
Efficient Execution of Sliding-Window Queries Over Data
Streams∗

Moustafa A. Hammad
Purdue University

mhammad@cs.purdue.edu

Walid G. Aref
Purdue University

aref@cs.purdue.edu

Michael J. Franklin
University of

California at Berkeley

franklin@cs.berkeley.edu

Mohamed F. Mokbel
Purdue University

mokbel@cs.purdue.edu

Ahmed K. Elmagarmid
Purdue University

ake@cs.purdue.edu

ABSTRACT
Emerging data stream processing systems rely on windowing
to enable on-the-fly processing of continuous queries over
unbounded streams. As a result, several recent efforts have
developed window-aware implementations of query operators
such as joins and aggregates. This focus on individual oper-
ators, however, ignores the larger issue of how to coordinate
the pipelined execution of such operators when combined into
a full windowed query plan. In this paper, we first show how
the straightforward application of traditional pipelined query
processing techniques to sliding window queries can result
in inefficient and incorrect behavior. We then present three
alternative execution techniques that guarantee correct be-
havior for pipelined sliding window queries and develop new
algorithms for correctly evaluating window-based duplicate-
elimination, Group-By and Set operators in this context.
We implemented all of these techniques in a prototype data
stream system and report the results of a detailed perfor-
mance study of the system.

1. INTRODUCTION
Data stream applications such as network monitoring, on-

line transaction flow analysis, and sensor processing pose
tremendous challenges for database systems. One major
challenge is the development of techniques for providing con-
tinuously updating answers to standing queries over poten-
tially unbounded streams. The basic approach for address-
ing this challenge is the introduction of windows for queries.
Window clauses added to standing queries define a contin-
uous segmenting of the input data streams. At any instant,
the window defines the set of tuples that must be considered
by the query in order to produce an output. The continu-
ous application of window clauses as new data arrives at the
query processor results in an incremental processing of input
data streams. Combined with various types of non-blocking
query operators, this incremental processing results in a sys-
tem that can continuously provide query answers on-the-fly,
even when the input streams are effectively never-ending.

A number of recent research efforts have introduced al-
gorithms for windowed versions of one or more relational
operators [3, 6, 9, 20, 22]. Current techniques, however, are

∗Submitted for publication, Nov., 2003. The paper also ap-
pears on the Department of Computer Sciences, Purdue Uni-
versity, technical report CSD TR#03-035, Dec., 2003.

limited in two crucial aspects: First, algorithms have been
proposed for only a few query operators such as window
join [6, 14] and various windowed aggregates [10, 13, 24].
Second, the focus has been on the execution of individual
operators, and thus, the interaction of multiple operators in
a pipelined query plan has largely been ignored.

1.1 Considering Query Plans
In this paper, we examine this larger context of windowed-

query processing over data streams. When considering full
query plans (i.e., pipelines of operators) there are several
key factors that need to be addressed:

• How time progresses - In a query plan, the oper-
ator that ultimately generates the output (i.e., at the
top of the plan) may be separated from the operators
that initially receive the input data streams (i.e., at
the bottom of the plan) by a number of intermediate
operators. The propagation (or lack thereof) of input
events through the plan can impact the windowed be-
havior of the output.

• Delays in the pipeline - Differences in scheduling or
required work at various operators and subtrees will
cause different parts of the plan to make progress at
different rates, thereby complicating the progression of
windows through time.

• Actions to take when tuples arrive - When opera-
tors are arranged in a pipeline, the correct execution of
a given operator depends on the correct execution of its
children. Thus, operators must correctly communicate
events to their parents. Some of the required actions
may be non-obvious. For example, when a MINUS op-
erator receives a new tuple on its right-hand input, it
may need to emit a “negative tuple” indicating to its
parents that a tuple that was formerly emitted is no
longer valid.

• Actions to take when tuples expire - Likewise,
when tuples expire from a window, actions may be re-
quired to inform parent operators of this event. For
example, when a tuple expires from a DISTINCT op-
erator, a new tuple may need to be propagated to its
parents.

