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Abstract

Prior work on languages to express continuous queries
over streams has defined a stream as a sequence of tu-
ples that represents an infinite append-only relation. In
this paper, we show that composition of queries is not
possible in the append-only model. Query composition
is a fundamental property of any query language - com-
position makes it possible to build up complex queries
from simpler queries. We then propose a query language,
termedSynchronized SQL (or SyncSQL), that defines
a stream as a sequence of modify operations (i.e., insert, up-
date, and delete) against a relation with a specified schema.
Inputs and outputs in anySyncSQL query are interpreted
in the same way and, hence,SyncSQL expressions can be
composed. Coarser periodic refresh requirements are typ-
ically expressed as sliding-window queries. We generalize
this approach by introducing the synchronization principle
that empowersSyncSQL with a formal mechanism to ex-
press queries with arbitrary refresh conditions. After intro-
ducing the semantics and syntax, we lay the algebraic foun-
dation for SyncSQL and propose a query matching algo-
rithm for deciding containment ofSyncSQL expressions.

1 Introduction

Query languages in the streaming literature (e.g., [2, 7,
8, 11, 25]) define a stream as a sequence of tuples that rep-
resents an infinite append-only relation. Languages based
on the append-only model are not closed, that is, the re-
sult of a query expression is not necessarily an append-only
relation. This has the effect that query expressions cannot
be freely composed, that is, expressing a query in terms of
one or more sub-queries as can be done, for example, with
SQL queries in relational databases. Composition is a fun-
damental property of any query language but it requires that
query inputs and outputs are interpreted in the same way.
However, in the append-only stream model a continuous
query may not be able to produce an append-only output

even when input streams represent append-only relations.

For example, consider an application monitoring a park-
ing lot where two sensors continuously monitor the lot’s
entrance and exit. The sensors generate two streams of
identifiers, sayS1 andS2, for cars entering and exiting the
lot, respectively. A reasonable query in this environment is
Q1:“Continuously keep track of the identifiers of all cars in-
side the parking lot”. The answer ofQ1 is aviewthat, at any
time pointT, contains the identifiers for cars that are inside
the parking lot.S1 can be modeled as a stream that inserts
tuples into an append-only relation, say<(S 1) and, simi-
larly, S2 inserts tuples into the append-only relation<(S 2) .
Then,Q1 can be regarded as amaterialized viewthat is de-
fined as the set-difference between the two relations<(S 1)
and<(S 2) . As tuples arrive onS1 andS2, the correspond-
ing relations are modified, and the relation representing the
result ofQ1 is updated to reflect the changes in the inputs.
The result ofQ1 is updated byinserting identifiers of cars
entering the lot anddeletingidentifiers of cars exiting the
lot. Notice that, although the input relations inQ1 change
by only inserting tuples (i.e., append only), the output ofQ1

changes by both insertions and deletions.

The answer to queryQ1 can be output either as (1) a
completeanswer, or (2) anincrementalanswer. In the first
case, at any time pointT, the issuer ofQ1 sees a state, i.e.,
a relation containing identifiers of all cars inside the lot
at time T. In the second case, the issuer ofQ1 receives a
stream that represents the changes (i.e., insertions and dele-
tions) in the state. The output in the incremental case is
interpreted in the same way as the inputs, namely, as a
stream that represents modifications to an underlying re-
lation. However,Q1’s incremental answer cannot be pro-
duced or consumed by a query in a language that models a
stream as an append-only relation. Existing languages may
produce output streams fromQ1 but the output streams are
interpreted differently from the input streams. For exam-
ple, the output may be modeled as a stream representing a
concatenation of serializations of the complete answer (e.g.,
RStream in CQL [2], and the output of window queries in
TelegraphCQ [8]). As another alternative, CQL divides the
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output into two append-only streams such that one stream
represents the insertions in the output and the other stream
represents the deletions (i.e., IStream and DStream).

The different interpretation and the division of an out-
put stream prevents composition of queries, that is, using
the output of a query as the input to another queries or
building up complex query expressions from simpler ex-
pressions. Composition is a fundamental requirement on
any query language and particularly important in streaming
environments that are characterized by concurrent, overlap-
ping queries. For example, consider the following query,
Q2, from the same application: “Group the cars inside the
parking lot by type (e.g., trucks, cars, or buses). Continu-
ously keep track of the number of cars in each group”. By
analyzing the two queries,Q1 andQ2, it is obvious thatQ2 is
an aggregate query over the output ofQ1. This observation
motivates the idea of definingQ1 as a view, sayV1 and then,
expressing bothQ1 andQ2 in terms ofV1. However, realiz-
ing this requires a language that allows query composition.

In streaming applications with high tuple arrival rates,
an issuer of continuous queries may not be interested in re-
freshing the answer in response to every tuple arrival. In-
stead, coarser refresh periods may be desired. For example,
instead of reporting the count of cars with every change in
the parking lot,Q2 may be interested in updating the count
of cars in each groupevery five minutes. This refresh condi-
tion is based on time but a powerful language should allow
a user to express more general refresh conditions based on
time, tuple arrival, events, relation state, and so on.

In addition to preventing query composition, the append-
only model limits the applicability of the language because
streams may have denotations other than the append-only
relation [22]. For example, update streams are used in appli-
cations where objects continuously update their values. For
example, consider a temperature-monitoring application in
which sensors are distributed in rooms and each sensor con-
tinuously reports the room temperature. A reasonable query
in this environment is,Q3: “Continuously keep track of the
rooms that have temperature greater than 80”. Neither the
input nor the output streams inQ3 represent append-only
relations. The input inQ3 is an update stream in which,
a room identifier is considered a key and an input tuple is
an update over the previous tuple with the same key value.
The output tuples fromQ3 represent incremental changes in
the answer and include insertions and deletions for rooms
that switch between satisfying and not satisfying the query
predicate.

1.1 Our Approach

We can summarize the limitations of the existing con-
tinuous query languages as follows. (a) Cannot express
queries over streams other than the append-only relation

representation. (b) Cannot produce incremental answer for
queries that do not produce an append-only output. (c) Can-
not always compose queries because of the different inter-
pretation and/or division of the output streams. (d) Refresh
condition are restricted to be either time or tuple-based.

In this paper, we introduce a continuous query lan-
guage for data streams, termedSynchronized SQL
(SyncSQL for short), that avoids the previous limitations.
In contrast to other languages,SyncSQL defines the stream
as a sequence of modify operations (i.e., insert, update, and
delete) against a relation with a specified schema. Basically,
a continuous query inSyncSQL is semantically equivalent
to amaterialized viewwhere the inputs are relations that are
modified by streams of modify operations. The answer of
the query is another stream of modify operations that repre-
sent changes in the result of the view. This is equivalent to
incremental maintenance of materialized views [17]. The
unified representation of query inputs and outputs enables
the composition ofSyncSQL expressions, and as a result,
gives the ability to express and exploit views over streams.

To cope with the coarser refresh requirement of con-
tinuous queries, we introduce thesynchronization princi-
ple. The idea is to formally specify synchronization time
points at which the input tuples are processed by the query
pipeline. Input tuples that arrive between two consecu-
tive synchronization points are accumulated and reflected
in the output at once at the next synchronization point. The
synchronization principle makes it possible to (1) express
queries with arbitrary refresh conditions, and (2) formally
reason about the containment relationship among queries
with different refresh periods.

The contributions of this paper are summarized as fol-
lows:

• SyncSQL semantics and syntax:We define concise
semantics and syntax for continuous queries and views
over streams.

• SyncSQL algebra: We lay the algebraic foundation
for SyncSQL by providing data types, operators, al-
gebraic laws and transformation rules that are needed
to enumerate query plans.

• Shared execution using query composition:Based
on the algebraic framework, we propose a query
matching algorithm that is used to deduce the contain-
ment relationships among query expressions. The con-
tainment relationship is used to achieve shared execu-
tion using query composition.

• Execution model: We present a pipelined and
incremental execution model to efficiently realize
SyncSQL queries in a data stream management sys-
tem.

2



1.2 Paper Outline

The rest of the paper is organized as follows. Section 2
introduces the semantics and syntax ofSyncSQL. The syn-
chronization principle is explained in Section 3. In Sec-
tion 4, we lay the algebraic foundation forSyncSQL. The
shared query execution algorithm is given in Section 5.
In Section 6, we give an incremental execution model for
SyncSQL queries. Section 7 surveys the existing works
for continuous queries and contrasts our approach with the
other approaches. Finally, Section 8 concludes the paper.

2 SyncSQL Semantics and Syntax

In short, a continuousSyncSQL query is semantically
equivalent to a materialized view over one or more relations
where the input relations are updated bystreamsof modify
operations.

