitate learning
of efficient partitioning policies. We identify the challenges
that emerge when applying machine learning techniques
to the data partitioning problem for distributed data stream
processing. Furthermore, we introduce PartLy, a proof-of-
concept data partitioner, and present preliminary results that
indicate PartLy’s potential to match the performance of state-
of-the-art techniques in terms of partitioning quality, while
minimizing storage and processing overheads.

ACM Reference Format:

Ahmed S. Abdelhamid and Walid G. Aref. 2020. PartLy: Learn-
ing Data Partitioning for Distributed Data Stream Processing. In
aiDM °20: Third International Workshop on Exploiting Artificial Intel-
ligence Techniques for Data Management, June 19, 2020, Portland, OR.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/1122445.
1122456

1 INTRODUCTION

Data partitioning is a well-studied problem in distributed
stream data processing [2, 6, 8-11, 15, 16, 19]. The basic par-
titioning techniques are shuffling, and hashing. In shuffle
partitioning, data tuples are assigned to processing nodes
in a round-robin fashion based on the order of arrival (see

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

aiDM °20, June 19, 2020, Portland, Oregon, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-9999-9/20/06. .. $15.00
https://doi.org/10.1145/1122445.1122456

Figure 1aa). Shuffle partitioning guarantees that all the pro-
cessing nodes receive even workload even with dynamic
input data rates. However, shuffle partitioning has a major
drawback. It does not insure key locality, i.e., tuples with
the same key are not necessarily sent to the same node. In
contrast, hash partitioning, also termed Key Grouping [16],
applies a hash function over one or more particular fields
of each tuple, i.e., a partitioning key, to route the tuple into
a processing node (see Figure 1b). Thus, hash partitioning
assigns all the data tuples with the same keys to the same
processing node. However, in case the input data stream is
skewed, some key values will appear more often than others.
Thus, hash partitioning would result in unbalanced input
to the processing nodes. The state-of-the-art in stream data
partitioning techniques applies static heuristics to achieve
the benefits of both the shuffling and the hashing techniques.
One example is to split the skewed keys only over multiple
nodes [15, 16]. In order to achieve that, the data partitioner
applies multiple hash functions to the tuple’s partitioning
key to generate multiple candidate assignments for the data
tuple. Then, the partitioner selects the node with the least
number of tuples at the time of the decision. In order to re-
alize this objective, the partitioner maintains the following
two statistics in real-time: (1) The number of tuples assigned
to each processing node, and (2) Counts on the input data
distribution to detect the skewed keys and split them. These
partitioning techniques rely on static heuristics and do not
learn from previous experiences. The data partitioner never
learns from previous good or bad decisions.

In this paper, we present our vision of a learning-based
data partitioner that leverages prior experience, aiming to
learn how to partition future data tuples more effectively (i.e.,
for better load-balancing) and efficiently (e.g., without the
counting structures). We use reinforcement learning that has
been successfully used in various data management problems
including query optimization, indexing, and query schedul-
ing (e.g., [7, 13, 14]. Reinforcement learning is a process by
which an agent learns a task through continuous feedback
with the help of a neural network. Existing machine learning
techniques can provide effective load-balanced data partition-
ing with less counting overhead. To the best of our knowl-
edge, this work is the first to realize a data stream partitioner

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

aiDM °20, June 19, 2020, Portland, Oregon, USA

. Batch Interval
.®§ 0000 © 000
¢ t

y

. Batch Interval
.Of .O..0.0.f A
t, t

Batch Interval = -t
No. of Blocks =3

Batch Interval =t -t
No. of Blocks =3

Data Block Batch Data Block Batch

(a) Shuffle Partitioning (b) Hash Partitioning

Figure 1: Data Partitioning Techniques

using reinforcement learning. Section 2 presents the chal-
lenges in adopting learned data partitioning for data stream
processing. Section 3 introduces PartLy , a learned data par-
titioner that relies on deep reinforcement learning [3]. Sec-
tion 4 presents preliminary results that demonstrate PartLy’s
potential to match state-of-the-art techniques. Section 5 de-
scribes our ongoing and related work.

2 CHALLENGES

In this section, we identify the challenges faced when ap-
plying learning techniques to the data partitioning problem.

2.1 Real-time Processing

The nature of execution in data stream processing systems
requires the partitioning techniques to make a swift per-tuple
decision upon tuple arrival. Otherwise, stream processing
will be interrupted. The input data rate can be in millions
of tuples per second. Processing individual tuples through
a neural network in real-time is challenging. One possible
solution is to use micro-batched stream processing (e.g., [18])
to amortize the cost over a group of tuples. In contrast to
tuple-at-a-time stream processing, the partitioning decision
is taken collectively for a group of tuples that are buffered
within a batch. Hence, the data tuples are assigned to data
blocks and consequently each data block is assigned to a
processing node. Furthermore, PartLy operates on key value
of tuples within a batch (i.e., one decision is given to all
keys sharing the same key value within a micro-batch). This
significantly decreases the overhead of PartLy.

