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Abstract even when input streams represent append-only relations.

) ) ) For example, consider an application monitoring a park-

Prior work on languages to express continuous queries jng |ot where two sensors continuously monitor the lot's
over streams has defined a stream as a sequence of tUantrance and exit. The sensors generate two streams of
ples that represents an infinite append-only relation. In identifiers, says, andS., for cars entering and exiting the
this paper, we show that composition of queries is not ot respectively. A reasonable query in this environment is
possible in the append-only model. Query composition ¢, :“Continuously keep track of the identifiers of all cars in-
is a fundamental property of any query language - com- sjge the parking lot” The answer o is aviewthat, at any
position makes it possible to build up complex queries time pointT, contains the identifiers for cars that are inside
from simpler queries. We then propose a query language,the parking lot.S, can be modeled as a stream that inserts
termedSynchronized SQL  (or SyncSQL), thatdefines  typles into an append-only relation, s&¢S ;) and, simi-
a stream as a sequence of modify operations (i.e., insert, UP1arly, S, inserts tuples into the append-only relati(s ) .
date, and delete) against a relation with a specified schema.ThenQ1 can be regarded asmaterialized viewthat is de-
Inputs and outputs in angyncSQL query are interpreted  fined as the set-difference between the two relatifs)
in the same way and, henc8ncSQL expressions can be  andR(S ,) . As tuples arrive o1$; andS,, the correspond-
composed. Coarser periodic refresh requirements are typ-jng relations are modified, and the relation representing the
ically expressed as sliding-window queries. We generalize qg|t ofQ, is updated to reflect the changes in the inputs.
this approach by introducing the synchronization principle The result ofQ, is updated bynsertingidentifiers of cars
that empowersSyncSQL with a formal mechanism to €x-  entering the lot andleletingidentifiers of cars exiting the
press queries with arbitrary refresh conditions. After intro- |4t Notice that, although the input relations@ change
ducing the semantics and syntax, we lay the algebraic foun-by only inserting tuples (i.e., append only), the outpupf

dation for SyncSQL and propose a query matching algo- changes by both insertions and deletions.

rithm for deciding containment @yncSQL expressions. The answer to quer@ can be output either as (1) a

completeanswer, or (2) aincrementalanswer. In the first
) case, at any time poiri, the issuer of), sees a state, i.e.,
1 Introduction a relation containing identifiers of all cars inside the lot
at timeT. In the second case, the issuer@f receives a
Query languages in the streaming literature (e.g., [2, 7, stream that represents the changes (i.e., insertions and dele-
8, 11, 25]) define a stream as a sequence of tuples that reptions) in the state. The output in the incremental case is
resents an infinite append-only relation. Languages basednterpreted in the same way as the inputs, namely, as a
on the append-only model are not closed, that is, the re-stream that represents modifications to an underlying re-
sult of a query expression is not necessarily an append-onlylation. However,Q,’s incremental answer cannot be pro-
relation. This has the effect that query expressions cannotduced or consumed by a query in a language that models a
be freely composed, that is, expressing a query in terms ofstream as an append-only relation. Existing languages may
one or more sub-queries as can be done, for example, withproduce output streams fro@ but the output streams are
SQL queries in relational databases. Composition is a fun-interpreted differently from the input streams. For exam-
damental property of any query language but it requires thatple, the output may be modeled as a stream representing a
query inputs and outputs are interpreted in the same way.concatenation of serializations of the complete answer (e.qg.,
However, in the append-only stream model a continuous RStream in CQL [2], and the output of window queries in
qguery may not be able to produce an append-only outputTelegraphCQ [8]). As another alternative, CQL divides the



output into two append-only streams such that one streanmrepresentation. (b) Cannot produce incremental answer for
represents the insertions in the output and the other streangueries that do not produce an append-only output. (c) Can-
represents the deletions (i.e., IStream and DStream). not always compose queries because of the different inter-
The different interpretation and the division of an out- pretation and/or division of the output streams. (d) Refresh
put stream prevents composition of queries, that is, usingcondition are restricted to be either time or tuple-based.
the output of a query as the input to another queries or In this paper, we introduce a continuous query lan-
building up complex query expressions from simpler ex- guage for data streams, term&ynchronized SQL
pressions. Composition is a fundamental requirement on(SyncSQL for short), that avoids the previous limitations.
any query language and particularly important in streaming In contrast to other language®yncSQL defines the stream
environments that are characterized by concurrent, overlap-as a sequence of modify operations (i.e., insert, update, and
ping queries. For example, consider the following query, delete) against a relation with a specified schema. Basically,
Q,, from the same application:Group the cars inside the a continuous query iByncSQL is semantically equivalent
parking lot by type (e.g., trucks, cars, or buses). Continu- to amaterialized viewvhere the inputs are relations that are
ously keep track of the number of cars in each graupy modified by streams of modify operations. The answer of
analyzing the two querie§ andQ,, itis obvious that), is the query is another stream of modify operations that repre-
an aggregate query over the outpuf®f This observation = sent changes in the result of the view. This is equivalent to
motivates the idea of defining, as a view, say; and then, incremental maintenance of materialized views [17]. The
expressing botkQ, andQ; in terms ofV;. However, realiz-  unified representation of query inputs and outputs enables
ing this requires a language that allows query composition. the composition o5yncSQL expressions, and as a result,
In streaming applications with high tuple arrival rates, gives the ability to express and exploit views over streams.
an issuer of continuous queries may not be interested inre- To cope with the coarser refresh requirement of con-
freshing the answer in response to every tuple arrival. In-tinuous queries, we introduce tisgnchronization princi-
stead, coarser refresh periods may be desired. For examplgyle. The idea is to formally specify synchronization time
instead of reporting the count of cars with every change in points at which the input tuples are processed by the query
the parking lotQ, may be interested in updating the count pipeline. Input tuples that arrive between two consecu-
of cars in each groupvery five minutesThis refresh condi-  tive synchronization points are accumulated and reflected
tion is based on time but a powerful language should allow in the output at once at the next synchronization point. The
a user to express more general refresh conditions based oaynchronization principle makes it possible to (1) express
time, tuple arrival, events, relation state, and so on. queries with arbitrary refresh conditions, and (2) formally
In addition to preventing query composition, the append- reason about the containment relationship among queries
only model limits the applicability of the language because with different refresh periods.
streams may have denotations other than the append-only The contributions of this paper are summarized as fol-
relation [22]. For example, update streams are used in applilows:
cations where objects continuously update their values. For
example, consider a temperature-monitoring application in e SyncSQL semantics and syntax:We define concise
which sensors are distributed in rooms and each sensor con-  semantics and syntax for continuous queries and views
tinuously reports the room temperature. A reasonable query over streams.
in this environment isQ);: “Continuously keep track of the

rooms that have temperature greater than 80feither the e SyncSQL algebra: We lay the algebraic foundation
input nor the output streams @; represent append-only for SyncSQL by providing data types, operators, al-
relations. The input irfQ; is an update stream in which, gebraic laws and transformation rules that are needed
a room identifier is considered a key and an input tuple is to enumerate query plans.

an update over the previous tuple with the same key value.
The output tuples fron®; represent incremental changes in
the answer and include insertions and deletions for rooms
that switch between satisfying and not satisfying the query
predicate.

e Shared execution using query composition:Based
on the algebraic framework, we propose a query
matching algorithm that is used to deduce the contain-
ment relationships among query expressions. The con-
tainment relationship is used to achieve shared execu-

1.1 Our Approach tion using query composition.

e Execution model: We present a pipelined and
We can summarize the limitations of the existing con- incremental execution model to efficiently realize
tinuous query languages as follows. (a) Cannot express SyncSQL queries in a data stream management sys-
gueries over streams other than the append-only relation tem.



1.2 Paper Outline

The rest of the paper is organized as follows. Section 2
introduces the semantics and syntasghcSQL. The syn-
chronization principle is explained in Section 3. In Sec-
tion 4, we lay the algebraic foundation f8yncSQL. The
shared query execution algorithm is given in Section 5.
In Section 6, we give an incremental execution model for
SyncSQL queries. Section 7 surveys the existing works

for continuous queries and contrasts our approach with theRoomID and Temperature

other approaches. Finally, Section 8 concludes the paper.

2 SyncSQL Semantics and Syntax

In short, a continuouSyncSQL query is semantically
equivalent to a materialized view over one or more relations
where the input relations are updateddtgeamsof modify
operations.

2.1 Stream, Query, and View Semantics

Stream semantics. A data stream is a sequence of

tuples that are sent by remote data sources (e.g., sen

sors) [2, 8, 25]. By considering the wide variety of
streaming applications, the same stream may be interprete
differently by the different applications. For example,
consider a stream, sayemperatureSource , that

is sent by sensors in a temperature-monitoring applica-

tion. Assume that a tuple iTemperatureSource

reports a certain room’'s temperature and is denoted'"NSert operatio

by “<RoomID,Temperature >Timestamp ".
One application, sayApplication i, may consider
TemperatureSource as an update stream over the
various rooms temperature. In this cadgpomiID is

considered a key and a tuple is considered an updateRoomTempStr_

over the previous tuple with the same key value. On the
other hand, another application, s@pplication o,
may view theTemperatureSource  stream as just a
sequence of temperature readings and ignordRttnamID
attribute. Notice that, the same continuous query over
TemperatureSource  produces different answers under
the different application-dependent semantics.