2.1 Stream, Query, and View Semantics

Stream semantics. A data stream is a sequence of
tuples that are sent by remote data sources (e.g., sen-
sors) [2, 8, 25]. By considering the wide variety of
streaming applications, the same stream may be interpreted
differently by the different applications. For example,
consider a stream, sayTemperatureSource , that
is sent by sensors in a temperature-monitoring applica-
tion. Assume that a tuple inTemperatureSource
reports a certain room’s temperature and is denoted
by “<RoomID,Temperature >Timestamp ”.
One application, sayApplication 1, may consider
TemperatureSource as an update stream over the
various rooms temperature. In this case,RoomID is
considered a key and a tuple is considered an update
over the previous tuple with the same key value. On the
other hand, another application, sayApplication 2,
may view theTemperatureSource stream as just a
sequence of temperature readings and ignore theRoomID
attribute. Notice that, the same continuous query over
TemperatureSource produces different answers under
the different application-dependent semantics.

In order to capture the various application-dependent
semantics,SyncSQL distinguishes between two types of
streams:raw andtagged. A raw stream is a sequence of tu-
ples that are sent by the remote sources. On the other hand,
a taggedstream is a stream of modify operations (i.e., in-
sert (+), update(u), and delete(-)) against a relation with a
specified schema. A raw stream must be transformed into
a tagged stream before being used as input in a query. This
is similar to the relational model in traditional databases
where the raw data has to be transformed into relations be-
fore being used in a query.

The function that transforms a raw input stream to
a corresponding tagged stream is application-dependent
where the same raw input stream can produce differ-
ent tagged streams under different transformation func-
tions. For example, in a temperature-monitoring appli-
cation, araw input stream, sayTemperatureSource ,
is sent by remote sensors where an input tuple in the
raw stream reports a room temperature. A tuple in the
TemperatureSource stream consists of two attributes:
RoomID and Temperature . One application, say
Application 1, may considerTemperatureSource
as an update stream over the various rooms temperature. In
this case,RoomID is considered a key and a tuple is con-
sidered an update over the previous tuple with the same
key value. On the other hand, another application, say
Application 2, may view theTemperatureSource
stream as just a sequence of temperature readings and ig-
nore theRoomID attribute.

Assume that an input tuple inTemperatureSource
is denoted by “<RoomID,Temperature >Time-
stamp ”. In Application 1, TemperatureSource
represents an update stream over the various room tem-
peratures and the corresponding tagged stream, say
RoomTempStr , consists of insert and update opera-
tions. Basically the tagging procedure takes an input
TemperatureSource tuple and produces a corre-
sponding tagged tuple inRoomTempStr as follows:
the first tuple in TemperatureSource with a cer-
tain RoomID value is transformed into a corresponding
insert operation “+<RoomID,Temperature >Time-
stamp ” in RoomTempStr . A subsequent tu-
ple in TemperatureSource with the same
RoomID is transformed into an update tuple
“u<RoomID,Temperature >Timestamp ” in
RoomTempStr . Notice that the tagging function
needs to keep a list of the observed key (i.e.,RoomID)
values so far.

On the other hand, in the case ofApplication 2,
TemperatureSource represents an infinite append-
only relation and the corresponding tagged stream, say
TempStr , is a sequence ofinsert operations where each
tuple “<RoomID,Temperature >Timestamp ” in
TemperatureSource is transformed to a corresponding
insert operation “+<RoomID,Temperature >Time-
stamp ” in TempStr .

In the query processing phase, the transformation (or
tagging) function is implemented inside an operator, called
Tagger , that is placed at the bottom of a query pipeline.
In Application 1, the functionality of theTagger op-
erator is similar to that of theMERGE(or UPSERT) op-
erator in theSQL:2003 standard [12]. Basically, in
Application 1, Tagger needs to keep a list of all the
observed key values (i.e.,RoomID) so far. The size of
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the key list has an upper bound that is equal to the max-
imum number of rooms. However, implementing the tag-
ging function as an operator opens the room for the query
optimizer to re-order the pipeline and optimize the mem-
ory consumption. For example, theTagger operator can
be pulled above theSelect operator so that only qualified
rooms are stored in the key list. The details of query pro-
cessing and optimization is beyond the scope of this paper.

Example 1 This example demonstrates the syntax for
defining streams and the mapping from raw to tagged
streams. The rawTemperatureSource stream is de-
fined inSyncSQL by the following statement:

REGISTER SOURCE TemperatureSource
(char RoomID, int Temperature) From
port5501
whereRoomID andTemperature represent the stream
schema andport5501 is the port at which external
sources report tuples. The tagged streams are defined over
the sourceTemperatureSource as follows:

RoomTempStr: CREATE STREAM
RoomTempStr

OVER TemperatureSource
KEY RoomID

TempStr: CREATE STREAM TempStr
OVER TemperatureSource
KEY NULL

Running example:Assume the following tuples arrived
at TemperatureSource : <a,100 >1, <b,75 >2,
<c,80 >3, <a,95 >4, <b,85 >5.
RoomTempStr : The following tuples represent
the corresponding taggedRoomTempStr stream:
+<a,100 >1, +<b,75 >2, +<c,80 >3,
u<a,95 >4, u<b,85 >5. Notice that the tuple
<a,100 >1 is mapped to+<a,100 >1 while <a,95 >4
is mapped tou<a,95 >4.
TempStr : The following tuples represent the correspond-
ing TempStr tuples: +<a,100 >1, +<b,75 >2,
+<c,80 >3, +<a,95 >4, +<b,85 >5. Notice that
all the tuples inTempStr areinsertoperations.

The relational view of a tagged stream:The seman-
tics of query operators (e.g., select and join) are defined
over relations. However, inputs in a continuous query are
tagged streams where each stream represents modifications
against a relation. Hence, in order to adopt the well-known
semantics of relational operators,SyncSQL queries are ex-
pressed over the tagged streams’ corresponding relations.
Notice that, streams of insert and delete tuples are fre-
quently used when addressing continuous query process-
ing [1, 5, 13, 14, 23]. However, to the best of the authors’

a

275b

199a

(b)

42

+<c,80>3

3

u<a,95>4+<a,99>1

(a)
10

99

Time

RoomTempStr

R(RoomTempStr)

+<b,75>2

95 4

380c

275b

a

80c 3

275b

1

199a

Figure 1. Illustrating Time-varying Relations.

knowledge,SyncSQL is the first language that addresses
query semantics over tagged streams.

Basically, any tagged stream, sayS, has a corresponding
time-varying relation, termed<(S) , that is continuously
modified byS’s tuples. An input tuple in a tagged stream is
denoted by “Type <Attributes >Timestamp ”, where
Type can be either +, u, or - andTimestamp indicates the
time at which the modification takes place.<(S) ’s schema
consists of two parts as follows: (1) a set of attributes that
corresponds toS’s Attributes , and (2) a timestamp at-
tribute, termedTS, that corresponds to theTimestamp
field of S’s tuples.Timestamp is mapped to<(S) in order
to be able to express time-based windows overS as will be
shown in Section 2.2. At any time point, sayT,<(S) is de-
noted byR[S(T)] and is the relation resulting from apply-
ing S’s operations with timestamps less than or equal toT in
an increasing order of timestamp. According to the under-
lying application,<(S) can be modified by either inserting
tuples (i.e., append-only), or by general modify operations.

Definition 1. Time-varying relation. A time-varying
relation<(S) is the relational view of a tagged streamS
such that<(S)= R[S(T)] ∀ T, whereT is any point in
time.

Example 2 This example demonstrates the mapping from
RoomTempStr (as defined in Example 1) to a time-
varying relation. Figure 1a shows the following in-
put tuples: “+<a,99 >1, + <b,75 >2, + <c,80 >3,
u<a,95 >4”. Figure 1b gives<(RoomTempStr) with a
schema of three attributes:RoomID, Temperature , and
TS. Figure 1b shows that, at time1, <(RoomTempStr)
reflects the insertion of Room “a” with temperature99 . At
time 4, <(RoomTempStr) reflects the update of Room
“a” temperature to95 .

Query semantics. A continuous query overn tagged
streams,S1 . . . Sn, is semantically equivalent to ama-
terialized viewthat is defined by an SQL expression over
the time-varying relations,<( S1) . . . <( Sn) . At any
time point, T, the query answer reflects the contents of
the underlying relations at timeT, (i.e., R[ S1(T)] . . .
R[ Sn(T)] ). Whenever any of the underlying relations is
modified by the arrival of a stream tuple, the modify op-
eration is propagated to produce the corresponding set of
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Figure 2. Q3 Running Example.

modify operations in the query answer in a way similar to
incremental maintenance of materialized views [17].

Query outputs. The output of a query can be provided
in two forms as follows:
(1) COMPLETEoutput, where, at any time point, the issuer
of the query sees a state or a relation that represents the
complete answer of the query. The output relation is con-
tinuously modified by the query pipeline whenever any of
the input relations is modified.
(2) STREAMEDoutput, where the issuer of the query
receives a tagged stream that represent thedeltas (i.e.,
incremental changes) in the answer.