Many window variants have been proposed. One consider-
ation is the unit in which the windows are expressed. There
are two basic approaches: time-oriented windows are de-
fined using some notion of a clock that ticks independently

of tuple arrivals (e.g., w = 1 minute), while tuple-oriented
windows are defined based on tuple counts (e.g., w = 50
tuples). A second consideration is the way in which the
bounds of the window move. Alternatives include landmark
windows [13], where one end of the window stays fixed while
the other moves, sliding windows, where the window size re-
mains fixed and the two window boundaries move smoothly
in unison one element or time unit at-a-time, and hopping or
tumbling windows where the window size remains fixed but
the window boundaries can move in a discontinuous fashion.
Each type of window has its own semantics and implementa-
tion issues. For concreteness, in this paper we focus on one
particular (and we believe, common) window type, namely,
sliding windows that are based on time.

1.2 Contributions and Overview
The contributions of the paper can be summarized as fol-

lows:

1. We present a definition of correctness for sliding-
window query plans and show how the straightforward
application of existing pipelined query processing tech-
niques can result in incorrect or inefficient behavior.

2. We propose three approaches for incrementally han-
dling the pipelined execution of window query oper-
ators: Time Probing, Negative Tuples, and Hybrid.
The notion of negative tuples is novel, and we believe
that efficient implementations of this notion could have
widespread applicability in data stream query process-
ing engines.

3. In order to support complete query plans, we describe
new algorithms for the windowed DISTINCT, win-
dowed Group-by, and windowed set operators.

4. We implement these techniques and algorithms in a
prototype stream database system.

5. We describe an extensive set of experiments that com-
pare the proposed approaches using the prototype.

The rest of the paper is organized as follows. Section 2 de-
scribes the execution framework while identifying and moti-
vating the need for sliding-window stream query processing.
In Section 3, we introduce the three approaches for dealing
with the pipelined execution of several window operators.
Section 4 introduces the correctness measure and describes
algorithms for a variety of window operators. An implemen-
tation prototype of the proposed algorithms and the three
approaches are discussed in Section 5. Section 6 presents
an extensive list of experiments that show the effect of the
various approaches. Related work in stream query process-
ing is discussed in Section 7. Section 8 contains concluding
remarks.

2. PRELIMINARIES

2.1 Context and Environment
In this paper, we consider a centralized architecture for

stream query processing in which data streams continuously
arrive to be processed against a set of standing continuous
queries. Streams are considered to be unbounded sequences
of data items, which are time-stamped with the value of the

current system clock when each data item arrives at the sys-
tem. In some applications, data items may arrive with their
own timestamp and in any order (e.g., out of order). Stream
processing systems such as Aurora [1] propose the use of a
slack interval to account for the out of order arrival and pro-
duce ordered input stream. Once the input is in order, our
proposed approaches can be used for these applications.

As stated in the Introduction, our focus in this paper is on
sliding window queries defined in terms of time units. Our
methods support Window Queries (WQ) containing a single
such window that is applied across all input streams. Our
methods also support queries combining such stream data
with regular (i.e., non-streamed) relations.

In our stream query processor, we employ the “stream-
in stream-out” philosophy. The main idea is that since the
input stream is composed of tuples ordered by some times-
tamp, the output tuples also appear as a stream ordered
by a timestamp. The notion of ordered output is crucial in
the pipelined evaluation, mainly for two reasons: (1) The
decision of expiring an old tuple from a stored state (e.g., a
stored window of tuples in an online sliding-window MAX

operation) depends on receiving an ordered arrival of input
tuples. Otherwise, we may expire an old tuple early (e.g.,
potentially report an erroneous sequence of maximum val-
ues). We will elaborate on this point further in the next
section. (2) Some important applications over data streams
require processing the input of their queries in-order (and
therefore, produce ordered output). This is especially true
if the output from the queries is used as an input stream
for further analysis, e.g., as in feedback control, periodic-
ity detection, and trend prediction (patterns of continuous
increase or decrease) in data streams.

A single WQ consists of multiple operators. These oper-
ators execute in a pipelined fashion where the output from
one operator is incrementally added to the input of the next
operator in the pipeline. The operators are connected by
First-In-First-Out (FIFO) queues and a scheduler schedules
the execution of each operator. This execution model is typ-
ical in many stream processing systems such as Fjord [19],
Aurora [3] and STREAM [22].