In order to capture the various application-dependent
semantics SyncSQL distinguishes between two types of
streamsraw andtagged A raw stream is a sequence of tu-

#ons.
emperatureSource

The function that transforms a raw input stream to
a corresponding tagged stream is application-dependent
where the same raw input stream can produce differ-
ent tagged streams under different transformation func-
tions. For example, in a temperature-monitoring appli-
cation, araw input stream, sayremperatureSource
is sent by remote sensors where an input tuple in the
raw stream reports a room temperature. A tuple in the
TemperatureSource  stream consists of two attributes:
One application, say
Application 1, may consideTemperatureSource
as an update stream over the various rooms temperature. In
this caseRoomID is considered a key and a tuple is con-
sidered an update over the previous tuple with the same
key value. On the other hand, another application, say
Application 5, may view theTemperatureSource
stream as just a sequence of temperature readings and ig-
nore theRoomID attribute.

Assume that an input tuple ihemperatureSource
is denoted by <«RoomlD,Temperature >Time-
stamp ”. In Application 1, TemperatureSource
represents an update stream over the various room tem-
peratures and the corresponding tagged stream, say
RoomTempStr, consists ofinsert and update opera-
i Basically the tagging procedure takes an input
tuple and produces a corre-
sponding tagged tuple irRoomTempStr as follows:
the first tuple in TemperatureSource with a cer-
tain RoomID value is transformed into a corresponding
n *<RoomlID,Temperature >Time-

stamp” in RoomTempStr. A subsequent tu-
ple in TemperatureSource with the same
RoomID is transformed into an update tuple

“u<RoomID,Temperature >Timestamp " in
Notice that the tagging function
needs to keep a list of the observed key (iRgomID)
values so far.

On the other hand, in the case Application o,
TemperatureSource represents an infinite append-
only relation and the corresponding tagged stream, say
TempStr , is a sequence dhsert operations where each
tuple “<RoomlD,Temperature >Timestamp ” in
TemperatureSource s transformed to a corresponding
insert operation +<RoomlID,Temperature >Time-
stamp " in TempStr .

ples that are sent by the remote sources. On the other hand, In the query processing phase, the transformation (or
ataggedstream is a stream of modify operations (i.e., in- tagging) function is implemented inside an operator, called
sert (+), update(u), and delete(-)) against a relation with aTagger , that is placed at the bottom of a query pipeline.
specified schema. A raw stream must be transformed intoln Application 1, the functionality of thelTagger op-

a tagged stream before being used as input in a query. Thierator is similar to that of thtMERGHor UPSERY op-

is similar to the relational model in traditional databases erator in theSQL:2003 standard [12]. Basically, in
where the raw data has to be transformed into relations be-Application |, Tagger needs to keep a list of all the
fore being used in a query. observed key values (i.eRoomID) so far. The size of



the key list has an upper bound that is equal to the max-

imum number of rooms. However, implementing the tag-

ging function as an operator opens the room for the query

optimizer to re-order the pipeline and optimize the mem-
ory consumption. For example, tAi@agger operator can
be pulled above th8elect operator so that only qualified
rooms are stored in the key list. The details of query pro-
cessing and optimization is beyond the scope of this paper

Example 1 This example demonstrates the syntax for

defining streams and the mapping from raw to tagged

streams. The rawemperatureSource  stream is de-
fined inSyncSQL by the following statement:

REGISTER SOURCE TemperatureSource
(char RoomID, int Temperature) From
port5501
whereRoomID and Temperature represent the stream
schema andport5501 is the port at which external
sources report tuples. The tagged streams are defined ov
the sourc&emperatureSource  as follows:

RoomTempStr: CREATE STREAM
RoomTempStr
OVER TemperatureSource
KEY RoomID
TempStr: CREATE STREAM TempStr

OVER TemperatureSource
KEY NULL

Running example: Assume the following tuples arrived
at TemperatureSource : <a,100 >1, <b,75 >2,
<c,80 >3, <a,95 >4, <b,85 >5.

RoomTempStr: The following tuples represent
the corresponding taggedRoomTempStr stream:
+<a,100 >1, +<b,75 >2, +<c,80 >3,

u<a,95 >4, u<hbh,85 >5. Notice that the tuple

<a,100 >1is mappedta-<a,100 >1 while <a,95 >4

is mapped tai<a,95 >4.

TempStr : The following tuples represent the correspond-
ing TempStr tuples: +<a,100 >1, +<b,75 >2,
+<c,80 >3, +<a,95 >4, +<b,85 >5. Notice that
all the tuples inTempStr areinsertoperations.

The relational view of a tagged stream: The seman-

99
75
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75

)

a |9 R(RoomTempsStr)

(b) [a]oo] 1] [b 78] 2] |c |80] 3] [c[80] 3
| | | | |
I | | | I
+<a99>1 +<b,75>2 +<c,80>3 u<a,95>4
(@ i ’ ’ ’ ’_,RoomTempStr
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Figure 1. lllustrating Time-varying Relations.

knowledge,SyncSQL is the first language that addresses
query semantics over tagged streams.

Basically, any tagged stream, s@yhas a corresponding
time-varying relation, termeé(S) , that is continuously
modified byS’s tuples. An input tuple in a tagged stream is
denoted by Type <Attributes ~ >Timestamp ", where
Type can be either +, u, or - animestamp indicates the
time at which the modification takes plad(S) ’'s schema
ecronsists of two parts as follows: (1) a set of attributes that
corresponds t&'s Attributes , and (2) a timestamp at-
tribute, termedTS, that corresponds to th€mestamp
field of S's tuples.Timestamp is mapped t&(S) in order
to be able to express time-based windows &es will be
shown in Section 2.2. At any time point, s&yR(S) is de-
noted byR[S(T)] and is the relation resulting from apply-
ing S's operations with timestamps less than or equdl ito
an increasing order of timestamp. According to the under-
lying application ®(S) can be modified by either inserting
tuples (i.e., append-only), or by general modify operations.

Definition 1. Time-varying relation. A time-varying
relationR(S) is the relational view of a tagged stree®n
such thatR(S)= R[S(T)] vV T, whereT is any pointin
time.

Example 2 This example demonstrates the mapping from
RoomTempStr (as defined in Example 1) to a time-
varying relation. Figure la shows the following in-
put tuples: +<a,99 >1, + <b,75 >2, + <c,80 >3,
u<a,95 >4". Figure 1b givesR(RoomTempStr) with a
schema of three attributeRoomID, Temperature , and
TS. Figure 1b shows that, at tinfe R(RoomTempStr)
reflects the insertion of Roona” with temperature99. At
time 4, R(RoomTempsStr) reflects the update of Room
“a” temperature t®5.

tics of query operators (e.g., select and join) are defined Query semantics. A continuous query oven tagged

over relations. However, inputs in a continuous query are streams,S; ...

tagged streams where each stream represents modificatio
against a relation. Hence, in order to adopt the well-known
semantics of relational operato®/ncSQL queries are ex-

Sn, 1S semantically equivalent to ma-
rterialized viewthat is defined by an SQL expression over
the time-varying relations( S7) R(S,). Atany
time point, T, the query answer reflects the contents of

pressed over the tagged streams’ corresponding relationsthe underlying relations at timé&, (i.e., R[ .S1(T)]

Notice that, streams of insert and delete tuples are fre-R[S,,(T)] ). Whenever any of the underlying relations is
quently used when addressing continuous query processmodified by the arrival of a stream tuple, the modify op-
ing [1, 5, 13, 14, 23]. However, to the best of the authors’ eration is propagated to produce the corresponding set of



+<a,105>2 +<¢,95>4 -<q,105>81<,103>6 only the key value which is enough to perform deletion.