Example 3 This example demonstrates the semantics and
syntax of SyncSQL queries. The temperature monitor-
ing query Q3 that is used in Section 1 , is expressed in
SyncSQL as follows:
select STREAMED RoomID, Temperature
from <(RoomTempStr) R
where R.Temperature > 80

whereRoomTempStr is the input tagged stream that is
defined in Example 1.<(RoomTempStr) is the corre-
sponding time-varying relation. The keywordSTREAMED
indicates that the output needs to be another stream of
modify operations. The output stream of this query in-
cludesinsert (or update) operations for rooms that qualify
the predicate “R.Temperature > 80” and/or delete
operations for previously qualified rooms that disqualify
the predicate due to a temperature update.
Running example. Assume the following
RoomTempStr ’s tuples have arrived atQ3: +<a,78 >1,
u<a,105 >2, + <b,70 >3, + <c,95 >4,
u<a,76 >5, u <c,103 >6. Figure 2 shows the in-
put and output streams inQ3 are as follows. The input
tuple +<a,78 >1 does not result in producing any out-
put tuples, whileu<a,105 >2, which arrives at time
2, results ininserting Room “a” in the answer via the
output tuple+<a,105 >2. Similarly, when+<c,95 >4
arrives, Room “c ” is inserted in the query answer via
+<c,95 >4. Later, whenu<a,76 >5 arrives, Room “a”
is deletedfrom the output via- <a>5. Notice that the
“Attributes ” part of the delete tuple- <a>5 specifies

only the key value which is enough to perform deletion.
Finally, whenu<c,103 >6 arrives, a corresponding tuple
u<c,103 >6 is produced in the query answer to report
that Room “c ” still qualifies the query predicate, but with a
new temperature.

Views over streams. The unified interpretation (as
tagged streams) ofSyncSQL query inputs and outputs en-
ablesSyncSQL to define and exploit views over streams.
Basically, a view over streams is a namedSyncSQL query
expression that is defined once and, then, can be used as in-
put in any other query. For example, a view, sayVi, can be
used as input in a query, sayQi, if Qi’s expression (or part
of it) is equivalentor is containedin Vi’s expression. In
Section 5, we give an algorithm to deduce the containment
relationships amongSyncSQL expressions.

Example 4 This example demonstrates answering queries
using views. Consider the following query,Q4 (from the
same temperature-monitoring application asQ3): “Con-
tinuously keep track of the rooms that have temperature
greater than100” . Similar toQ3, Q4 can be expressed over
RoomTempStr as follows:

select STREAMED RoomID, Temperature
from <(RoomTempStr) R
where R.Temperature > 100

It is obvious thatQ4 is contained inQ3. As a result we can
benefit from query composition by definingQ3 as a view,
sayHotRooms1, as follows:

create STREAMED view HotRooms1 as
select RoomID, Temperature
from <(RoomTempStr) R
where R.Temperature > 80

Then, the two queriesQ3 andQ4 can be re-written in terms
of HotRooms1 as follows:
Q3: select STREAMED RoomID, Temperature

from <(HotRooms1) R
Q4: select STREAMED RoomID, Temperature

from <(HotRooms1) R
where R.Temperature > 100

Running example.Figure 3 shows the execution ofQ4 over
the output ofHotRooms1. Notice that the output stream
from HorRooms1 is the same output stream fromQ3 that is
shown in Figure 2. Basically, when the tuple+<a,105 >2
arrives atQ4 at time 2, a corresponding tuple+<a,105 >2
is produced in the output. In contrast,+<c,95 >4 does
not result in producing any output tuples since95 does not
qualify Q4’s predicate. Later,u<c,103 >6 results in in-
serting Room “c ” in Q4’s answer via+<c,103 >6.

2.2 Window Queries

In addition to expressing queries over non append-only
streams,SyncSQL still can express sliding-window queries
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over append-only streams. The sliding-window query
model is the most widely used window model in the exist-
ing streaming literature. A sliding window is defined by two
parameters: (1)rangethat specifies the size of the window,
and (2)slide that specifies the step by which the window
moves over the stream.

Windows may be assigned to streams (e.g., [2, 8]) or to
operators (e.g., [7, 25]). However, the same relational op-
erator (e.g., join) may have different semantics under the
different window usages. For example, if we consider the
window-per-operator usage, a window join with window
sizew, joins the input stream tuples that are within at most
w time units from each other [7]. On the other hand, if
we consider the window-per-stream usage, a binary win-
dow join has two different window sizes,w1 andw2, one
for each stream [2].

The difference in window semantics makes it difficult
for a language that is defined by one window semantics
to express queries from the other window semantics. To
overcome this difficulty,SyncSQL does not assume spe-
cific window semantics. Instead,SyncSQL uses a general
window model that can be used to express the various win-
dows.

2.2.1 Expressing Window Queries inSyncSQL

In SyncSQL, raw input streams that represent append-only
relations are mapped to tagged streams ofinsertoperations
(e.g., theTempStr stream in Example 1).SyncSQL does
not use specific constructs to express sliding windows over
the append-only streams. Instead,SyncSQL employs the
predicate-window query model [15] in which the window
rangeis expressed as a regular predicate in thewhereclause
of the query. The window’sslide is expressed using the
synchronization principle as will be explained in Section 3.

The predicate-window model is a generalization of
the existing window models, since all types of windows
(e.g., window-per-stream, window-per-operator) can be ex-
pressed as predicate windows. A time-based sliding win-
dow over an append-only stream, sayS, is expressed as a
predicate over<(S) ’s TS attribute. For example, a win-

dow join between two streams,S1 andS2, where two tuples
are joined only if they are at most 5 time units apart, can be
expressed by the following predicate:
<(S2).TS - 5 < <(S1).TS < <(S2).TS+5 . The
window predicate can be expressed over any attribute in
the input stream tuple (ordered or non-ordered). For exam-
ple, the temperature monitoring query,Q3, is a predicate-
window query in which the predicate is defined over the
unorderedTemperature attribute. Moreover, sliding-
window queries in which a separate window is attached to
each input stream can be expressed using predicate win-
dows as shown by the following example.

Example 5 Consider a road-monitoring application in
which sensors are distributed to report car identifiers for
cars passing through a specified intersection. The input
streamS of car identifiers represents an append-only rela-
tion. A sliding window overS of size5 time units is es-
sentially aview that, at any time pointT, contains the car
identifiers that are reported between timesT - 5 andT.
Such window view is expressed inSyncSQL as follows:

create STREAMED view FiveUnitsWindow as
select ∗
from <(S) R
where Now − 5 < R.TS ≤ Now

The view FiveUnitsWindow is refreshed when either
<(S) is modified orNow is changed.<(S) is modified
by the arrival ofS tuples where newS tuples producein-
sert operations in the view’s output. On the other hand,
Now is continuously changing to indicate the current time,
and, as a result,deleteoperations are produced in the out-
put to represent expired tuples that fall behind the window
boundaries. Notice that even ifS consists of only insert
operations,FiveUnitsWindow ’s output stream includes
both insert and delete operations. In Section 3.3 we show
that the value ofNowcan be represented as a view that is
continuously updated to reflect the current time.

Example 6 This example demonstrates query composition
by using ofFiveUnitsWindow as input in another con-
tinuous query. Assume the following continuous query
from the road monitoring application,Q5: “Group the in-
put cars by type (e.g., trucks, cars, or buses). Then con-
tinuously report the number of cars passed in the last five
time units in each group”. The queryQ5 is expressed over
FiveUnitsWindow as follows:

select STREAMED COUNT(∗)
from <(FiveUnitsWindow)
groupby CarType

CarCount ’output is a stream ofupdateoperations that
represents theincrementalquery answer. Anupdateopera-
tion is produced for a group,G, only whenever a car enters
and/or expires fromG. Notice that if the same query is ex-
pressed usingCOMPLETEoutput, then whenever the query
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is refreshed, the query issuer sees the non-incremental an-
swer that includes the count of cars in each group indepen-
dent from whether the group has been changed or not. The
non-incremental output of aggregate queries is the approach
that is followed by most of the existing systems to evaluate
aggregates over data streams (e.g., [7, 20]).

3 The Synchronization Principle

If we follow the traditional materialized view semantics,
aSyncSQL query answer is refreshed whenever any of the
input relations is modified. Unlike materialized views, in
streaming applications, modifications may arrive at high
rates. Usually, a continuous query issuer is interested in
having coarser refresh periods for the answer. For example,
as we discussed in Section 1, the issuer of the queryQ2 may
be interested in getting an update of the answer every five
minutes independent of the rate of changes in the parking
lot state. The coarser refresh period is achieved via special
constructs in other query languages, for example, theslide
parameter in the sliding-window query model [3, 20] and
thefor loop in [8].

In this section, we introduce the synchronization princi-
ple as a generalization for sliding windows. The idea of
the synchronization principle is to formally specify syn-
chronization time points at which the input stream tuples
are processed by the query pipeline. Input tuples that ar-
rive between two consecutive synchronization points are
not propagated immediately to produce query outputs. In-
stead, the tuples are accumulated and are propagated simul-
taneously at the following synchronization point. In the
rest of the paper, we show that the synchronization prin-
ciple distinguishes SyncSQL by being able to: (1) express
queries with arbitrary refresh conditions, and (2) formally
reason about the containment relationships among continu-
ous queries with different refresh periods.