2.2 Correctness and Measures of Performance
To judge the correct execution of sliding window queries,

we first recall that a change in the sliding time window, w, at
an input stream may involve adding new tuples or expiring
old tuples, or both. A correct execution of a WQ with a
window w must provide for each time instance T output
that is equivalent to that of a snapshot query Q that has the
following properties: (1) Q is a relational query consisting
of WQ with its window clause removed. (2) The input to
Q is the set of input tuples that arrived during the time
interval T − |w| and T . Similar notions of correctness have
been proposed in other systems, e.g., [26, 22].

For WQ whose output corresponds to queries that pro-
duce a single value for each execution (e.g., aggregate
queries) the output in WQ is the most recent tuple in the
output stream 1. For WQ whose output corresponds to
queries that produce multiple tuples for each execution (e.g.,
join, Group-By, DISTINCT, and Set queries) the output of
WQ accumulates at the output stream over a period of ex-

1In our system if an aggregate value expires and no input
tuples exist in the aggregate window, a NULL tuple is pro-
duced.

S2

S3
Time

Time

S1
Time

TimeCorrect
Output

T1

C

S2

S3
6

Time

Time

S1
Time

Time

22

Output

C

S2

S3
Time

Time

S1
Time

Time
Output

C

5
T

S2

S3

Time

S1
Time

Time
Output

C
T
6

28

6 5 8

6 9 2 2 8

86

28

28

w

6 9 2 2 5 8 2

9

w

2 5 8 2 3 4 7

85

385

5 8

w

w
Delay

(II)

(I)

S2

S3
Time

Time

S1
Time

Time
Output

C
T

7

2 3

w

5 8

5 8

8

SELECT SUM(S.Price)

WINDOW 1 hour;
WHERE S.Price > 4
FROM SalesStream S

20

Correct

(a) Input Triggered (b) Clock Triggered

S2

S3
Time

Time

S1
Time

20

Time
Output

T5

C
20

5 7

2 2 5 8 2 3 4 7

w

(III)

2 73 4

3 4 7

2T

2 4

4

1

17 2

2 4 14 7

42

13

Correct

Correct

CorrectCorrect

8

7

7

7

7

8

5

5

9

13

SUM

S2

S3

σ

S1

S1 > 4

Figure 1: Q1.

ecution time that is determined by the window size. There-
fore, the output of WQ at time T is the set of all the recently
produced (or to be produced) tuples in the output stream
with timestamp between T − |w| and T . We refer to the
output in this case as the the window-output at T .

Note that, in an ideal case, the answers for WQ for a
time T would be available instantaneously. We refer to T in
this case as the output create-time, Tcreate. However, real
systems produce the output with some delay. We refer to the
output time in this case as the output release time, Trelease.
An important objective of any WQ execution approach is
to minimize the output delay (i.e., Trelease − Tcreate).

2.3 Motivating Example: Retail Transactions
Consider a retail company with tens of stores in a single

geographic region. In a local headquarters of the company;
the stream of sales transactions from the individual stores
is collected over time for the purpose of on-line monitor-
ing and analysis. A stream database system processes the
stores’ transactions to control real-time inventory, monitor
on-line transactions, and recommend on-line discount poli-
cies. This scenario is modeled as multiple data streams,
where each stream (SalesStream) represents a group of re-
lated stores. The schema of the transaction stream has the
form (StoreID, ItemID, Price, Quantity, Timestamp), where
StoreID identifies the retail store, ItemID is the sold item
identifier, Price and Quantity are information about the sold
item. TimeStamp indicates the arrival time of the tuple;
timestamps are described in greater detail in the subsequent
section.

Problems with basic scheduling mechanisms
Q1: For SalesStream S, continuously report the total sales
of a set of items with prices greater than 4 in the last hour.

Figure 1 gives the SQL representation and pipelined ex-
ecution plan of Q1. Two straightforward scheduling ap-
proaches can be utilized to schedule the execution of the
operators in Q1: Input Triggered and Clock Triggered. In
the Input Triggered approach, operators are scheduled only
when they have input to process. This corresponds to tra-
ditional push-based scheduling of pipelined query plans. In
contrast, in the Clock Triggered approach, operator is sched-
uled to execute based on a regular clock tick.