} } . } ‘ ‘ . Sout Finally, whenu<c,103 >6 arrives, a corresponding tuple

u<c,103 >6 is produced in the query answer to report
m that Room t” still qualifies the query predicate, but with a
new temperature.
< >

\ FATBLALNGE 1,708 0P TE G150 Views over streams. The unified interpretation (as

! , ‘ ’ RoomTempSi tagged streams) @yncSQL query inputs and outputs en-

0 1 2 3 4 5 6 Time ablesSyncSQL to define and exploit views over streams.
Basically, a view over streams is a nanf&ghcSQL query

Figure 2. Q; Running Example. expression that is defined once and, then, can be used as in-

put in any other query. For example, a view, 84ycan be
used as input in a query, s&y, if Q’s expression (or part

of it) is equivalentor is containedin V;’s expression. In
Section 5, we give an algorithm to deduce the containment
relationships amon§yncSQL expressions.

modify operations in the query answer in a way similar to
incremental maintenance of materialized views [17].
Query outputs. The output of a query can be provided
in two forms as follows:
(1) COMPLET®BuUtput, where, at any time point, the issuer Example 4 This example demonstrates answering queries
of the query sees a state or a relation that represents thgsing views. Consider the following quer§, (from the
complete answer of the query. The output relation is con- same temperature-monitoring application @9: “Con-
tinuously modified by the query pipeline whenever any of tinuously keep track of the rooms that have temperature

the input relations is modified. greater thanl00' . Similar toQ;, Q; can be expressed over
(2) STREAMEDoutput, where the issuer of the query RoomTempStr as follows:

receives a tagged stream that represent dékas (i.e., select STREAMED RoomID, Temperature
incremental  changes) in the answer. from R(RoomTempStr) R

where R.Temperature > 100
It is obvious thaiQ, is contained inQ;. As a result we can
benefit from query composition by definir@g as a view,
sayHotRooms,, as follows:

create STREAMED view HotRooms; as

select RoomID, Temperature

from R (RoomTempStr) R

where R.Temperature > 80
Then, the two querie®; andQ, can be re-written in terms
of HotRooms; as follows:

select STREAMED RoomID, Temperature

from R(HotRooms;) R
Qi: select STREAMED RoomID, Temperature
from R (HotRooms;) R
where R.Temperature > 100
ng example.Figure 3 shows the execution@f over
the output ofHotRooms;. Notice that the output stream
from HorRooms; is the same output stream fra@y that is
shown in Figure 2. Basically, when the tuplea,105 >2
arrives atQ, attime 2, a corresponding tupte<a,105 >2
is produced in the output. In contrastg<c,95 >4 does
not result in producing any output tuples sirg& does not
qualify Q,’s predicate. Lateru<c,103 >6 results in in-
serting Room ¢” in Q,'s answer viat<c,103 >6.

Example 3 This example demonstrates the semantics and
syntax of SyncSQL queries. The temperature monitor-
ing query @Q; that is used in Section 1 , is expressed in
SyncSQL as follows:

select STREAMED RoomID, Temperature

from R(RoomTempStr) R

where R.Temperature > 80
where RoomTempStr is the input tagged stream that is
defined in Example 1.R®(RoomTempStr) is the corre-
sponding time-varying relation. The keywo8 REAMED .
indicates that the output needs to be another stream onS'
modify operations. The output stream of this query in-
cludesinsert (or updatg operations for rooms that qualify
the predicate R.Temperature > 80" and/or delete
operations for previously qualified rooms that disqualify .

. Runni

the predicate due to a temperature update.
Running example. Assume the following
RoomTempStr’s tuples have arrived &p;: +<a,78 >1,
u<a,105 >2, + <b,70 >3, + <c,95 >4,
u<a, 76 >5, u <c,103 >6. Figure 2 shows the in-
put and output streams iQ; are as follows. The input
tuple +<a,78 >1 does not result in producing any out-
put tuples, whileu<a,105 >2, which arrives at time
2, results ininserting Room “a” in the answer via the
output tuple+<a,105 >2. Similarly, when+<c,95 >4
arrives, Room ¢” is insertedin the query answer via 2.2 Window Queries
+<c,95 >4. Later, wheru<a,76 >5 arrives, Room &”
is deletedfrom the output via- <a>5. Notice that the In addition to expressing queries over non append-only
“Attributes " part of the delete tuple <a>5 specifies  streamsSyncSQL still can express sliding-window queries
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Figure 3. Query Composition.

over append-only streams. The sliding-window query
model is the most widely used window model in the exist-
ing streaming literature. A sliding window is defined by two
parameters: (Ihangethat specifies the size of the window,
and (2)slide that specifies the step by which the window
moves over the stream.

Windows may be assigned to streams (e.g., [2, 8]) or to
operators (e.g., [7, 25]). However, the same relational op-
erator (e.g., join) may have different semantics under the
different window usages. For example, if we consider the
window-per-operator usage, a window join with window
sizew, joins the input stream tuples that are within at most
w time units from each other [7]. On the other hand, if
we consider the window-per-stream usage, a binary win-
dow join has two different window sizes;; andws, one
for each stream [2].

The difference in window semantics makes it difficult
for a language that is defined by one window semantics
to express queries from the other window semantics. To
overcome this difficultySyncSQL does not assume spe-
cific window semantics. Instea@yncSQL uses a general
window model that can be used to express the various win-
dows.

2.2.1 Expressing Window Queries irByncSQL

In SyncSQL, raw input streams that represent append-only
relations are mapped to tagged streamimeértoperations
(e.g., theTempStr stream in Example 1)SyncSQL does
not use specific constructs to express sliding windows over
the append-only streams. Inste&yncSQL employs the
predicate-window query model [15] in which the window
rangeis expressed as a regular predicate invthereclause
of the query. The window'slide is expressed using the
synchronization principle as will be explained in Section 3.
The predicate-window model is a generalization of
the existing window models, since all types of windows
(e.g., window-per-stream, window-per-operator) can be ex-
pressed as predicate windows. A time-based sliding win-
dow over an append-only stream, s&yis expressed as a
predicate oveft(S) ’'s TS attribute. For example, a win-

dow join between two streamS; andSs, where two tuples
are joined only if they are at most 5 time units apart, can be
expressed by the following predicate:

R(S2).TS - 5 < R(S1).TS < R(S2).TS+5. The
window predicate can be expressed over any attribute in
the input stream tuple (ordered or non-ordered). For exam-
ple, the temperature monitoring quefy, is a predicate-
window query in which the predicate is defined over the
unorderedTemperature attribute. Moreover, sliding-
window queries in which a separate window is attached to
each input stream can be expressed using predicate win-
dows as shown by the following example.

Example 5 Consider a road-monitoring application in
which sensors are distributed to report car identifiers for
cars passing through a specified intersection. The input
streamS of car identifiers represents an append-only rela-
tion. A sliding window overS of size5 time units is es-
sentially aviewthat, at any time poinT, contains the car
identifiers that are reported between tinfless 5 andT.
Such window view is expressed ByncSQL as follows:

create STREAMED view FiveUnitsWindow as

select *

from R(S) R

where Now — 5 < R.TS < Now
The view FiveUnitsWindow  is refreshed when either
R(S) is modified orNowis changed.R(S) is modified
by the arrival ofS tuples where nev® tuples producen-
sert operations in the view's output. On the other hand,
Nowis continuously changing to indicate the current time,
and, as a resulteleteoperations are produced in the out-
put to represent expired tuples that fall behind the window
boundaries. Notice that even & consists of only insert
operationsFiveUnitsWindow s output stream includes
both insert and delete operations. In Section 3.3 we show
that the value oNowcan be represented as a view that is
continuously updated to reflect the current time.

Example 6 This example demonstrates query composition
by using ofFiveUnitsWindow  as input in another con-
tinuous query. Assume the following continuous query
from the road monitoring applicatioriy: “Group the in-
put cars by type (e.g., trucks, cars, or buses). Then con-
tinuously report the number of cars passed in the last five
time units in each group The queryQ; is expressed over
FiveUnitsWindow  as follows:

select STREAMED COUNT/(x)

from R(FiveUnitsWindow)

groupby CarType
CarCount 'output is a stream ofipdateoperations that
represents thancrementalquery answer. Amupdateopera-
tion is produced for a groug;, only whenever a car enters
and/or expires fronG. Notice that if the same query is ex-
pressed usinGOMPLETButput, then whenever the query



is refreshed, the query issuer sees the non-incremental an- R (RoomTempsir) a|os| 4
swer that includes the count of cars in each group indepen- 2 a |99 1 b |75] 2
dent from whether the group has been changed or not. The(b) b |75 2 c |80 3
non-incremental output of aggregate queries is the approach \ | | | |

. . \ \ Sync
that is followed by most of the existing systems to evaluate +<a;9>1 +<b“75>2 +<C’g0>3 <8954 2
aggregates over data streams (e.g., [7, 20]). @ i ® ® ® ® RoomTempsStr
0 1 2 3 4 Time

3 The Synchronization Principle
Figure 4. lllustrating Synchronized Relations.

If we follow the traditional materialized view semantics,
aSyncSQL query answer is refreshed whenever any of the

input relations is modified. Unlike materialized views, in Specified by the Synchronization Stre@y’nc . For exam-
streaming applications, modifications may arrive at high ple, aslide parameter of two time units is specified by the
rates. Usually, a continuous query issuer is interested insynchronization strearBync,: 0, 2, 4, 6, . In

haVing coarser refresh periOdS for the answer. For examp|68ection 3.2 we show how to define and construct Synchro_
as we discussed in Section 1, the issuer of the qQemay nization streams.
be interested in getting an update of the answer every five  Definition 2. Synchronized relation. A synchronized

minutes independent of the rate of changes in the parkingrelation R,,.(S) is a time-varying relation such that
lot state. The coarser refresh period is achieved via speciat}gsym(s) = R[S(T)] VT e Sync.