3.1 Synchronized Relations

We introduce thesynchronizationprinciple as a means
for expressing coarser refresh periods inSyncSQL. The
purpose of the synchronization principle is to define specific
synchronization time points at which the query answer is re-
freshed in response to the input stream tuples. Input stream
tuples that arrive between two consecutive synchronization
points are not propagated immediately to produce query
outputs. Instead, the tuples are accumulated and propagated
simultaneously at the following synchronization point.

Similar to theslideparameter, the synchronization time
points are specified independently for each input stream in
the query. Each input stream, sayS, is mapped to a corre-
spondingsynchronized relation<Sync(S) that is modified
by the input stream tuplesonly at the time points that are
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specified by the synchronization stream,Sync . For exam-
ple, aslide parameter of two time units is specified by the
synchronization streamSync 2: 0, 2, 4, 6, . . . . In
Section 3.2 we show how to define and construct synchro-
nization streams.

Definition 2. Synchronized relation. A synchronized
relation <Sync(S) is a time-varying relation such that
<Sync(S) = R[S(T)] ∀ T ∈ Sync .

Example 7 This example illustrates the mapping from the
input streamRoomTempStr , to the corresponding syn-
chronized relation<Sync2(RoomTempStr) . We use the
same input stream tuples as in Example 2. Figure 4 shows
the synchronized relation<Sync2(RoomTempStr) ,
that is modified by the input stream tuples at time
points: 2, 4, 6, . . . . For example, at time1,
<Sync2 (RoomTempStr) is empty while the insertion of
Room “a” is not reflected in<Sync2(RoomTempStr)
until time2.

Example 8 For the temperature monitoring queryQ3, to
achieve the coarser refresh (every two minutes) we use
the synchronization streamSync 2. Then, the view
HotRooms1 is expressed as follows:
create STREAMED view HotRooms1 As
select RoomID, Temperature
from <Sync2(RoomTempStr) R
where R.Temperature > 80

Due to the use ofSync 2, <Sync2(RoomTempStr) is
modified every two minutes. As a result,HotRooms1 is
refreshed every two minutes as is originally requested by
Q3.

Example 9 Figure 5 shows the execution ofHotRooms1

and the subsequentQ4 when using the synchroniza-
tion principle. For simplicity, we assume that the
basic time unit is “minute”. Hence,HotRooms1’s
answer is refreshed every two time units. As-
sume that the following input streamSin has ar-
rived at HotRooms1: +<a,105 >1, + <b,110 >3,
+<c,97 >4, + <d,75 >5, u <a,75 >7. In Figure 5,
Sync 2 representsHotRooms1’s synchronization stream
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while S1 showsHotRooms1’s output. The input tuple
+<a,105 >1 that arrived at time1 results in producing
the tuple+<a,105 >2 at time 2, which is the first syn-
chronization time point after1. Similarly, +<b,110 >3
results in producing+<b,110 >4, and u<a,75 >7 re-
sults in producing- <a>8.
Query composition. S1 is used as input inQ4, which uses
the synchronization streamSync 4: 0, 4, 8, . . . . As a
result, tuple+<a,105 >2 that arrives atQ4 at time2 re-
sults in producing the tuple+<a,105 >4 at time4 in S2.
Other tuples are processed similarly byQ4’s pipeline.

Timestamps of the output stream tuples.Timestamps
need to be attached to the output tuples from aSTREAMED
view so that the output stream can be used as input in an-
other continuous query. When considering the synchro-
nization principle, an input tuple possesses two timestamps
as follows. (1) TheArrival timestamp that is equal to the
timestamp attribute of the tuple, and (2) TheReleasetime-
stamp that is equal to the time at which the input tuple is
reflected in the query. Thearrival andreleasetimestamps
may not be equal for tuples that arrive between two con-
secutive synchronization points. However, the timestamp
of an output tuple is constructed as a function of therelease
timestamp(s) of the input tuple(s) that caused this output be-
cause the output necessarily follows thereleasetime point.
For example, in Example 9, the input tuple +<a,105>2 in
Q4, that has arrival timestamp of value2, has a release time-
stamp of value4. As a result, +<a,105>2 results in pro-
ducing the output tuple +<a,105>4 which has a timestamp
equals to4.

3.2 Synchronization Streams

Before proceeding to the algebraic foundations of
SyncSQL, this section discuses synchronization streams in

more detail. Basically, a synchronization stream specifies
a sequence of time points. However, the representation of
a synchronization stream follows the tagged stream seman-
tics in Section 2.1, and is treated as any other stream. A
synchronization stream is characterized by the following.
(a) The underlying stream schema has only one attribute,
termedTimepoint , and (b) tuples in the stream areinsert
operations of the form “+<Timepoint >Timepoint ”.
Like any other stream, a synchronization streamSync
has a corresponding time-varying relation<(Sync) where
each “+<Timepoint >Timepoint ” adds a new time
point of value Timpepoint to <(Sync) . The de-
fault clock stream,clockStr: + <0>0, + <1>1,
+<2>2, + <3>3, . . . , is the finest granularity synchro-
nization stream where there is a time point for every clock
tick. Coarser synchronization streams can be constructed
using SyncSQL expressions overclockStr .

Example 10 The synchronization stream that has a tick ev-
ery two time points is constructed fromclockStr using
the following view expression:
create STREAMED view Sync2 As
select C.Timepoint
from <(clockStr) C
where C.Timepoint mod 2 = 0

A tuple is produced in the output ofSync 2 whenever a tu-
ple, c , is inserted in<(clockStr) andc.Timepoint
qualifies the predicate “c.Timepoint mod 2 = 0 ”.
The output ofSync 2 is as follows: +<0>0, + <2>2,
+<4>4, + <6>6, . . . which indicates the time points:
0, 2, 4, 6, . . . , which is the same asSync 2 that is
used in Example 8.

Composition of synchronization streams.The fact that
synchronization streams are treated as regular streams al-
lows us to compose synchronization streams to define a
larger class of synchronization streams. For example, a syn-
chronization stream can be defined as theunionor intersec-
tion of two or more streams.

Example 11 The following view expression produces a
synchronization stream that is the union of two input syn-
chronization streams (Note thatduplicate eliminationis re-
quired so that every time point exists only once in the output
stream):
create STREAMED view UnionSyncStr as
select DISTINCT(Timepoint)
from <(Sync2) S2 ∪ <(Sync5) S5

The output fromUnionSyncStr includes a time pointT
wheneverT belongs to eitherSync 2 or Sync 5.

Event-based synchronization: The synchronization
principle enablesSyncSQL to express a wider class of con-
tinuous queries including queries that use event-based re-
fresh conditions. Synchronization streams for event-based
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conditions can be constructed usingSyncSQL expressions
as in the following example.

Example 12 Consider another temperature monitoring
query, Q6, that is similar toQ4 except thatQ6 needs to
be refreshed only whenever a room reports a temperature
greater than120 . We use the tagged streamTempStr ,
which is defined in Example 1, to generate a synchroniza-
tion stream, sayHotSync , such thatHotSync includes
time points that corresponds to reporting a temperature
greater than 120. As explained in Section 2,TempStr
consists of onlyinsert operations and its corresponding
relation <(TempStr) has three attribute: RoomID,
Temperature, and TS . A synchronization stream,
HotSync , can then be constructed by the following query
over<(TempStr) :
create STREAMED view HotSync as
select R.TS
from <(TempStr) R
where R.Temperature > 120

An input tuple from TempStr , of the form
“+<RoomID,Temperature >Timestamp ”, re-
sults in an output tuple, “+<Timestamp >Timestamp ”,
if “ Temperature ” is greater than 120.HotSync can be,
then, used as a synchronization stream forQ6.

3.3 TheNowView

In Example 5,FiveUnitsWindow ’s contents depend
on the value ofNow. In order to be consistent with the
SyncSQL semantics, the value ofNow is defined as a
view that is continuously modified by the clock stream
clockStr: + <0>0, + <1>1, + <2>2, . . . . No-
tice that <(clockStr) is an append-only relation in
which the value of the last inserted tuple indicates the cur-
rent time,Now.