Figure 1(a) illustrates the Input Triggered approach for
Q1. S1, S2, and S3 represent the input stream, the out-
put stream after the selection operator, and the final out-
put stream after applying the SUM operator, respectively.
Stream C represents the expected correct output from Q1

when the query reacts to the arrival of new input as well as
the expiration of the tuples exiting from the sliding window.
For simplicity, in the example, we assume that tuples arrive
at equal intervals. We present the streams at times T1, T2,
and T5 in parts (I), (II), and (III) of Figure 1(a). At S3,
the reported value for the sum is correct at times T1 (28)
and T5 (20), but is incorrect in between. For example, the
correct output at time T2 is 22 (due to the expiration of
the old tuple 6). Similarly, at time T2 + 1 (not shown in
the figure), the correct SUM is 13 due to the expiration of
tuple 9). However, because of the Input Triggered schedul-
ing, the SUM operator will not identify its expired tuples
until receiving an input at time T5. Note that the SUM
operator could have reported the missing values (e.g., 22
and 13) at time T5. In this case, the output in S3 at time
T5 will match the correct output. However, this is totally
dependent on the pattern of input data and will include a
significant delay. For example, in S3, if both 22 and 13 are
released immediately before 20, the output delays for each
is T5−T2 and T5−T3, respectively. Thus, at best, the Input
Triggered approach would result in an increased delay of the
output.

On the other hand, in the Clock Triggered approach, each
operator is scheduled at every time tick. While this ap-
proach provides the expected output with no delays, the
practical implementation of this approach may produce non-
deterministic results (i.e., results that depend on delays in-
troduced by the system). Figure 1(b) illustrates the Clock
Triggered approach for Q1. We introduce a three clock-tick
delay between the time that the tuple of value 7 is received
at S1 and the time it is received at S22. Stream C repre-
sents the correct results when receiving and processing the
input value 7 with no delays (in this case the Stream C

will be similar to the case in Figure 1(a) at time T5). As a
result of applying the Clock Triggered approach, the SUM
operator will expire tuple 5 at T6 and produce an incorrect
SUM 8 in S3. Notice that value 8 never occurs in Stream C.
Moreover, the correct SUM values of 20 and 13 (in Stream
C at time T5 and T6, respectively) never appear in Stream
S3. Thus, the Clock Triggered approach would result in a
nondeterministic output.
Invalidation on tuple arrival.
Q2: For each sold item in SalesStream S and not in Sa-
lesStream R, continuously report the maximum sold quantity
for the last hour.

Figure 2(a) gives the SQL representation and pipelined

2Such delays are likely to occur as each operator is scheduled
independently and tuples incur different processing speeds
by different operators.

Group−By

MINUS

S−R

S R

DISTINCT

COUNT

S1

S2

Time

Time

Time

Time

Time

Time

Time

Time

R

S

C

R

S

S−R

Correct
Output

C

T1

A C

G

B C

T2

B

S−R

E

w

w
C

C

C

E GH

B

Output

(a) (b)

Time

Time
Correct

Time

Output

Time

Time
Correct

Time

Output

Time

Time
Correct

Time

Output

(I)

(II)

(III)

S1

S2

C
1T

T3

T5
C

S2

S1

C

S2

S1

ac d
w

ddc

b

dcab

a da a

cd e

d e a

w

w
ba e

b

b

b c d ea

d eca

e

a cd e

a

edc

c

SELECT S1.ItemID, MAX(S1.Quantity)
SELECT * FROM SFROM (

MINUS
SELECT * FROM R) S1

GROUP BY S1.ItemID
WINDOW 1 hour;

SELECT COUNT(DISTINCT S.ItemID)
FROM SalesStream S
WINDOW 1 hour;

a

a

d

a

ea

A C

A

−A

A

A

A

A

B

B

B

H

A

Correct

Invalid

Figure 2: (a)Q2 and (b)Q3.

execution plan for Q2. S and R represents the two input
streams to the MINUS operator, while S − R and C repre-
sent the output and the correct answer, respectively. Until
time T1, the MINUS operator provides a correct answer.
However, at T1, A is added to R and therefore, A in no
longer a valid output in S − R. Notice that A was still
within the current window when it became invalid. In this
case, the MINUS operator needs to invalidate a previously
reported output tuple. It can do so by generating an invalid
output tuple. We represent the invalid output tuple as A−

in the correct output of Stream C at T2. A− removes any
effect of the previously output A in Stream C.

Note that in this scheme parent operators of the MINUS
(e.g., Group-By in this case) must be able to react to the
arrival of an invalid tuple. Thus Q2 indicates that the incre-
mental evaluation of window operators needs to incorporate
a new type of output/input tuple, i.e., invalid tuples.