2.2 Huge Decision Space

The number of possible assignments of data tuples within
a batch to processing nodes is exponential. In this version
of PartLy, we restrict the partitioning of one key value to only
two processing nodes (as in [16]). PartLy adopts [16]’s cost
model that uses the number of tuples assigned to a processing
node to calculate the reward for the training episodes [16].

2.3 Random Data Arrival

The data partitioner should process randomly-arriving data
tuples over time. Training reinforcement learning algorithms
requires "training" episodes with finite time horizon. The
randomness in streamed data distribution creates difficulty

Abdelhamid and Aref

Reducer
Buckets

Data Stream
000000
—_—

Buffering &
Partitioning

+~—— Batching Time —se—— Processing Time —e
End-to-End Latency —— o

Aggregate of . ——
seree OCO""“"WSI IShort-lived ... In-Memory

© Data Tuple A X artiti !
p K, per Map_l Partitioner | Jlmsk """ Data Block

Figure 2: Example of micro-batch stream processing with
3 Map and 2 Reduce tasks, and a Stream Receiver (SR;)
with PartLy to partition a micro-batch into data blocks.

Reward _
— | Agent Experience }—4\
] Hidden Layers
5
= %
Batched |8 =
Date ~ |8 S
<Key, Count> 8
(D]
> .
L] State Layer Action Layer
Initial
Stat 5
ate Environment

Terminal State Sporiz
Streaming

Figure 3: Proposed PartLy Design

in training due to the variance in computing the reward of
episodes. Due to this randomness, each micro-batch often
contains a different number of keys with different counts.
PartLy uses a recent technique for input-driven environ-
ments [12], where the running-average is used to compute
the reward over the episodes.

3 DESIGN OF PartLy
3.1 The Data Partitioning Problem

The distributed micro-batched stream processing model ex-
ecutes a continuous query using consecutive, independent,
and stateless Map-Reduce tasks over small batches of streamed
data. Fach micro-batch is partitioned based on the supported
level of parallelism, i.e., the number of processing nodes. We
term every partition a data block. Let b; be the ith data block.
The input data S is an infinite stream of tuples. Each tuple
t = (s, k,v) where 1 is a timestamp set by the stream’s orig-
inating source, k is a key that is used to partition the tuples
for distributed processing, and v is a value that can be sin-
gle or multiple data fields within the data tuple. In Figure 2,
the execution graph shows the physical details of execution,

PartLy: Learning Data Partitioning for Distributed Data Stream Processing

_Batch Interval processing Time

20

<E| Batch 1 | iBalchZ | iBalch} | iBalch4
z { Bacnt | [Buena| J{ Bucns| J[Buchs |

atchin,

B

— time
Batch Partitioning

i System

- et Batch ..\ Buffering Processing
! Heartbeat Batch Cutoft (D Partitioning BalChl Bath i | poch i
Figure 4: Processing Model

e.g., the level of parallelism (the number of Map and Reduce
tasks, data partitioning), the order of task execution, and
data dependencies among the tasks. For each micro-batch,
PartLy aims to provide even input to all processing nodes
to maximize throughput and system utilization (See [17]).
PartLy’s data partitioning scheme has the following con-
straints: (1) The batch size is a system parameter to meet
an end-to-end latency required by the user. (2) Computing
resources are fixed, i.e., the number of processing nodes is
a user parameter. Figure 4 gives an overview of PartLy’s
micro-batched stream processing model. In the batching
phase, PartLy collects key counts to partition the data blocks
for execution over the processing nodes.

3.2 State Representation

PartLy uses a vector for each state to represent information
about the batched data and the assignment to data blocks.
Each state represents a partial assignment of keys to data
blocks. Each vector is a row of size n, where n is the number
of keys in the batch. Let v; be the number of tuples having
Key k; in the batch. v; is set to 0 when a key is fully assigned
to one or two data blocks. The assignment of keys to data
blocks is captured using a matrix M of size n = m for each
episode. The value M;; is one if k; is assigned to Block;. This
value is zero if no tuples of k; is assigned to Block;. M;; = 0.5
if k; is split across two data blocks. Figure 5 shows a generic
representation of an episode in PartLy.