Example 13 The following view, NowView, over
<(clockStr) always contains the value ofNow:
create STREAMED view NowView as
select 1 as KEY, MAX(T.Timepoint) as currTime
from <(clockStr) T

The output ofNowView is a time-varying relation that
has a primary key,KEY. The view always contains one
tuple with key value1, and the tuple is continuously
updated in response to insertions in<(clockStr). As
tuples are appended to<(clockStr) , the function
MAX(T.Timepoint) selects the last appended tuple
that has a value equals to the current time,Now. The
output stream fromNowView is as follows:+<1,0 >0,
u<1,1 >1, u <1,2 >2, u <1,3 >3, . . . , where the
tuple u<1,3 >3, for example, means update the record
with KEYvalue1, to have acurrTime value3. The view
FiveUnitsWindow over streamS from Example 5 is

rewritten in terms ofNowView as follows:
create STREAMED view FiveUnitsWindow as
select R.∗
from <(S) R, <(NowView) N
where N.currTime− 5 < R.TS ≤ N.currTime

Example 14 This example shows how to useSyncSQL to
define a sliding window that is defined by both therange
andslide parameters. Assume we extend the definition of
the sliding window in Example 5 such that the window is
refreshed every 2 time units instead of every point in time
(this corresponds to a sliding window with range 5 units and
slide 2 units). In a way similar to usingclockStr to de-
fine NowView, we use the synchronization streamSync 2

to define a view, sayTwoUnitsSlide , as follows:
create STREAMED view TwoUnitsSlide as
select 1 as KEY, MAX(T.Timepoint) as currTime
from <(Sync2) T

TheTwoUnitsSlide view consists of only one tuple that
is updated bySync 2’s tuples. TheTwoUnitsSlide view
can, then, be used to express a sliding window of range5
and slide2 over a streamS as follows:
create STREAMED view RangeFiveSlideTwo as
select R.∗
from <Sync2(S) R, <(TwoUnitsSlide) N
where N.currTime− 5 < R.TS ≤ N.currTime

Only at the time points that belongs toSync 2,
RangeFiveSlideTwo ’s output is refreshed to include
S’s tuples that arrived in the last 5 time units.

4 SyncSQL Algebra

In this section, we lay the algebraic foundation for
SyncSQL as the basis for efficient execution and optimiza-
tion of SyncSQL queries. One of our goals while devel-
oping SyncSQL is to minimize the extensions over the
well-known relational algebra. By levering the relational
algebra,SyncSQL execution and optimization can benefit
from rich literature of traditional databases. We achieved
our goal by mapping continuous queries to the traditional
materialized views. However, the synchronization principle
differentiates continuous queries from materialized views.
In this section, we introduce the data types and transforma-
tion rules that are imposed by the synchronization principle.

4.1 Data Types

As discussed in Section 2, although the inputs in
a SyncSQL expressions are tagged streams,SyncSQL
queries are expressed over the input streams’ correspond-
ing relations. The output from aSyncSQL expression is
another relation that can be mapped into a tagged stream.
Basically, a synchronized relation is the main data type over
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which SyncSQL expressions are expressed. A synchro-
nized relation,<Sync(S) , possesses two logical properties:

• Data (or state) that is represented by the tuples in the
relation and is extracted from the input streamS.

• Time that is represented by the time points at which the
relation is modified by the underlying streamS and is
extracted from the synchronization streamSync .

The time points at which<Synci (S i) reflectsall Si’s
tuples up to timeTi (i.e.,<Synci

(S i) = R[S i(T i)] ) are
called “full synchronization points” for the relation. Basi-
cally, the time pointsTi ∈ Sync i represent the full synchro-
nization points for<Synci

(S i) . On the other hand, the time
points at which<Synci(S i) does not reflect allSi tuples are
called “partial synchronization points”. Basically, the time
points that lies between two consecutiveSync i represent
the partial synchronization points for<Synci

(S i) .

4.2 Operators

Operators inSyncSQL are classified into three classes:
Stream-to-Relation (S2R), Relation-to-Relation (R2R), and
Relation-to-Stream (R2S). This operator classification is
similar to the classification used by CQL [2], but with dif-
ferent instantiations of operators in each class. Basically,
the S2R class includes one operator that is used to express
the desired synchronization points. The R2R class includes
the traditional relational operators. Finally, the R2S class
includes one operator that is used in a query to express the
desire of anincremental output.

4.2.1 S2R and R2S Operators

The stream-to-relation operator <. < takes a tagged
stream of modify operations, sayS, as input and a synchro-
nization stream, saySync , as a parameter and produces
a synchronized relation,<Sync(S) , as output. Similar
to <(S) , <Sync(S) ’s schema consists ofS’s underlying
schema plus the timestamp attributeTSas explained in Sec-
tion 2.1. Basically,< performs the following: (1) buffers
S’s tuples, (2) modifies the output relation by the buffered
tuples at everySync ’s point, T. The output relation at
Sync ’s pointT is denoted byR[S(T)] .

The relation-to-stream operator ξ. ξ takes a synchro-
nized relation,<Sync(S) , as input and produces a tagged
stream as output.ξ produces output tuples only when the in-
put relation is modified (i.e, at the time points that belongs
to Synch ). Basically, at everySync ’s time point,T, the
input relation isR[S(T)] andξ performs the following:
(1) generates delta tuples that represent<Sync(S) ’s modi-
fications (i.e., +, u, or -) since the previous synchronization
point, (2) assignsT as the timestamp of every generated
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Figure 6. The Relation-to-Stream Operator.

tuple and produces the delta tuples in the output. Notice
that non append-only relations can be mapped to streams
according to theSyncSQL stream semantics.

Example 15 The functionality of the S2R operator,<, has
been demonstrated in Figure 4. In this example we demon-
strate the functionality of the R2S operator,ξ. Figure 6
gives the mapping from<Sync2 (RoomTempStr) , that is
given in Figure 4, to the corresponding stream,Sout (i.e.,
Sout = ξ( <Sync2(RoomTempStr)) ). For example, at
time 4, ξ produces+<c,80,3 >4 andu<a,95,4 >4 as
the differences since the previous synchronization point,2.
Notice that,ξ assigns timestamps to the output stream tu-
ples so that the output stream can be used as input in an-
other continuous query.Notice that everyS’s tuple has a
corresponding tuple inSout, although because of the syn-
chronization, the corresponding tuples inS andSout may
not have the same timestamps. Notice also thatSout’s
schema differs fromS’s schema by having an additional
attribute that corresponds to theTimestamp field of S’s
tuples (e.g., the tuple+<a>1 in S is mapped to +<a,1>2
in Sout). This additional attribute is due to the composition
of < andξ operators. Recall that an additionalTS attribute
is added by< whenS is mapped to<Sync2(S) . As a re-
sult, TS is produced as an attribute inSout’s schema when
ξ maps<Sync2 (S) to Sout. TS can be eliminated from
<Sync2 (S) by using an R2R project operator,π.

4.2.2 Extended R2R Operators.

The R2R class of operators includes extended versions of
the traditional relational operators (e.g.,σ, π, ./, ∪, ∩, and
-). The semantics of R2R operators inSyncSQL are the
same as in the traditional relational algebra. The difference
in SyncSQL is that the operators are continuous (not snap-
shot). A continuous operator means that, inputs to the oper-
ator are continuously changing and the operator is continu-
ously running to produce a new output whenever any of the
inputs changes.

As with materialized views, the output from an R2R op-
erator is refreshed whenever any of the input relations is
modified. For a unary operator (e.g.,σ, π), the output
relation is modified at the input relation’s synchronization
points. In other words, the synchronization points (full and
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partial) for the output relation are the same as those for
the input relation. However, a problem arises in non-unary
operators if the input relations have different synchroniza-
tion points. Notice that operating over relations with differ-
ent synchronization points is similar to operating over win-
dowed streams with differentslideparameters (the latter has
not been discussed in the existing literature).

For example, consider a binary operator, sayO, that
has two input synchronized relations,RSync1(S 1) and
RSync2(S 2) . The input relationRSync1(S 1) is modified
at every time point inSync 1 while RSync2(S 2) is modi-
fied at every point inSync 2. As a result, the output ofO
is modified at every pointT ∈ (Sync 1 ∪ Sync 2) . The
output ofO is interpreted as follows:

• For every time point
T1 ∈ (Sync 1-(Sync 1 ∩ Sync 2)) , T1 is a
full synchronization point forRSync1(S 1) (i.e., at
time T1, RSync1 (S 1) reflectsall S1 tuples up toT1).
However, the same pointT1 is a partial synchroniza-
tion point for RSync2 (S 2) (i.e., at T1, RSync2 (S 2)
does not reflect allS2 tuples up toT1). Hence, as a
result, T1 is a partial synchronization point for the
output ofO because at timeT1, the output ofO does
not reflectall input tuples fromall input streams.

• Similarly, every time point
T2 ∈ (Sync 2-(Sync 1 ∩ Sync 2)) is a par-
tial synchronization point for the output ofObecause
it does not reflect all input tuples from all input
streams.

• Every time pointT ∈ (Sync 1

⋂
Sync 2) is a full

synchronization point for the output ofO since it re-
flects all input tuples from all input streams.