constructs in other query languages, for example stioe
parameter in the sliding-window query model [3, 20] and Example 7 This example illustrates the mapping from the
thefor loopin [8]. input streamRoomTempStr, to the corresponding syn-

In this section, we introduce the synchronization princi- chronized relatior®s,,,.,(RoomTempStr) . We use the
ple as a generalization for sliding windows. The idea of same input stream tuples as in Example 2. Figure 4 shows
the synchronization principle is to formally specify syn- the synchronized relation¥®g,,.,(RoomTempStr) ,
chronization time points at which the input stream tuples that is modified by the input stream tuples at time
are processed by the query pipeline. Input tuples that ar-points: 2, 4, 6, .... For example, at timel,
rive between two consecutive synchronization points areRsyn.,(RoomTempStr) is empty while the insertion of
not propagated immediately to produce query outputs. In-Room ‘a” is not reflected inRg,,.,(RoomTempStr)
stead, the tuples are accumulated and are propagated simutntil time 2.
taneously at the following synchronization point. In the
rest of the paper, we show that the synchronization prin-
ciple distinguishes SyncSQL by being able to: (1) express
gueries with arbitrary refresh conditions, and (2) formally
reason about the containment relationships among continu
ous queries with different refresh periods.

Example 8 For the temperature monitoring que€y, to
achieve the coarser refresh (every two minutes) we use
the synchronization strean®ync,. Then, the view
HotRooms; is expressed as follows:

create STREAMED view HotRooms; As

select RoomID, Temperature

from Rgync, (RoomTempStr) R

where R.Temperature > 80
Due to the use oSyncs, Rgync, (RoomTempStr) is
modified every two minutes. As a resuliptRooms; is

3.1 Synchronized Relations

We introduce thesynchronizatiorprinciple as a means
for expressing coarser _refrgsh p.enlodSSpncSQ.L. The ... _refreshed every two minutes as is originally requested by
purpose of the synchronization principle is to define specific
synchronization time points at which the query answer is re- <.
freshed in response to the input stream tuples. Input stream
tuples that arrive between two consecutive synchronizationExample 9 Figure 5 shows the execution biotRooms;
points are not propagated immediately to produce queryand the subsequen®; when using the synchroniza-
outputs. Instead, the tuples are accumulated and propagatetion principle.  For simplicity, we assume that the
simultaneously at the following synchronization point. basic time unit is “minute”.  HenceHotRooms;'s

Similar to theslide parameter, the synchronization time answer is refreshed every two time units. As-
points are specified independently for each input stream insume that the following input streans;, has ar-
the query. Each input stream, s8yis mapped to a corre- rived at HotRooms;: +<a,105 >1, + <b,110 >3,
spondingsynchronized relatiofit s,,,.(S) that is modified +<c,97 >4, + <d, 75 >5, u <a,75 >7. In Figure 5,
by the input stream tuplesnly at the time points that are  Sync, representHotRooms;’s synchronization stream
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Figure 5. The Synchronization Principle.

while S; showsHotRooms's output. The input tuple
+<a,105 >1 that arrived at timel results in producing
the tuple+<a,105 >2 at time 2, which is the first syn-
chronization time point aftet. Similarly, +<b,110 >3
results in producingt<b,110 >4, andu<a,75 >7 re-
sults in producing <a>8.

Query composition. S; is used as input iy, which uses
the synchronization streaBync,4: 0, 4, 8, ....Asa
result, tuplet<a,105 >2 that arrives at), at time2 re-
sults in producing the tuple<a,105 >4 attime4 in S,.
Other tuples are processed similarly@ys pipeline.

Timestamps of the output stream tuples.Timestamps
need to be attached to the output tuples froBIT&REAMED

more detail. Basically, a synchronization stream specifies
a sequence of time points. However, the representation of
a synchronization stream follows the tagged stream seman-
tics in Section 2.1, and is treated as any other stream. A
synchronization stream is characterized by the following.
(a) The underlying stream schema has only one attribute,
termedTimepoint , and (b) tuples in the stream dnsert
operations of the form+<Timepoint >Timepoint ”

Like any other stream, a synchronization stre&ync

has a corresponding time-varying relati®(Sync) where
each “+<Timepoint >Timepoint " adds a new time
point of value Timpepoint to R(Sync) . The de-
fault clock stream,clockStr: + <0>0, + <1>1,
+<2>2, + <3>3, ...,isthe finestgranularity synchro-
nization stream where there is a time point for every clock
tick. Coarser synchronization streams can be constructed
using SyncSQL expressions ova@ockStr

Example 10 The synchronization stream that has a tick ev-
ery two time points is constructed froohockStr  using
the following view expression:

create STREAMED view Sync, As

select C.Timepoint

from R(clockStr) C

where C.Timepoint mod 2 = 0
A tuple is produced in the output &ync » whenever a tu-
ple, ¢, is inserted irR(clockStr) andc.Timepoint
qualifies the predicatec‘Timepoint mod 2 = 0
The output ofSync, is as follows: +<0>0, + <2>2,
+<4>4, + <6>6, . which indicates the time points:
0, 2, 4, 6, ..., which is the same aSync, that is
used in Example 8.

view so that the output stream can be used as input in an-

other continuous query. When considering the synchro-

Composition of synchronization streamsThe fact that

nization principle, an input tuple possesses two timestampssynchronization streams are treated as regular streams al-

as follows. (1) TheArrival timestamp that is equal to the

timestamp attribute of the tuple, and (2) TlReleasdime-

lows us to compose synchronization streams to define a
larger class of synchronization streams. For example, a syn-

stamp that is equal to the time at which the input tuple is chronization stream can be defined asithmnor intersec-

reflected in the query. Tharrival andreleasetimestamps

may not be equal for tuples that arrive between two con-
secutive synchronization points. However, the timestamp

of an output tuple is constructed as a function ofrélease

timestamp(s) of the input tuple(s) that caused this output be-

cause the output necessarily follows théeasetime point.
For example, in Example 9, the input tupleca,105>2 in

Q, that has arrival timestamp of val@ehas a release time-

stamp of valued. As a result, «a,105>2 results in pro-

ducing the output tuple<a,105>4 which has a timestamp

equals tos.

3.2 Synchronization Streams

tion of two or more streams.

Example 11 The following view expression produces a
synchronization stream that is the union of two input syn-
chronization streams (Note thddiplicate eliminations re-
quired so that every time point exists only once in the output
stream):

create STREAMED view UnionSyncStr as

select DISTINCT(Timepoint)

from R(Syncy) S; U R(Syncs) Ss
The output fromUnionSyncStr  includes a time poinT
whenevelT belongs to eitheSync 5 or Sync 5.

Event-based synchronization: The synchronization
principle enableSyncSQL to express a wider class of con-

Before proceeding to the algebraic foundations of tinuous queries including queries that use event-based re-
SyncSQL, this section discuses synchronization streams in fresh conditions. Synchronization streams for event-based



conditions can be constructed usiBgncSQL expressions  rewritten in terms oNowView as follows:
as in the following example. create STREAMED view FiveUnitsWindow as

select R.*
Example 12 Consider another temperature monitoring  fron R(S) R, R(NowView) N

query, Qs, that is similar toQ, except thatQ; needs to where N.currTime — 5 < R.TS < N.currTime
be refreshed only whenever a room reports a temperature
greater tharl20. We use the tagged streanempStr , Example 14 This example shows how to uSyncSQL to

which is defined in Example 1, to generate a synchroniza-define a sliding window that is defined by both tteege
tion stream, sayotSync , such thatHotSync includes  andslide parameters. Assume we extend the definition of
time points that corresponds to reporting a temperaturethe sliding window in Example 5 such that the window is

greater than 120. As explained in SectionTZmpStr refreshed every 2 time units instead of every point in time
consists of onlyinsert operations and its corresponding (this corresponds to a sliding window with range 5 units and
relation R(TempStr)  has three attribute: RoomID, slide 2 units). In a way similar to usingockStr  to de-
Temperature, and TS . A synchronization stream, fine NowView, we use the synchronization stre8ync ;
HotSync , can then be constructed by the following query to define a view, safwoUnitsSlide , as follows:
overR(TempStr) : create STREAMED view TwoUnitsSlide as
create STREAMED view HotSync as select 1 as KEY, MAX(T.Timepoint) as currTime
select R.TS from R(Sync,) T
from R(TempStr) R TheTwoUnitsSlide  view consists of only one tuple that
where R.Temperature > 120 is updated bysync 5's tuples. ThelfwoUnitsSlide  view
An input tuple from TempStr, of the form  can, then, be used to express a sliding window of rahge
“+<RoomlID,Temperature >Timestamp ", re- and slide2 over a streans as follows:
sults in an output tuple #<Timestamp >Timestamp ", create STREAMED view RangeFiveSlideTwo as
if “ Temperature " is greater than 120HotSync can be, select R.x
then, used as a synchronization streanar from Rgync,(S) R, R(TwoUnitsSlide) N
where N.currTime — 5 < R.TS < N.currTime
3.3 TheNowView Only at the time points that belongs t&yncs,