Answer generation on tuple expiration
Q3: For SalesStream S, continuously count the number of
distinct items sold in the last hour.
Figure 2(b) gives the SQL representation and pipelined ex-
ecution plan for Q3. S1, S2, and C represent the input
stream, the output stream after the DISTINCT operator,
and the correct output from the DISTINCT operator, re-
spectively. S2 reports correct answers until T1. However,
at T3, tuple a in Stream S2 expires. Since tuple a was one
of the distinct tuples in Stream S2, the window-output at
Stream S2 in time T3 does not reflect the correct distinct
values (compared to Stream C). Similarly, at time T5, tuple
d expires from stream S2 and the distinct tuple in S2 (a
single tuple a) does not reflect the correct distinct tuples at
T5 (the distinct values at time T5 are the tuples e,a, and d).
This incorrect output of the DISTINCT operator is mainly
due to the fact that the operator ignores the effect of tuple
expiration. As the window slides, the input tuples in S1 and
their corresponding output tuples in S2 are expired. While
the expired output tuples are still duplicates in the current

window, S2 provides no new output tuples to replace them.
Thus, the output of DISTINCT becomes erroneous.

Discussion. The incremental evaluation of Q1, Q2

and Q3 illustrate two major findings: (1) Straightforward
scheduling approaches, e.g., the input- and Clock Triggered
approaches may either skip output tuples, produce out-
put tuples after long delays, or produce incorrect output.
(2) The intuitive semantics of some window operators, e.g.,
window MINUS and window DISTINCT, turn out to pro-
duce incorrect results. To the best of our knowledge, none
of the previous stream processing system address both of
these issues.

We have developed our stream query processor with the
following objectives:

1. To provide scheduling approaches for pipelined win-
dow operators that adhere to the correctness measure
of execution and avoids long periods of delayed an-
swers.

2. To classify sliding-window operators and provide a a
correct model of execution for the various classes.

We address both of these in the following section.

3. PIPELINED EXECUTION TECH-
NIQUES

In this section, we present our three approaches for
scheduling window operators in pipelined query execution
plans. The first approach (Time Probing) avoids the incor-
rect execution of the Clock Triggered approach presented in
Figure 1(b). The second approach (Negative Tuple) avoids
problems associated with the Input Triggered approach,
such as the delay of output tuples presented in Figure 1(a).
Finally, the Hybrid approach, aims (as would be expected)
to obtain the advantages of both approaches while avoiding
their drawbacks.

The approaches require all tuples (both input and inter-
mediate) to be timestamped. In our model, these times-
tamps are represented as intervals using two attributes as-
sociated with each tuple: minimum timestamp minTS and
maximum timestamp maxTS. Timestamps are assigned by
the query processor. For input tuples (i.e., base tuples read
directly from a stream) minTS and maxTS are both set
to the current system clock time upon entering the query
processor. This time is called the create time of the tuple
Tcreate. Intermediate tuples that are created by Join opera-
tors are assigned timestamps as follows: maxTS is set to the
largest of the maxTS values of the tuples that contribute to
the intermediate tuple and minTS is set to the smallest of
the minTS values of those tuples.

For reasons that are explained in the following sections,
the correctness of the three approaches requires that query
operators always produce their output tuples with maxTS

monotonically increasing. This is important to maintain the
notion of ordering during the pipeline execution.

3.1 Time Probing
Similar to the Clock Triggered approach described in

the previous section, the Time Probing approach (TPA for
short) uses a clock to enable operators to be scheduled even
if their input queues are empty. However, unlike the Clock
Triggered approach, with TPA, an operator expires an old
tuple t only if it can be guaranteed that no tuple that arrives

subsequently at the operator will have a timestamp (either
minTS or maxTS) within the window size from t.