Proposition 1. Unary operators.The output of a unary
R2R operator, sayΘ, over a synchronized relation, say
<Sync(S), is another synchronized relation, denoted by
Θ(<Sync(S)), such that:
∀ T ∈ Sync, T is a full sync point, and
Θ(<Sync(S)) = Θ(R[S(T )]) , while
∀ T /∈ Sync, T is a partial sync point, and
Θ(<Sync(S)) = Θ(R[S(T̃ )])

where T̃ = max (t ∈ Sync and t < T )

Proposition 2. Binary operators. The output of a
binary R2R operator, sayΘ, over two synchronized rela-
tions, say<Sync1(S1) and<Sync2(S2), is a synchronized
relation, denoted by<Sync1(S1) Θ <Sync2(S2), such that:
(1) ∀ T ∈ Sync1

⋂
Sync2,

T is a full sync point, and ,
<Sync1(S1) Θ <Sync2(S2) = R[S1(T )] Θ R[S2(T )],
(2) ∀ T ∈ (Sync1 − ( Sync1

⋂
Sync2)),

T is a partial sync point, and ,
<Sync1(S1) Θ <Sync2(S2) = R[S1(T )] Θ R[S2(T̃ )],
where T̃ = max(t ∈ Sync2 and t < T ),
(3) ∀ T ∈ (Sync2 − ( Sync1

⋂
Sync2)),

T is a partial sync point, and ,
<Sync1(S1) Θ <Sync2(S2) = R[S1(T̃ )] Θ R[S2(T )],
where T̃ = max(t ∈ Sync1 and t < T )

According to Proposition 1, at any time point, sayT̃, that
does not belong to the output synchronization stream, the
output synchronized relation from a unary operator reflects

the input stream only up to a time point˜̃T where˜̃T< T̃. Sim-
ilarly, according to Proposition 2, at any time point, sayT̃,
that does not belong to the output synchronization stream,
the output from a binary R2R operator reflects one input
streams up to time point̃T while reflects the other input

stream only up to timẽ̃T where˜̃T < T̃.
Derived synchronized relations. Based on the previ-

ous discussion, the output of an R2R expression over syn-
chronized relations is a derived synchronized relation. The
output derived relation has the following logical properties:

• Statethat is derived from the input relations’ states.

• Time that represents the time points at which the de-
rived relation is modified. The derived relation is mod-
ified at every time point, sayT, if T belongs to the
union of the input relations’ synchronization streams.
The time points at which the derived relation are mod-
ified are further classified as follows: (1)Full synchro-
nization points:a time point, sayT, is a full synchro-
nization point for the derived relation only ifT is a
full synchronization point for all the input relations.
(2) Partial synchronization points:a time point, sayT,
is apartial synchronization point for the derived rela-
tion if T is apartial synchronization point for at least
one of the input relations.

Query pipeline. In order to express a query over tagged
stream, theSyncSQL expression is constructed as follows.
(1) S2R: transform each input stream to the corresponding
synchronized relation via an< operator using the desired
synchronization. (2) R2R: using R2R operators, and in a
way similar to traditional SQL, express the query over the
synchronized relations. The output of is another synchro-
nized relation. (3) R2S: the output synchronized relation is
transformed into an incremental output via anξ operator.

Example 16 This example shows the execution pipeline
for a join query between two synchronized relations,
<Sync2 (S 2) and<Sync3 (S 3) , whereSync 2 ticks every
2 time units whileSync 3 ticks every3 time units. The
SyncSQL expression is as follows:
select STREAMED ∗
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Figure 7. Joining Relations with Different Synchronization

from <Sync2(S2) R2, <Sync3(S3) R3
where R2.ID = R3.ID

Figure 7 illustrates the pipeline and shows that the output of
join is refreshed at time points2, 3, 4, and6. The output
at 2 is equal toR[S 2(2)] ./R[S 3(0)] and hence2 is a
partial synchronization point since it reflectsS3 only up to
time0. Similarly,3 is apartial synchronization point since
it reflectsS2 up to time2. 4 also is apartial synchroniza-
tion point since it reflectsS3 up to time 3. However,6 is a
full synchronization point for the output since it reflectsall
input tuples up to time6.

4.3 Equivalences and Relationships

Achieving query composition is one of the main goals
of SyncSQL. In order to achieve query composition, a
query optimizer must be empowered by algorithms to rea-
son about the equivalences and containment relationships
among query expressions. In this section, we introduce pre-
liminary relationships that are required by a query optimizer
to enumerate the query plans and deduce query contain-
ment.

4.3.1 Containment Relationship among Synchroniza-
tion Streams

A synchronization stream, saySync 1, is contained
in another synchronization stream, saySync 2, if
every time point in Sync 1 is also a time point
in Sync 2 (i.e., <(Sync 1) ⊂ <(Sync 2) ). Recall
that, as explained in Section 3.2, a synchronization
stream consists of onlyinsert operations of the form
+<Timepoint >Timepoint . Containment relation-
ships between synchronization streams can be deduced
from the constructingSyncSQL expressions. For example,

a synchronization stream that is defined overclockStr
by the predicate “Timepoint mod 4 = 0 ” (i.e., a
stream that ticks every 4 time units) is contained in the
synchronization stream that is defined by the predicate
“Timepoint mod 2 = 0 ” (i.e., a stream that ticks ev-
ery two time units).

Proposition 3.<(Sync 1) ⊆ <(Sync 2) if
∀ I ∈ Sync 1 ⇒ I ∈ Sync 2 whereI is an insert op-
eration of the form “+<T>T”.

4.3.2 Containment Relationships among Synchronized
Relations

Reasoning about containment relationships between two
synchronized relations must consider the two logical prop-
erties, state and time, of the relation. For example, consider
two synchronized relations,<Synci(S) and<Syncj (S) ,
that are defined over the same streamS. Notice that, the
statesof <Synci(S) and <Syncj (S) may not be equal
at every time point ifSync i and Sync j are not the
same. However, ifSync i is contained inSync j , then
<Synci (S) is containedin <Syncj (S) . The containment
relationship means that everyfull synchronization time
point of <Synci(S) is also afull synchronization point
of <Syncj (S) . The containment relationship is beneficial
since<Synci(S) can be computed from<Syncj (S) with-
out accessingS. Notice that, the containment relationship is
judged based only on thefull synchronization time points of
the relation because those are the time points of interest to
the issuer of a query.

Theorem 1 For any stream S, a synchronized re-
lation <Synci(S) is contained in <Syncj (S) if
<(Sync i) ⊆ <(Sync j) .

Proof:
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1. Based on Definition 2:
<Syncj

(S) = R[S(T)] ∀ T ∈ <(Sync j) ;

2. Given that<(Sync i) ⊆ <(Sync j) , then, based
on Proposition 3
∀ T ∈ <(Sync i) ⇒ T ∈ <(Sync j) ;

3. From 1 and 2 above,
<Syncj (S) = R[S(T)] ∀ T ∈ <(Sync i) ;

4. Based on Definition 2,
<Synci(S) = R[S(T)] ∀ T ∈ <(Sync i) ;

5. From 3 and 4 above:
<Synci(S) = <Syncj (S) = R[S(T)]
∀ T ∈ <(Synci).

Corollary 1. If <(Sync i) ⊆ <(Sync j) , then
<Synci(S) ⊆ <Synci(ξ(<Syncj (S))).

Corollary 1 means that<Synci (S) can be constructed
from <Syncj (S) without accessingS. This is done by ap-
plying Sync i over the output stream fromξ( <Syncj (S)) .

Example 17 This example illustrates Theorem 1 and
Corollary 1. Consider two synchronization streams,Sync 2

andSync 4, where<(Sync 4) ⊂ <(Sync 2) . Figure 8a
gives the derivation of<Sync4 (S) while Figure 8b gives
the derivation of<Sync4( ξ( <Sync2(S))) . Notice that, all
the full synchronization points for<Sync4(S) are alsofull
synchronization points for<Sync2(S) . Moreover, if only
the STREAMEDversion of<Sync2 (S) is available (i.e.,
ξ(<Sync2 (S)) or S2 in Figure 8b),<Sync4(S) can be
computed by applyingSync 4 overS2 (i.e.,<Sync4(S) at
time4 is contained in<Sync4 ( ξ( <Sync2 (S))) at time4).

4.3.3 Commutability between Synchronization and
R2R Operators

R2R operators in aSyncSQL expression are executed over
synchronized relations. In this section, we show that the or-
der of applying the synchronization and R2R operators can
be switched. The commutability between the synchroniza-
tion and R2R operators allows executing the query pipeline
over finest granularity relations and hence allows sharing
the execution among queries that have similar R2R opera-
tors but with different synchronization points.

Corollary 2. For anyunary R2R operator, sayΘ, ∀ T
such thatT is a full synchronization point ofΘ(<Sync(S)),
T is a full synchronization point of<Sync(ξ(Θ(<(S)))).

Corollary 3. For any binary R2R operator, say
Θ, ∀ T such thatT is a full synchronization point of
<Sync1(S1) Θ <Sync2(S2), T is a full synchronization
point of<Sync1

⋂
Sync2(ξ(<(S1) Θ <(S2))).

The main idea of Corollaries 2 and 3 is that we can pull
the synchronization streams out of an R2R operator. Basi-
cally, an R2R operator can be executed over finest granular-
ity relations and produce a finest granularity output. Then,
the desired synchronization is applied over the fine granu-
larity output. Notice that, Corollaries 2 and 3 can also be
used in the opposite direction by a query optimizer to push
the synchronization inside R2R operators and, hence, re-
ducing the number of operator executions.