3.3 Training Process

PartLy uses reinforcement learning, where an agent interacts
with the defined environment (See Figure 3). The environ-
ment informs the agent of its current state, s;, and the set
of potential actions A; = {ay, a1, ..., a, } that the agent can
choose from. The agent executes an action a € A;, and the
environment responds to the agent with a reward r;. The
environment provides the agent with a new state s;+; and a
new action set A;;; that reflects the status after the recent
action. This process repeats until a terminal state is reached
(i.e., when no more actions are available to execute). This
marks the end of an episode after which a new episode may
begin. The objective of an agent is to maximize the reward
over episodes by learning from the agent’s previous actions.

aiDM ’20, June 19, 2020, Portland, Oregon, USA

Micro-batch: <k;,v;>, <k, v,>, <k3v;>, <k,v,>, <ksvs>, ...<k,v,>

States

by by b by by b, by b, b, by by b,

Action: k; 2b; | Action: k;2b; bs | Action: ki Db by | wweeweeeerens Final

b, b, b, b, b b, by b, b, b b by
ko 0 0 0 k1 0 k1 0 0 0
ko 0 0 o0 ko o ko 2oz o 1o g
i0 0 0 0 io o P00 0 0 0 0 0 1
ko 0 0 0 ko o ko 0 0 0 KO 0 1 0

K1 0 0 0

o o o o
o o o o

Partitioning Vectors

Figure 5: Action in Training Episodes

PartLy treats every batch of data as an episode, and learns
continuously over the multiple batches. PartLy uses a policy
gradient method to select actions based on Policy 7y (i.e.,
neural network), where 6 is a vector of policy parameters.
The policy 7 is optimized over episodes by modifying its
parameters 6 (i.e., the neurons’ weights) to generate the best
reward. PartLy uses the cost model of the partitioner in [16]
to compute the rewards of episodes. The cost model relies
on checking the difference in sizes between the largest and
smallest data blocks. The agent’s objective is to minimize
this difference. Figure 3 gives an overall view of PartLy. The
micro-batch statistics (i.e., the list of <k,v> pairs) is vectorized
and is inserted into the state layer. Values are transformed
and are passed to hidden layers, and finally to the action
layer. The output of the action layer is normalized to form a
probability distribution to allow for action selection. Rewards
are computed only for a terminal state, i.e., when all keys
are assigned. The intermediate states have a zero reward.
In addition, the final reward is computed using a running
average over the previous episodes to avoid randomness ef-
fect and promote generating a general policy. To train the
model, PartLy uses the Proximal Policy Optimization (PPO)
algorithm [4] within TensorForce [5]. Training takes around
20,000 one-second batches of data (5.5 hours).

4 PRELIMINARY EVALUATION

We present some promising results that demon-
strate PartLy’s ability to generate sound partitioning.
In the experiments, we use the WordCount query that
performs a sliding window count over 30 seconds over a
stream of tweets. For data partitioning, each tweet is split
into words that are used as the keys for the tuple. The query
is written in map-reduce. Experiments are conducted for an
execution setup of 5 nodes with 8 cores each (i.e., the number
of data blocks is 40). Apache Spark v2.0.0 is the processing
engine. The micro-batch interval is fixed to 1 second. We
use the tweets dataset to generate batches with different
number of keys (i.e., ranging from few keys to thousands
of keys). We assess the effectiveness of PartLy using two
metrics: Partitioning Time and Partitioning Quality. We

aiDM °20, June 19, 2020, Portland, Oregon, USA

Partitioning Quality

Partitioning Time

Abdelhamid and Aref

Storage Requirements

1))
2 o
= D 100 100
=08 2
=] g s0 /a0
Qos ~ &
o g 60 = 60
Eo04 = 8
z = 40 N 40
g 0.2 I I I I 20 i 20 I
= | | I 1 € oo -0 N aH o | o A 0.
A 1050 100 250 500 1000 2500 5000 10000 = 1050 100 250 500 1000 2500 5000 10000 1050 100 250 500 1000 2500 5000 10000
Number of Keys E Number of Keys Number of Keys
®PK2 ®Parilly mHashing W =PK2 mPariLy =PK2 mPartLy

(a) Partitioning Quality

(b) Partitioning Time

(c) Storage Requirements

Figure 6: PartLy Partitioning Effectiveness

compare with traditional and state-of-the-art techniques:
Shuffle, Hashing, and PK-2 [16]. Figure 6a compares the
partitioning quality metric achieved for all the techniques
relative to the Shuffle technique, where size balancing
is guaranteed at the expense of broadcasting keys to all
data blocks (i.e., increased overhead at the processing
nodes). PartLy demonstrates the ability to match PK2’s
performance [16] in providing load-balanced partitions.
We verify the partitioning strategies for both algorithms
on Spark Streaming engine. The difference in latency
between PartLy and PK2 is below 5% for this workload.
Figure 6b gives the partitioning cost in terms of the required
time to process a micro-batch and provide a partitioning
strategy. PartLy shows potential to outperform PK2 [16]
w.r.t. speed as the number of keys increases. Thus, PartLy’s
ability to provide a sound partitioning strategy in less time
is promising. Also, from Figure 6c, PartLy requires less space
in contrast to PK2’s increased demand for book-keeping as
the number of keys increases.