RangeFiveSlideTwo s output is refreshed to include
In Example 5 FiveUnitsWindow s contents depend S's tuples that arrived in the last 5 time units.

on the value ofNow In order to be consistent with the
SyncSQL semantics, the value dflow is defined as a 4 SyncSQL Algebra
view that is continuously modified by the clock stream
clockStr: + <0>0, + <1>1, + <2>2, ....No-
tice that $(clockStr) is an append-only relation in
which the value of the last inserted tuple indicates the cur-
rent time,Now

In this section, we lay the algebraic foundation for
SyncSQL as the basis for efficient execution and optimiza-
tion of SyncSQL queries. One of our goals while devel-
oping SyncSQL is to minimize the extensions over the

Example 13 The following view, NowView, over well-known relational algebra. By levering the relational

R(clockStr) always contains the value dfow algebra,SyncSQL execution and optimization can benefit
create STREAMED view NowView as from rich literature of traditional databases. We achieved
select 1 as KEY, MAX(T.Timepoint) as currTime our goal by mapping continuous queries to the traditional
from R(clockStr) T materialized views. However, the synchronization principle

The Output ofNowView is a time_varying relation that differentiates continuous quel‘ies from materialized views.

has a primary keyKEY. The view always contains one [N this section, we introduce the data types and transforma-
tuple with key valuel, and the tuple is continuously tionrules thatare imposed by the synchronization principle.
updated in response to insertions R{clockStr). As

tuples are appended ti#(clockStr) , the function 4.1 Data Types

MAX(T.Timepoint) selects the last appended tuple

that has a value equals to the current tilNgw The As discussed in Section 2, although the inputs in
output stream fronNowView is as follows: +<1,0 >0, a SyncSQL expressions are tagged streansyncSQL
u<1,1 >1, u <12 >2, u<1,3 >3, ..., where the queries are expressed over the input streams’ correspond-

tuple u<1,3 >3, for example, means update the record ing relations. The output from 8yncSQL expression is
with KEYvaluel, to have aurrTime value3. The view another relation that can be mapped into a tagged stream.
FiveUnitsWindow  over streamS from Example 5 is  Basically, a synchronized relation is the main data type over



which SyncSQL expressions are expressed. A synchro-
nized relationfsyn.(S) , possesses two logical properties:

e Data (or state) that is represented by the tuples in the
relation and is extracted from the input stre8m

e Time thatis represented by the time points at which the
relation is modified by the underlying streg®rand is
extracted from the synchronization stre&ync .

The time points at whiclits,,.,(S;) reflectsall S;’s
tuples up to timeT; (i.e., Rgync, (S:) = R[S:(T ;)] ) are
called ‘full synchronization pointsfor the relation. Basi-
cally, the time point3; € Sync ; represent the full synchro-
nization points fof gy, (S ;) . On the other hand, the time
points at whictit gy, (S ;) does notreflect alb; tuples are
called ‘partial synchronization points Basically, the time
points that lies between two consecut®gnc ; represent
the partial synchronization points f®s,,., (S ;) .

4.2 Operators

Operators irSyncSQL are classified into three classes:
Stream-to-Relation (S2R), Relation-to-Relation (R2R), and
Relation-to-Stream (R2S). This operator classification is
similar to the classification used by CQL [2], but with dif-

ferent instantiations of operators in each class. Basically,

+<a,99,1>2 +<c,80,3>4

+<b,75,2>2 u<a,95,4>4
[ J [ J
® | ® ® St
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Figure 6. The Relation-to-Stream Operator.

tuple and produces the delta tuples in the output. Notice
that non append-only relations can be mapped to streams
according to thé&syncSQL stream semantics.

Example 15 The functionality of the S2R operatdk, has
been demonstrated in Figure 4. In this example we demon-
strate the functionality of the R2S operatgr, Figure 6
gives the mapping frort s,,..,(RoomTempStr) , that is
given in Figure 4, to the corresponding streg®p,; (i.e.,

Sout = &( Rsync,(RoomTempStr)) ). For example, at
time 4, ¢ producest<c,80,3 >4 andu<a,95,4 >4 as

the differences since the previous synchronization p@int,
Notice that,£ assigns timestamps to the output stream tu-
ples so that the output stream can be used as input in an-
other continuous query.Notice that eve®s tuple has a
corresponding tuple i1%,,,;, although because of the syn-
chronization, the corresponding tuplesSrandS,,,; may

the S2R class includes one operator that is used to expresgot have the same timestamps. Notice also that's
the desired synchronization points. The R2R class includesschema differs fronS's schema by having an additional

the traditional relational operators. Finally, the R2S class

attribute that corresponds to tiiémestamp field of S's

includes one operator that is used in a query to express thduples (e.g., the tuple<a>1 in Sis mapped to «a,1>2

desire of arincremental  output.

4.2.1 S2R and R2S Operators

The stream-to-relation operator . R takes a tagged
stream of modify operations, s&y as input and a synchro-
nization stream, sagync, as a parameter and produces
a synchronized relationts,,.(S) , as output. Similar
to R(S) , Rsync(S) 's schema consists &'s underlying
schema plus the timestamp attribiit® as explained in Sec-
tion 2.1. BasicallyR performs the following: (1) buffers
S’s tuples, (2) modifies the output relation by the buffered
tuples at everySync’s point, T. The output relation at
Sync'’s pointT is denoted byR[S(T)]

The relation-to-stream operator £. £ takes a synchro-
nized relationRsy..(S) , as input and produces a tagged
stream as output. produces output tuples only when the in-
put relation is modified (i.e, at the time points that belongs
to Synch). Basically, at everyBync'’s time point, T, the
input relation isR[S(T)] and¢ performs the following:
(1) generates delta tuples that represét...(S) ’'s modi-
fications (i.e., +, u, or -) since the previous synchronization
point, (2) assignd as the timestamp of every generated
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in S,.:). This additional attribute is due to the composition
of ® and¢ operators. Recall that an additiorfe attribute

is added byR whenS is mapped tdRgyn.,(S) . As a re-
sult, TS is produced as an attribute 8),,;'s schema when

& mapsRgyne,(S) t0 Sy TS can be eliminated from
Rsyne,(S) by using an R2R project operatar,

4.2.2 Extended R2R Operators.

The R2R class of operators includes extended versions of
the traditional relational operators (e.g,, 7, >, U, N, and

-). The semantics of R2R operators SiyncSQL are the
same as in the traditional relational algebra. The difference
in SyncSQL is that the operators are continuous (not snap-
shot). A continuous operator means that, inputs to the oper-
ator are continuously changing and the operator is continu-
ously running to produce a new output whenever any of the
inputs changes.

As with materialized views, the output from an R2R op-
erator is refreshed whenever any of the input relations is
modified. For a unary operator (e.gr, ), the output
relation is modified at the input relation’s synchronization
points. In other words, the synchronization points (full and



partial) for the output relation are the same as those forT is a partial sync point, and , 3
the input relation. However, a problem arises in non-unary Rgync, (S1) © Rsyne, (S2) = R[S1(T)] © R[S2(T)],

operators if the input relations have different synchroniza- where T = max(t € Syncy andt < T),

tion points. Notice that operating over relations with differ-
ent synchronization points is similar to operating over win-
dowed streams with differestideparameters (the latter has

not been discussed in the existing literature).

For example, consider a binary operator, $3ythat
has two input synchronized relation&sy,., (S 1) and
Rsyne,(S2) . The input relatiorRs,,., (S1) is modified
at every time point irSync; while Rgyy,.,(S 2) is modi-
fied at every point irBync,. As a result, the output dd
is modified at every poinf € (Sync ; U Syncy). The
output ofOis interpreted as follows:

e For every time point
Ty € (Sync 1-(Sync | N Syncy)) , T; is a
full synchronization point forRgyn., (S1) (i.e., at
time T1, Rgync, (S 1) reflectsall S; tuples up toT,).
However, the same poifit, is apartial synchroniza-
tion point for Rgync,(S2) (i.€., atTi, Reyne,(S2)
does not reflect alb, tuples up toT;). Hence, as a
result, T, is a partial synchronization point for the
output of O because at timé&}, the output ofO does
not reflectall input tuples fromall input streams.

e Similarly, every time point
Ty € (Sync 2-(Sync 1 N Syncy)) is a par-
tial synchronization point for the output € because
it does not reflect all input tuples from all input
streams.

e Every time poinfT € (Sync ; () Sync.) is afull
synchronization point for the output @ since it re-
flects all input tuples from all input streams.