Based on Corollaries 2 and 3, aSyncSQL expression
can be executed as follows: (1) transform the input streams
to the finest granularity synchronized relations,<(S) , us-
ing the finest granularity synchronization stream (i.e., the
clock stream), (2) execute the query pipeline over the finest
granularity input producing a fine granularity output rela-
tion, (3) map the output relation to a stream usingξ, and
finally (4) transform the output stream to the desired syn-
chronized output using<.

5 Shared Execution using Query Composi-
tion

In this section, we introduce a query matching algorithm
for SyncSQL expressions. The goal of the algorithm is
that, given aSyncSQL query, sayQi, the algorithm deter-
mines whetherQi (or a part of it) is contained in another
view, sayQj . If suchQj exists, the algorithm re-writesQi

in terms ofQj in a way similar to answering queries using
views in traditional databases.

5.1 Skinning SyncSQL Expressions

To reason about containment ofSyncSQL expressions,
we isolate the synchronization streams out of the expres-
sion. We term the resulting form of the expressions a
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“skinned” form. The skinned form of aSyncSQL expres-
sion is an equivalent expression that consists of: (a) a global
synchronization stream that specifies thefull synchroniza-
tion points of the expression, and (b) a SQL expression over
finest granularity relations. Corollaries 2 and 3 are used to
transform anySyncSQL expression into the corresponding
skinned form.

Theorem 2 Any SyncSQL expression has an equivalent
normal form.

Theorem 2 is proved using Corollaries 2 and 3.

Example 18 This example derives the normal form for the
SyncSQL expressionQ= σ(<Sync1(S1) ./ <Sync2(S2)).
The derivation is performed in two steps as follows:

-Using Corollary 3, pull the synchronization streams out
of the join operator.
Q= σ(<Sync1

⋂
Sync2(ξ(<(S1) ./ <(S2)))).

-Using Corollary 2, pull the synchronization stream out
of the selection operator.
Q= <Sync1

⋂
Sync2(ξ(σ(<(S1) ./ <(S2)))).

The constructed normal form indicates thatQ is equiva-
lent to a synchronized relation with the following: (1)Data:
σ(<(S1) ./ <(S2)), and (2)Time: Sync 1

⋂
Sync 2.

5.2 Query Matching

SyncSQL query matching is similar to “view exploita-
tion” in materialized views [16, 19]. However,SyncSQL
queries differ from the traditional materialized views by
the notion of synchronization. A matching algorithm for
SyncSQL expressions matches the two parts of the skinned
forms: the query expression and the global synchronization
points.

After introducing the main tools, we now give the high-
level steps of the query matching algorithm. The input to
the algorithm is aSyncSQL query expression, sayQ, and a
set of skinned forms for the concurrent queries.

Algorithm SyncSQL-Expression-Matching:

1. Using Corollaries 2 and 3, transformQ to the corre-
sponding normal form by constructing the two com-
ponents: (1)Q’s data,Qd, and (2)Q’s synchronization,
Qs;

2. Match Qd with data parts of the other input normal
forms using a view matching algorithm from the ma-
terialized view literature (e.g., [16]). The result of the
matching is a normal form (if any) for a matching ex-
pression, saỹQ, such thatQd ⊂ Q̃d;

3. If such Q̃ exists, check whetherQs ⊂ Q̃s;

4. If Qs ⊂ Q̃s, then rewriteQd in terms ofQ̃d using the
same algorithm used in Step 2 above. The output ex-
pression of the re-write operation is denoted asQD;

5. The input query,Q, is then equivalent to the synchro-
nized relation with: (1)Data: QD, and (2)Time: Qs.

Notice that, the query matching algorithm is used to
match an input query against a set of already existing views.
On the other hand, if we know the whole set of queries in
advance, the skinned forms are constructed using the great-
est common divisor of all synchronization streams instead
of the default clock stream.

Example 19 This example illustrates the steps performed
to match the temperature monitoring queryQ4 with the
view HotRooms1 as explained in Example 4. Assume that
the input expressions are as follows:
HotRooms1 = σTemp > 80(<Sync2(RoomTempStr))
Q4 = σTemp > 100(<Sync4(RoomTempStr))

The corresponding normal forms for the two expressions
are as follows:
HotRooms1 = <Sync2(ξ(σTemp > 80(<(RoomTempStr))))
Q4 = <Sync4(ξ(σTemp > 100(<(RoomTempStr))))

By Comparing the two normal forms we can conclude
that: (1)<(Sync 4) ⊂ <(Sync 2) , and (2) using a view
matching algorithm (e.g., [16]) shows that the “Temp >
100 ” ⊂ “Temp > 80”. Then, the algorithm concludes
thatQ4 ⊂ HotRooms1. Then,Q4 is re-written as follows:
Q4 = σTemp > 100(<Sync4(ξ(<(HotRooms1)))).

6 Incremental Execution Model

Although the goal of this paper is to introduce the
SyncSQL semantics for queries over data streams, in this
section we briefly outline an execution model forSyncSQL
queries. Detailed implementation and optimization tech-
niques is beyond the scope of this paper.

As discussed in Section 2, aSyncSQL query over
streams is semantically equivalent to a materialized view
over the input streams’ relational views. Similar to mate-
rialized views, the straightforward way to keep the query
answer (or view) consistent with the underlying relations
is to re-evaluate the query expression whenever any of the
inputs is modified. However, incremental approaches have
been proposed to reduce the cost of maintaining the mate-
rialized views. In the incremental maintenance of materi-
alized views, instead of re-evaluating the view expression,
only the changes in the input relations are processed in or-
der to produce a corresponding set of changes in the output.
SyncSQL physical execution plans follows the incremen-
tal maintenance approach of materialized views. Basically,
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at every synchronization time point, a differential operator
processes only the modifications in the input relations and
produce a corresponding set of modifications in the output.

As discussed in Section 4, inputs and outputs in any
R2R operator are synchronized relations. According to
SyncSQL algebra, a relational operation (e.g.,σ or ./) over
an input streamSin is executed as follows. At every syn-
chronization time point, sayT1, Sin is mapped to a corre-
sponding relation,R[S in(T 1)] . Then, the relational op-
eration, sayσ, is executed overR[S in(T 1)] and produce
a corresponding output relation, sayR[S out(T 1)] . When
the input relation is modified at a following synchronization
point, sayT2, σ is re-executed overR[S in(T 2)] and pro-
duce the corresponding output relationR[S out(T 2)] . If
the output ofσ is needed to beSTREAMED, a ξ operator is
executed at timeT2 to produce tuples in the output stream
Sout that represent the deltas betweenR[S out(T 1)] and
R[S out(T 2)] . The delta tuples is a set of+, u or - opera-
tions that need to be performed overR[S out(T 1)] in order
to getR[S out(T 2)] . In short,SyncSQL algebra assumes
that an R2R operator isre-executedat every synchroniza-
tion time point.

In contrast to the algebra,SyncSQL physical execu-
tion plans employs an incremental approach. At every syn-
chronization time point, an incremental relational opera-
tor processes only the modifications in the input relations
and produce a corresponding set of modifications in the
output relation. For example, at a synchronization time
point, T2, the incrementalσ operator processes a set of
delta tuples betweenR[S in(T 2)] and R[S in(T 1)] and
produce another set of delta tuples betweenR[S out(T 2)]
andR[S out(T 1)] .

6.1 Derived Operators

The S2S counterparts of R2R operators.A SyncSQL
execution plan consist of a set of S2S operators where each
R2R operator (e.g.,σ and ./) has a corresponding incre-
mental (or differential) S2S operator (e.g.,σd and./d). Ba-
sically, the functionality of an S2S operator is composed of
three functions (S2R, R2R, then R2S) as follows: (1) S2R:
takes an input modification tuple (i.e., +, u, or -) and apply
the modification to the operator’s internal state. (2) R2R:
perform the relational operator’s function over the opera-
tor’s internal state. (3) R2S: report the modifications in the
internal state as an output tagged stream. Detailed imple-
mentation of S2S operators is addressed in [14].

The relationship between the input and output tagged
streams from an S2S operator is defined algebraically by
differential equations [17]. The functionality of a differen-
tial operator, sayθ, is defined by two equations: one equa-
tion defines the modifications inθ’s output in response to
an insert in θ’s input while the other equation defines the

changes inθ’s output in response to adeletein θ’s input.
An updatein θ’s input is processed as adeletionof the old
tuple followed by aninsertionof the new tuple. For exam-
ple, the functionality of the differentialσ is defined by the
following equations:
σp(R + r) = σp(R) + σp(r)
σp(R− r) = σp(R)− σp(r)
where+r (-r ) represents the insertion (deletion) of a tu-
ple r into (from) σ’s input relation R, while +σp(r)
(−σp(r) ) represents the corresponding insertion (deletion)
into σ’s output relation,σp(R) . Algebra for the various dif-
ferential operators is introduced in [17].