5 FUTURE DIRECTIONS

PartLy demonstrates that there is potential for applying rein-
forcement learning to the data partitioning problem, which
opens exciting research directions as we highlight below:

Run-time Optimization: We plan to use the actual latency
of executing a computation on Spark Streaming to compute
the reward for the training algorithm. PartLy uses PK2’s
cost model [16] to bootstrap the training process for a large
number of episodes. We plan to enrich the learning process
by mimicking more optimized techniques with richer action
spaces, e.g., ones where cardinality and aggregation costs of
data partitioning decision are considered (e.g., [1, 8, 17]). In
addition, we plan to explore better representations for the
action space, e.g., to allow the model to split a key over a
larger number of processing nodes or with varying ratios.
Also, we plan to integrate PartLy into the blocking module
of Spark Streaming to offer real-time learned partitioning.

Learned Elastic Scheduling: PartLy assumes a fixed num-
ber of processing nodes. We plan to expand PartLy to allow
for a dynamic number of data blocks, hence enabling learned
elasticity. This would allow the learned data partitioner to

decide on the number of data blocks to match the user’s
requirements (e.g., to enforce a target latency as part of a
Service Level Agreement).

ACKNOWLEDGMENTS

Walid G. Aref acknowledges the support of the U.S. NSF
under Grant Numbers: 11S-1910216 and I1I-1815796.

REFERENCES

[1] Prompt: Online data-partitioning for distributed micro-batch stream-
ing systems. In Sigmod, 2020.

[2] C.Balkesen and N. Tatbul. Scalable data partitioning techniques for
parallel sliding window processing over data streams. In 8th Inter-
national Workshop on Data Management for Sensor Networks (DMSN),
2011.

[3] A.K. et. al. Brief survey of drl. In IEEE Signal Processing, 2017.

[4] S.]J.etal. Proximal policy optimization algorithms. In arXiv, 17.

[5] S.M.et.al. Tensorforce: A tensorflow library for applied reinforcement
learning. In https://github.com/reinforceio/tensorforce.

[6] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez.
Streamcloud: A large scale data streaming system. In International
Conference on Distributed Computing Systems, 2010.

[7] S.B.V.Z. M. M. A. Hongzi Mao, Malte Schwarzkopf. Learning sched-
uling algorithms for data processing clusters. In SIGCOMM, 2019.

[8] N.R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. A holistic
view of stream partitioning costs. In VLDB, 2017.

[9] A. A.B. Lima, M. Mattoso, and P. Valduriez. Adaptive virtual parti-
tioning for olap query processing in a database cluster. In Journal of
Information and Data Management, volume 1, pages 75-87, 2010.

[10] M. Liroz-Gistau, R. Akbarinia, D. Agrawal, E. Pacitti, and P. Valduriez.
Data partitioning for minimizing transferred data in mapreduce. In
Globe, 2013.

[11] M. Liroz-Gistau, R. Akbarinia, E. Pacitti, F. Porto, and P. Valduriez.
Dynamic workload-based partitioning for large-scale databases. In
DEXA, pages 183-190, 2012.

[12] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh.
Variance reduction for reinforcement learn- ing in input-driven envi-
ronments. In ICLR, 2019.

[13] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Pa-
paemmanouil, and N. Tatbul. Neo: A learned query optimizer. In arXiv,
2018.

[14] R. Marcus and O. Papaemmanouil. Deep reinforcement learning for
join order enumeration. In aiDM, 2018.

[15] M. A. U. Nasir, G. D. F. Morales, N. Kourtellis, and M. Serafini. When
two choices are not enough: Balancing at scale in distributed stream
processing. In ICDE, 2016.

PartLy: Learning Data Partitioning for Distributed Data Stream Processing aiDM ’20, June 19, 2020, Portland, Oregon, USA

[16] M. A. U. Nasir, G. D. F. Morales, D. G. Soriano, N. Kourtellis, and stream processing at scale. In SOSP, 2017.
M. Serafini. The power of both choices: Practical load balancing for [18] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized
distributed stream processing engines. In ICDE, 2015. streams: Fault-tolerant streaming computation at scale. In SOSP, 2013.
[17] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi, [19] E. Zeitler and T. Risch. Massive scale-out of expensive continuous

M. J. Franklin, B. Recht, and I. Stoica. Drizzle: Fast and adaptable queries. In VLDB, 2011.

	Abstract
	1 Introduction
	2 Challenges
	2.1 Real-time Processing
	2.2 Huge Decision Space
	2.3 Random Data Arrival

	3 Design of PartLy
	3.1 The Data Partitioning Problem
	3.2 State Representation
	3.3 Training Process

	4 Preliminary Evaluation
	5 Future Directions
	References