Proposition 1. Unary operators. The output of a unary
R2R operator, say, over a synchronized relation, say

Rsync(S), is another synchronized relation, denoted by

O(Rsync(S)), such that:

VT € Sync, T s a full sync point, and
O(Rsync(S)) = O(R[S(T)]) , while

VT ¢ Sync, Tisa partial sync point, and
O(Rsyne(S)) = O(RIS(T)])

where T = mazx (t € Syncandt < T)

Proposition 2. Binary operators. The output of a
binary R2R operator, sa@, over two synchronized rela-
tions, sayRsync, (S1) andRsync, (S2), is a synchronized
relation, denoted bR sy, (S1) © Rsyne, (S2), such that:
()VT € Synci [\ Synca,

T is a full sync point, and ,
Rsyne, (51) © Rsyne, (52) = R[S1(T)] © R[S>(T))],
(2)VT € (Syncy — (Syncy [ Synca)),
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(B)YVYT € (Synca — (Syncy ) Synca)),
T is a partial sync point, and , ~
Rsyne, (51) © Rsyne, (S2) = R[S1(T)] © R[S2(T))],

whereT = maz(t € Syncyandt < T)

According to Proposition 1, at any time point, sgythat
does not belong to the output synchronization stream, the
output synchronized relation from a unary operator reflects

the input stream only up to a time poihwhereT < T. Sim-
ilarly, according to Proposition 2, at any time point, Say
that does not belong to the output synchronization stream,
the output from a binary R2R operator reflects one input
streams up to time poirt while reflects the other input

stream only up to tim& whereT < T.

Derived synchronized relations. Based on the previ-
ous discussion, the output of an R2R expression over syn-
chronized relations is a derived synchronized relation. The
output derived relation has the following logical properties:

e Statethat is derived from the input relations’ states.

e Time that represents the time points at which the de-
rived relation is modified. The derived relation is mod-
ified at every time point, say, if T belongs to the
union of the input relations’ synchronization streams.
The time points at which the derived relation are mod-
ified are further classified as follows: (Eull synchro-
nization points:a time point, say, is afull synchro-
nization point for the derived relation only T is a
full synchronization point for all the input relations.
(2) Partial synchronization pointsa time point, sayl,
is apartial synchronization point for the derived rela-
tion if T is apartial synchronization point for at least
one of the input relations.

Query pipeline. In order to express a query over tagged
stream, the&syncSQL expression is constructed as follows.
(1) S2R: transform each input stream to the corresponding
synchronized relation via ai® operator using the desired
synchronization. (2) R2R: using R2R operators, and in a
way similar to traditional SQL, express the query over the
synchronized relations. The output of is another synchro-
nized relation. (3) R2S: the output synchronized relation is
transformed into an incremental output viagoperator.

Example 16 This example shows the execution pipeline
for a join query between two synchronized relations,
Rsyne,(S2) andRgyne, (S 3), whereSync, ticks every
2 time units whileSync 3 ticks every3 time units. The
SyncSQL expression is as follows:

select STREAMED x
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Figure 7. Joining Relations with Different Synchronization
from Reync, (S2) R, Rsync, (Ss) Ra a synchronization stream that is defined oglarckStr
where Ry.ID = R3.ID by the predicate Timepoint mod 4 = 0 ” (i.e.,, a

Figure 7 illustrates the pipeline and shows that the output of stream that ticks every 4 time units) is contained in the
join is refreshed at time poin®, 3, 4, and6. The output ~ synchronization stream that is defined by the predicate
at2 is equal toR[S2(2)] ~R[S3(0)] and hence is a “Timepoint mod 2 = 0 7" (i.e., a stream that ticks ev-
partial synchronization point since it reflecg only up to ery two time units).

time 0. Similarly, 3 is apartial synchronization point since Proposition 3. R(Sync ;) C R(Sync ) if

it reflectsS, up to time2. 4 also is apartial synchroniza- VvV | € Sync; = | € Syncs wherel is an insert op-
tion point since it reflect$; up to time 3. However§ is a eration of the form +<T>T".

full synchronization point for the output since it reflealis

input tuples up to timé. 4.3.2 Containment Relationships among Synchronized
Relations

4.3 Equivalences and Relationships _ ] _ _
Reasoning about containment relationships between two

synchronized relations must consider the two logical prop-
of SyncSQL. In order to achieve query composition, a erties, state and time, of the relation. For example, consider

guery optimizer must be empowered by algorithms to rea- two synchronized refationsisyy.,(S) and Rsyyc,(S)

son about the equivalences and containment relationshipéhat are defined over the same stre&mNotice that, the

among query expressions. In this section, we introduce pre-Stt€Sof Rsync (S) and Rsyy.,(S) may not be equal

liminary relationships that are required by a query optimizer &t €Very time point ifSync; and Sync; are not the
to enumerate the query plans and deduce query containSame- However, iSync; is contained inSync ;, then
ment. Rsyne; (S) is containedin Rs, ., (S) . The containment
relationship means that eveffyll synchronization time
point of Rgyne,(S) is also afull synchronization point

of Rsyne,;(S) - The containment relationship is beneficial
sinceRsync, (S) can be computed froM s, (S) with-

A synchronization stream, sapync;, is contained outaccessing. Notice that, the containment relationship is
in another synchronization stream, sayync,, if judged based only on thall synchronization time points of
every time point in Sync; is also a time point the relation because those are the time points of interest to
in Sync, (i.e., R(Sync 1) C R(Sync »)). Recall  theissuerofaquery.

that, as explained in Section 3.2, a synchronization
stream consists of onlynsert operations of the form

Achieving query composition is one of the main goals

4.3.1 Containment Relationship among Synchroniza-
tion Streams

Theorem 1 For any stream S, a synchronized re-
lation  Rsyn, (S) is contained in Rgync, (S) if

+<Timepoint >Timepoint . Containment relation-

: . Sync ;) C R(Sync ;).
ships between synchronization streams can be deduceg%( yne ;) S R(Syne ;)
from the constructin@yncSQL expressions. For example, Proof:

12
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Figure 8. Relation Containment

1. Based on Definition 2:
Rsyne;(S) = RIS(T)] VvV T € R(Sync ;) ;

2. Given that®(Sync ;) C R(Sync ;), then, based
on Proposition 3
VT e RSync,;) = T e RNSync ;);

3. From 1 and 2 above,
Rsyne;(S) = R[S(T)] VvV T € RN(Sync ;) ;

4. Based on Definition 2,
Rsyne, (S) = R[S(T)] vV T € R(Sync ;);

5. From 3 and 4 above:
§)%Sync,; (S) = 8?Sync]' (S) = R[S(T)]
VT € R(Sync).

Corollary 1. If R(Sync ;) < R(Sync ;), then
%Synci (S) - %S’ynci (5(%51/'%; (S)))

Corollary 1 means thaRs,,.,(S) can be constructed
from Ry, (S) without accessing. This is done by ap-
plying Sync ; over the output stream fro§{ s, n.,(S)) -

Example 17 This example illustrates Theorem 1 and
Corollary 1. Consider two synchronization strea®@gnc o
and Sync 4, where®(Sync 4) C R(Sync ;). Figure 8a
gives the derivation oftsy,.,(S) while Figure 8b gives
the derivation ol sync, (£( Rsyne,(S))) . Notice that, all
thefull synchronization points foR g, (S) are alsdull
synchronization points foRgyn.,(S) . Moreover, if only
the STREAMEDversion of Rgyn¢,(S) is available (i.e.,
EMsync,(S))  or Sy in Figure 8b), Rgyne,(S) can be
computed by applyingync 4 overS, (i.e., Rgync,(S) at
time4 is contained i sync, (§( Rsync,(S))) attimed).

13

4.3.3 Commutability between Synchronization and
R2R Operators

R2R operators in 8yncSQL expression are executed over
synchronized relations. In this section, we show that the or-
der of applying the synchronization and R2R operators can
be switched. The commutability between the synchroniza-
tion and R2R operators allows executing the query pipeline
over finest granularity relations and hence allows sharing
the execution among queries that have similar R2R opera-
tors but with different synchronization points.

Corollary 2. For anyunary R2R operator, sap, V T
such thafT is a full synchronization point d®(Rgyn.(S)),

T is a full synchronization point dR g, n.(£(©(R(S5)))).

Corollary 3.  For any binary R2R operator, say
O, V T such thatT is a full synchronization point of
Rsyne, (S1) © Rsyne,(S2), T is a full synchronization
point of mSyncl N Synce (g(%(sl) o é)?(‘5'2)))

The main idea of Corollaries 2 and 3 is that we can pull
the synchronization streams out of an R2R operator. Basi-
cally, an R2R operator can be executed over finest granular-
ity relations and produce a finest granularity output. Then,
the desired synchronization is applied over the fine granu-
larity output. Notice that, Corollaries 2 and 3 can also be
used in the opposite direction by a query optimizer to push
the synchronization inside R2R operators and, hence, re-
ducing the number of operator executions.