The S2S counterpart of the S2R operator.In order to
apply the synchronization principle with S2S operators, we
introduce the regulator operator,ζ as the S2S counterpart of
<. Similar to<, ζ takes a stream,Sin, as input, a synchro-
nization stream,Sync , as a parameter and produces another
stream,Sout, as output where

Sout = ζSync(S in) = ξ( <Sync(S in)) .
Notice that, as discussed in Section 4.2 and Example 15,

the schema of the resulting stream fromξ(<Sync(Sin))
differs from Sin’s underlying schema by having an ad-
ditional timestamp attribute that corresponds to thear-
rival timestamp ofSin’s tuples. The additional time-
stamp attribute is used to evaluate time-based predicates (if
any) overSin and is also included in the output stream,
Sout, from ζ. Basically, ζ works as follows: buffers
the input stream tuples and at every synchronization time
point, sayT, ζ performs the following for each buffered
input tuple of the form “Type <Attributes >Time-
stamp ”: (1) constructs a corresponding tuple of the form
“Type <Attributes,Timestamp >”, by pushing the
arrival timestamp,Timestamp , inside the tuple’s schema.
, and (2) assigns a timestamp to the tuple that is equal
to the release time, orT. As a result, ζ ’s output tu-
ples will have the form “Type <Attributes,Time-
stamp >syncTimestamp ”.

Handling timestamps by the physical operators.An
output tuple from ζ has two timestamps as follows:
(1) Timestamp that is equal to the tuple’sarrival time-
stamp and is used by the subsequent R2R differential
operators to evaluate time-based predicates (if any), and
(2) sycnTimestamp that is equal to the tuple’srelease
timestamp and is propagated by the subsequent R2R opera-
tors to the corresponding output tuples.

Example 20 This example shows the functionality of the
regulator operator,ζ. Consider the sameS andSync 2 as
those used in Example 7. Figure 9 showsS and the corre-
spondingζSync2(S) . ζ transforms, for example,+<a>1
into +<a,1 >2 by pushing the arrival timestamp of value
1 into the schema and attaching the release timestamp of
value2 as the timestamp of the output tuple. Figures 6 and
9 show thatζSync2 (S) = ξ( <Sync2 (S)) .
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Figure 9. The Regulator, ζ, Operator.

7 Related Work

Continuous queries over data streams.Many research
efforts have developed semantics and query languages for
continuous queries over data streams, e.g., [2, 6, 7, 8, 11,
25]. The existing continuous query languages restrict the
stream definition to the representation of an append-only
relation. The restricted stream definition limits the set of
queries that can produce streams as output. This is be-
cause, even if the input streams represent append-only re-
lations, a continuous query may produce non-append only
output. Different approaches have been followed by the ex-
isting languages to handle the non append-onlyoutputsas
follows:
-Restricted expressibility: To guarantee that the output of
the query can be incrementally produced as a stream, a lan-
guage restricts the set of operators that can be used to ex-
press queries over data streams. The restricted set of op-
erators includes, for example, Select, Project, and Union.
Sliding windows with the window-per-stream usage, for ex-
ample, are not allowed since they produce non-append only
output. Examples of systems that follow this approach in-
clude Aurora [7], Cougar [6], and Gigascope [11].
-Non-incremental output streams: Produce the output of
the query in anon-incrementalmanner by representing the
output as a relation then periodically stream out the relation.
Notice that this non-incremental output stream does not fol-
low the input stream definition and, hence, cannot be used
as input in another query. Examples of systems that follow
this approach include TelegraphCQ [8], and the RStream
operator in CQL [2].
-Non-incremental output relations: Does not allow
queries that produce non append-only output to produce
streams. Instead, such queries produce concrete views as
outputs. Moreover, onlysnapshotqueries are allowed over
the view. A snapshot query has to be re-issued in order to
know the modifications in the view. This approach is fol-
lowed by ESL [25].
-Divided output: CQL [2] divides the query into two sep-
arate queries that produce append-only streams such that
one query produces a stream,IStream , to represent the
inserted tuples and the other query produces a stream,

DStream , to represent the deleted tuples . It is unclear
how to compose the two streams in order to produce a sin-
gle output stream that can be used as input in another query.

SyncSQL semantics avoids these previous limitations
by allowing the output of any continuous query to be pro-
duced incrementally in a single stream.

There are two SQL-based languages that are closest to
SyncSQL: CQL [2] and ESL [25]. SyncSQL uses the same
three classes of operators (i.e., S2R, R2R, and R2S) as that
of CQL but use a different instantiation of operators in each
class. CQL defines two types of sliding windows (time-
based and tuple-based) and defines the window as an S2R
operator. However, there are no algebraic or transformation
rules to show how the window operator interacts with the
other (R2R) operators in the pipeline. Moreover, semantics
of non-unary operators on two streams with differentslide
parameters is not discussed. ESL [25] is another SQL-based
continuous query language that is designed mainly for data
mining and time-series queries. Only unary operators (e.g.,
selection and projection) can be used in queries to produce
output streams. On the other hand, since a window func-
tion produces a non append-only output, window queries
produce concrete views as output. Streams can be joined
with the concrete views, but in this case, the modifications
in the view do not affect the already produced stream tuples
but they affect only the incoming stream tuples. ESL fo-
cuses on aggregate queries but does not thoroughly address
set-based operators and queries.

Positive and negative tuples. Streams of positive
and negative tuples (i.e., insert and delete tuples) are fre-
quently used when addressing continuous query process-
ing [1, 5, 13, 14]. However, query languages do not con-
sider expressing queries over these modify streams. This
conflict between the language and internal streams is the
main obstacle in achieving continuous query composition.
SyncSQL overcomes this obstacle by unifying the stream
definition between the language and the execution model.

Continuous queries in traditional databases.Contin-
uous queries are used in traditional databases before be-
ing used over data streams. Examples of systems that
support continuous queries over database tables include
Tapestry [24] and OpenCQ [21]. In these systems, both
inputs and outputs of the continuous query are relations.
Although the input relations in Tapestry are append-only,
queries may produce non append-only output if the query
includes either a reference to the current time (e.g., Get-
Date()), or a set-difference between two relations. In order
to guarantee the append-only output,Tapestry uses a query
transformation to transform a given query into the mini-
mum bounding append-only query. The coarser refresh of
the query is achieved via a “FOREVER DO, SLEEP” clause
where the query is re-executed after everySLEEPperiod.
On the other hand, in OpenCQ, input and output relations
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can be modified by general modify operations. A continu-
ous query is periodically re-executed and the output is pro-
duced as the delta between two consecutive query execu-
tions. Triggers are used to schedule the query re-execution.
Our notion of synchronization time points is similar to
OpenCQ’s Triggers, but synchronization streams are distin-
guished by the fact that they can be generated using regular
queries. Unlike Tapestry and OpenCQ,SyncSQL assumes
that query inputs and outputs are streams and hence requires
special handling of the timestamps. Moreover, we intro-
duce an algebraic framework and address composition of
SyncSQL expressions, which is not addressed by the pre-
vious systems.

Shared query execution.A typical streaming environ-
ment has a large number of concurrent continuous queries.
Sharing the query execution is a primary task for query opti-
mizers to address scalability. The current efforts for shared
query execution focus on sharing the execution at the oper-
ator level. Shared aggregates are addressed in [4] where an
aggregate operator is shared among multiple queries with
different windowranges. Shared window join is addressed
in [18]. NiagraCQ [10] proposes a framework for shared
execution of non-windowed SPJ queries. Shared predicate
indexing is used in [9, 10] to enhance the performance of
a continuous query processor. Our approach for shared
execution is distinguished from the existing approaches in
that: (1) based on query composition; (2) matches window
queries that differ in both therangeandslide parameters,
and (3) queries are examined for sharing based on a whole
query expression not only at the operator level.

Materialized views: Our definitions of synchronized re-
lations and predicate-windows enable us to benefit from the
existing literature in materialized view. However, we extend
the materialized view algorithms to work with synchronized
relations. Our query matching algorithm extends the tradi-
tional view exploitation algorithms (e.g., [16]) by match-
ing the synchronization time points in addition to match-
ing the query expression. Moreover, the physical design
of SyncSQL execution pipelines follows the incremental
maintenance of materialized views [17].

8 Concluding Remarks

This paper provides the first language,SyncSQL, to
express continuous queries over streams of modify oper-
ations. Modify streams are general since they can repre-
sent both raw input streams and streams that are generated
as output from executing continuous queries. The unified
definition of query inputs and outputs enables the compo-
sition of SyncSQL expressions. The paper provides the
first shared execution algorithm for continuous queries that
is based on query composition. Shared execution deci-
sions are based on a query matching algorithm that is able

to reason about the equivalence and containment relation-
ships amongSyncSQL expressions. Efficient execution of
SyncSQL queries is an important issue. We outlined an ex-
ecution model to incrementally evaluate aSyncSQL query.
Detailed implementation and optimization techniques will
be reported in a separate paper.
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