Based on Corollaries 2 and 3,3yncSQL expression
can be executed as follows: (1) transform the input streams
to the finest granularity synchronized relatiofsS) , us-
ing the finest granularity synchronization stream (i.e., the
clock stream), (2) execute the query pipeline over the finest
granularity input producing a fine granularity output rela-
tion, (3) map the output relation to a stream usfcgand
finally (4) transform the output stream to the desired syn-
chronized output using.

5 Shared Execution using Query Composi-
tion

In this section, we introduce a query matching algorithm
for SyncSQL expressions. The goal of the algorithm is
that, given aSyncSQL query, sayQ;, the algorithm deter-
mines whetheQ, (or a part of it) is contained in another
view, sayQ;. If suchQ; exists, the algorithm re-write§
in terms ofQ; in a way similar to answering queries using
views in traditional databases.

5.1 Skinning SyncSQL Expressions
To reason about containment 8yncSQL expressions,

we isolate the synchronization streams out of the expres-
sion. We term the resulting form of the expressions a



“skinned form. The skinned form of &yncSQL expres- 4. If @ C @, then rewriteQ’ in terms ofQ¢ using the
sion is an equivalent expression that consists of: (a) a global same algorithm used in Step 2 above. The output ex-
synchronization stream that specifies fb# synchroniza- pression of the re-write operation is denoted’s

tion points of the expression, and (b) a SQL expression over
finest granularity relations. Corollaries 2 and 3 are used to
transform anysyncSQL expression into the corresponding
skinned form.

5. The input queryQ is then equivalent to the synchro-
nized relation with: (1Data: Q”, and (2)Time: Q.

Notice that, the query matching algorithm is used to

) ) match an input query against a set of already existing views.
Theorem 2 Any SyncSQL expression has an equivalent o the other hand, if we know the whole set of queries in

normal form. advance, the skinned forms are constructed using the great-
] . . est common divisor of all synchronization streams instead
Theorem 2 is proved using Corollaries 2 and 3. of the default clock stream.

Example 18 This example derives the normal form for the Example 19 This example illustrates the steps performed

SyncSQL expressioQ= o(Rsyne, (S1) > Ryne, (52)). to match the temperature monitoring que®y with the
The derivation is performed in two steps as follows: view HotRooms; as explained in Example 4. Assume that
-Using Corollary 3, pull the synchronization streams out the input expressions are as follows:
of the join operator. HotRoomS 1 = oremp > 80(Rsyne, (RoomTempStr))
Q: U(%Syncl N Syncs (6(%(51) > §R(52)))) Q4 = OTemp > 100(%Sy'rw4 (RoomTempStr))
-Using Corollary 2, pull the synchronization stream out
of the selection operator. The corresponding normal forms for the two expressions
Q=Rsyne, N synes (E(@(R(S1) > R(S2)))). are as follows:
The constructed normal form indicates tiGais equiva- ~ HOtRooms; = Rsyne, (§(0Temp > so(R(RoomTempStr))))
lent to a synchronized relation with the following: @jta: Q1 = Rsyne, (§(0Temp > 100(R(RoomTempStr))))

o(R(S1) > R(S2)), and (2)Time: Sync, () Syncs.
By Comparing the two normal forms we can conclude
5.2  Query Matching that: (_1)§R(Sync_ 1) C R(Sync 2), and (2) using a view
matching algorithm (e.g., [16]) shows that théemp >
100" c “Temp > 80". Then, the algorithm concludes

SyncSQL query matching is similar to “view exploita- thatO, — HotRooms:. Then.O, is re-written as follows:
tion” in materialized views [16, 19]. HoweveSyncSQL Q :%T 100(Rs 1,' (g(ﬂfe(%otRoomsl)))). '
queries differ from the traditional materialized views by emp > yrea

the notion of synchronization. A matching algorithm for .
SyncSQL expressions matches the two parts of the skinned6 Incremental Execution Model
forms: the query expression and the global synchronization
points. Although the goal of this paper is to introduce the
After introducing the main tools, we now give the high- SyncSQL semantics for queries over data streams, in this
level steps of the query matching algorithm. The input to S€ction we briefly outline an execution model &mcSQL
the algorithm is 88yncSQL query expression, say, and a queries. Detailed implementation and optimization tech-
set of skinned forms for the concurrent queries. niques is beyond the scope of this paper.
Algorithm SyncSQL-Expression-Matching: As discussed in Section 2, 8yncSQL query over
streams is semantically equivalent to a materialized view
1. Using Corollaries 2 and 3, transfor@to the corre- ~ OVer the input streams’ relational views. Similar to mate-
sponding normal form by constructing the two com- falized views, the straightforward way to keep the query

ponents: (1Js data,Q’, and (2)Js synchronization answer (or view) consistent with the underlying relations
Q; is to re-evaluate the query expression whenever any of the

inputs is modified. However, incremental approaches have

2. Match @ with data parts of the other input normal been proposed to reduce the cost of maintaining the mate-
forms using a view matching a|gorithm from the ma- rialized views. In the incremental maintenance of materi-
terialized view literature (e.g., [16]). The result of the alized views, instead of re-evaluating the view expression,

matching is a normal form (if any) for a matching ex- only the changes in the input relations are processed in or-

pression, say, such that)! c Q% der to produce a corresponding set of changes in the output.
SyncSQL physical execution plans follows the incremen-
3. If suchQ exists, check whethed® C Q°; tal maintenance approach of materialized views. Basically,

14



at every synchronization time point, a differential operator changes ird’s output in response to deletein 4's input.

processes only the modifications in the input relations and An updatein 6’s input is processed asdeletionof the old

produce a corresponding set of modifications in the output. tuple followed by arinsertionof the new tuple. For exam-
As discussed in Section 4, inputs and outputs in any ple, the functionality of the differentiat is defined by the

R2R operator are synchronized relations. According to following equations:

SyncSQL algebra, a relational operation (e.g.Qr <) over op(R4+ 1) =0p(R) + op(r)

an input streans;,, is executed as follows. At every syn- o,(R —1) = 0,(R) — 0,(r)

chronization time point, sa¥;, S;, is mapped to a corre- where+r (-r ) represents the insertion (deletion) of a tu-

sponding relationR[S;,(T 1)] . Then, the relational op- ple r into (from) ¢’s input relationR, while +o,(r)

eration, say, is executed oveR[S,,(T ;)] and produce (—o,(r) )represents the corresponding insertion (deletion)

a corresponding output relation, sBYS ,.:(T 1)] . When into o’s output relationg, (R) . Algebra for the various dif-
the input relation is modified at a following synchronization ferential operators is introduced in [17].

point, sayTs, o is re-executed oveR[S ;,(T 2)] and pro- The S2S counterpart of the S2R operatorin order to
duce the corresponding output relatiBfS ,..:(T 2)] . If apply the synchronization principle with S2S operators, we

the output ofs is needed to bSTREAMEDa ¢ operator is introduce the regulator operatqras the S2S counterpart of
executed at tim&;, to produce tuples in the output stream . Similar toi, ¢ takes a strean;,,, as input, a synchro-
St that represent the deltas betweR[S,.:(T 1)] and nization streamSync, as a parameter and produces another
R[S ,u:(T 2)] . The delta tuples is a set &f u or- opera- streamS,.,;, as output where

tions that need to be performed oWS ,,..;(T 1)] in order Sout = Csyne(Sin) = & Rsync(Sin)) -

to getR[S ,.:(T 2)] . In short,SyncSQL algebra assumes Notice that, as discussed in Section 4.2 and Example 15,
that an R2R operator i®-executedat every synchroniza- the schema of the resulting stream frafiRsync(Sin))

tion time point. differs from S;,,’s underlying schema by having an ad-

In contrast to the algebrs&SyncSQL physical execu-  ditional timestamp attribute that corresponds to tre
tion plans employs an incremental approach. At every syn-rival timestamp ofS;,,’s tuples. The additional time-
chronization time point, an incremental relational opera- stamp attribute is used to evaluate time-based predicates (if
tor processes only the modifications in the input relations any) overS;,, and is also included in the output stream,
and produce a corresponding set of modifications in the Sout, from (. Basically, ¢ works as follows: buffers
output relation. For example, at a synchronization time the input stream tuples and at every synchronization time
point, Ty, the incrementab operator processes a set of point, sayT, ¢ performs the following for each buffered
delta tuples betweeR[S;,(T 2)] andR[S;.(T1)] and input tuple of the form Type <Attributes >Time-

produce another set of delta tuples betwB§8 ,..: (T 2)] stamp ”: (1) constructs a corresponding tuple of the form

andR[S ,.«(T 1)] - “Type <Attributes, Timestamp >", by pushing the
arrival timestampTimestamp , inside the tuple’s schema.

6.1 Derived Operators , and (2) assigns a timestamp to the tuple that is equal

to the release time, of. As a result,{’s output tu-

ples will have the form Type <Attributes, Time-
The S2S counterparts of R2R operatorsA SyncSQL stamp >syncTimestamp

execution plan consist of a set of S2S operators where each Handling timestamps by the physical operators.An

R2R operator (e.g._c,r ande<) has a corredspondgg incre- output tuple from({ has two timestamps as follows:
”.‘e”ta' (or dlﬁergntla!) S2S operator (e.g.,andm ). Ba- (1) Timestamp that is equal to the tuple’arrival time-
sically, the_functlonallty of an S2S operator is composed of stamp and is used by the subsequent R2R differential
three functions (S2R, R2R, then R2S) as follows: (1) S2R: operators to evaluate time-based predicates (if any), and

takes an input modification tuple (i.e., +, u, or -) and apply (2) sycnTimestamp  that is equal to the tuple’elease

the fmodﬂ]canoln tt.o thf opera:to,rs fmte:nal state.th(2) R2R: timestamp and is propagated by the subsequent R2R opera-
perform the relational operator’s function over the opera- , '+ 1o corresponding output tuples.

tor's internal state. (3) R2S: report the modifications in the
internal state as an output tagged stream. Detailed imple-Example 20 This example shows the functionality of the
mentation of S2S operators is addressed in [14]. regulator operator;. Consider the sam8 andSync, as

The relationship between the input and output taggedthose used in Example 7. Figure 9 shd®vand the corre-
streams from an S2S operator is defined algebraically bysponding(sy..,(S) . ¢ transforms, for examplet<a>1
differential equations [17]. The functionality of a differen- into +<a,1 >2 by pushing the arrival timestamp of value
tial operator, say, is defined by two equations: one equa- 1 into the schema and attaching the release timestamp of
tion defines the modifications ifis output in response to  value?2 as the timestamp of the output tuple. Figures 6 and
aninsertin #’s input while the other equation defines the 9 show thatg,.,(S) = &(Rsyne,(S)) -
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:g>34>4 DStream , to represent the deleted tuples . It is unclear
rcats ° +<¢,5>6 how to compose the two streams in order to produce a sin-

< . )
| o o 0~ ZSyné ) gle output stream thaF can bg used as mput.m angther query.
SyncSQL semantics avoids these previous limitations
\ \ \ by allowing the output of any continuous query to be pro-
+<a>l +<b>3 -<a>4 +<c>5 duced incrementally in a single stream.

Ve e e o |-
@ s There are two SQL-based languages that are closest to

ot 2 3 4 5 6 SyncSQL: CQL [2] and ESL [25]. SyncSQL uses the same
three classes of operators (i.e., S2R, R2R, and R2S) as that
of CQL but use a different instantiation of operators in each
class. CQL defines two types of sliding windows (time-
7 Related Work based and tuple-based) and defines the window as an S2R
operator. However, there are no algebraic or transformation
Continuous queries over data streamsMany research rules to show how the_windovx_/ operator interacts with the
efforts have developed semantics and query languages foPther (R2R) operators in the pipeline. Moreover, semantics
continuous queries over data streams, e.g., [2, 6, 7, 8, 110 non-unary operators on two streams with differsirde
25]. The existing continuous query languages restrict the Parametersis notdiscussed. ESL [25]is another SQL-based
stream definition to the representation of an append-onlyContinuous query language that is designed mainly for data
relation. The restricted stream definition limits the set of MNING and tlme—;engs queries. Only unary operators (e.g.,
queries that can produce streams as output. This is beS€lection and projection) can be used in queries to produce
cause, even if the input streams represent append-only reQUtPut streams. On the other hand, since a window func-
lations, a continuous query may produce non-append onlytion produces a non append-only output, window queries
output. Different approaches have been followed by the ex-Produce concrete views as output. Streams can be joined
isting languages to handle the non append-aniiputsas wlth thg concrete views, but in this case, the modifications
follows: in the view do not affect the already produced stream tuples

-Restricted expressibility: To guarantee that the output of PUt they affect only the incoming stream tuples. ESL fo-
the query can be incrementally produced as a stream, a lan€US€S On aggregate queries but does not thoroughly address
guage restricts the set of operators that can be used to exS€t-based operators and queries.

press queries over data streams. The restricted set of op- Positive and negative tuples. Streams of positive
erators includes, for example, Select, Project, and Union.and negative tuples (i.e., insert and delete tuples) are fre-
Sliding windows with the window-per-stream usage, for ex- quently used when addressing continuous query process-
ample, are not allowed since they produce non-append onlying [1, 5, 13, 14]. However, query languages do not con-
output. Examples of systems that follow this approach in- sider expressing queries over these modify streams. This
clude Aurora [7], Cougar [6], and Gigascope [11]. conflict between the language and internal streams is the
-Non-incremental output streams: Produce the output of ~main obstacle in achieving continuous query composition.
the query in anon-incrementaianner by representing the SyncSQL overcomes this obstacle by unifying the stream
output as a relation then periodically stream out the relation. definition between the language and the execution model.
Notice that this non-incremental output stream does not fol-  Continuous queries in traditional databases.Contin-

low the input stream definition and, hence, cannot be useduous queries are used in traditional databases before be-
as input in another query. Examples of systems that follow ing used over data streams. Examples of systems that
this approach include TelegraphCQ [8], and the RStreamsupport continuous queries over database tables include
operator in CQL [2]. Tapestry [24] and OpenCQ [21]. In these systems, both
-Non-incremental output relations: Does not allow  inputs and outputs of the continuous query are relations.
gueries that produce non append-only output to produceAlthough the input relations in Tapestry are append-only,
streams. Instead, such queries produce concrete views agueries may produce non append-only output if the query
outputs. Moreover, onlgnapshotjueries are allowed over includes either a reference to the current time (e.g., Get-
the view. A snapshot query has to be re-issued in order toDate()), or a set-difference between two relations. In order
know the modifications in the view. This approach is fol- to guarantee the append-only output, Tapestry uses a query
lowed by ESL [25]. transformation to transform a given query into the mini-
-Divided output: CQL [2] divides the query into two sep- mum bounding append-only query. The coarser refresh of
arate queries that produce append-only streams such thate query is achieved via &# OREVER DO, SLEERIlause

one query produces a strealStream , to represent the where the query is re-executed after ev8ityEEPperiod.
inserted tuples and the other query produces a stream(n the other hand, in OpenCQ, input and output relations

Figure 9. The Regulator, ¢, Operator.
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can be modified by general modify operations. A continu- to reason about the equivalence and containment relation-
ous query is periodically re-executed and the output is pro- ships amongyncSQL expressions. Efficient execution of
duced as the delta between two consecutive query execuSyncSQL queries is an important issue. We outlined an ex-
tions. Triggers are used to schedule the query re-executionecution model to incrementally evaluat&ancSQL query.

Our notion of synchronization time points is similar to Detailed implementation and optimization techniques will
OpenCQ's Triggers, but synchronization streams are distin-be reported in a separate paper.

guished by the fact that they can be generated using regular
gueries. Unlike Tapestry and OpenC&yncSQL assumes
that query inputs and outputs are streams and hence requires
special handling of the timestamps. Moreover, we intro-
duce an algebraic framework and address composition of
SyncSQL expressions, which is not addressed by the pre- |,
vious systems.

Shared query execution.A typical streaming environ-
ment has a large number of concurrent continuous queries.
Sharing the query execution is a primary task for query opti-
mizers to address scalability. The current efforts for shared
guery execution focus on sharing the execution at the oper-
ator level. Shared aggregates are addressed in [4] where an
aggregate operator is shared among multiple queries with 6]
different windowranges Shared window join is addressed
in [18]. NiagraCQ [10] proposes a framework for shared
execution of non-windowed SPJ queries. Shared predicate
indexing is used in [9, 10] to enhance the performance of
a continuous query processor. Our approach for shared
execution is distinguished from the existing approaches in
that: (1) based on query composition; (2) matches window
gueries that differ in both theange and slide parameters,
and (3) queries are examined for sharing based on a wholé'”!
guery expression not only at the operator level.

Materialized views: Our definitions of synchronized re-
lations and predicate-windows enable us to benefit from the
existing literature in materialized view. However, we extend [t2
the materialized view algorithms to work with synchronized
relations. Our query matching algorithm extends the tradi-
tional view exploitation algorithms (e.g., [16]) by match-
ing the synchronization time points in addition to match- 1
ing the query expression. Moreover, the physical design

[3]

[4]

[71

[8]

[11]

[13]

of SyncSQL execution pipelines follows the incremental 19
maintenance of materialized views [17].

[16]

8 Concluding Remarks 17

This paper provides the first languaggyncSQL, to (18]

express continuous queries over streams of modify oper-
ations. Modify streams are general since they can repre-q
sent both raw input streams and streams that are generated
as output from executing continuous queries. The unified [20]
definition of query inputs and outputs enables the compo-
sition of SyncSQL expressions. The paper provides the
first shared execution algorithm for continuous queries that
is based on query composition. Shared execution deci-

. . . . [22]
sions are based on a query matching algorithm that is able

[21

17

] A. Eisenberg.
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