To verify this condition, the window operator searches
down (probes) to its descendants in the pipeline for the old-
est tuple, say to, that has been processed. Since tuples al-
ways arrive at an operator in increasing order of maxTS,
the window operator can use the maxTS of to to determine
whether or not t can be expired. Let |w| be the window size,
then tuple t is expired during a time probe only if

to.maxTS − t.minTS > |w|

To implement TPA, every operator in the pipeline must
store the value of maxTS corresponding to the last pro-
cessed (or probed) tuple. We refer to this value as the Local-
Clock of the operator. Furthermore, operators must provide
a mechanism to report their LocalClocks to their parent op-
erator in the pipeline. We extend the traditional operator
iterator interface (i.e., Open(), GetNext(), and Close()), to
include a new operator GetTime(), which returns the value
of the LocalClock. GetTime() for the leaf operator (Scan
operator) in the pipeline returns the current system clock if
no tuples are in the input stream.

Figure 3(a) illustrates this process (we omit the Scan op-
erator to simplify the figure). Each operator periodically
calls GetTime() on its immediate child operators (one level
calling - no recursion) thereby updating its LocalClock.

The following code-segment illustrates the steps of execut-
ing a unary operator when scheduled using TPA. The input
tuple has the form: tn =<List of attributes, TO = Tuple-
Order>. ExecOp is the operator algorithm (described in
detail in Section 4) and State is the set of local variables of
the operator (e.g., stored tuples, flags, etc.).

If exists new tuple tn at the input stream
LocalClock = tn.TO.maxTS
ExecOp(tn , LocalClock, State)

Else
LocalClock = ChildOperator.GetTime()
ExecOp(NULL, LocalClock, State)

EndIF

For binary operators (e.g., joins), LocalClock is the smallest
maxTS of its input (or probed) children.

TPA may be hard to implement in Input Triggered (i.e.,
push-based) schedulers of traditional query processors as
well as in recent stream data systems [2, 4]. In the following
section, we propose a scheduling approach that overcomes
this drawback.

3.2 Negative Tuple
The Negative Tuple approach (NTA for short) is inspired

by the fact that, in general, window operators need to pro-
cess invalid tuples. Recall that the MINUS operator in Q2 of
Figure 2(a) should invalidate tuple A at time T2 to provide
correct output. Higher operators in the pipeline could have
processed tuple A and should invalidate their corresponding
output as well. One can consider that an expired tuple is a
form of an invalid tuple, where an expired tuple is invalid
if it is no longer part of the current window. Therefore, we
propose a uniform framework for executing window opera-
tors using the notion of negative tuples. In this section, we
focus on how to create and propagate negative tuples among
pipelined query operators. In Section 4.5 we describe the de-
tails of how each query operator processes a negative tuple.

R

RW

W
S3

S2S1

RW
W−Expire

S1 S2

S3S3

S2S1

W−ExpireW−DISTINCT

W−COUNT

W−ExpireW−Expire

COUNT

DISTINCT DISTINCT

COUNT

W

Time

Negative
Tuple

Probing

GetTime()

LocalClock

(a) (b) (c)

Figure 3: A query plan with different scheduling ap-

proaches (a) Time Probing approach (window only op-

erators) (b)Negative Tuple approach with no window op-

erators (c) Hybrid approach.

One interesting observation (that we further explain in
Section 4.5) is that having negative tuples reduces the over-
all complexity of designing a query operator. This is a con-
sequence of the fact that the operator no longer needs the
window constraint to guide its execution, e.g., to expire an
old tuple or to perform a binary operation. Moreover, op-
erators using NTA are scheduled in a way that is exactly
similar to those in the Input Triggered approach, i.e., when
a tuple arrives at their input streams).

Since negative tuples are synthetic tuples, we add a new
operator, W-Expire, to generate negative tuples for each in-
put stream. W-Expire is placed at the start of the query
pipeline and stores all tuples that have arrived in the last
window. W-Expire adds new tuples to its stored buffer then
forwards them to the next operator in the pipeline. Fur-
thermore, W-Expire produces a negative tuple t− when a
stored tuple te expires. t− has the same attributes of te and
is tagged with a special flag that indicates that the tuple is
negative. The tuple-order of t− is as follows: minTS equals
te.minTS and maxTS equals te.minTS + |w|.

W-Expire is scheduled either when an input tuple arrives
or a stored input is expected to expire. We illustrate NTA
for a continuous query in Figure 3(b).

NTA has many advantages. It provides a uniform schedul-
ing interface for query operators and eliminates the over-
head of expiring tuples and verifying the window constraint
by each query operators. However, a naive and straightfor-
ward implementation of NTA results in an additional over-
head. NTA includes a new operator per input stream (W-
Expire) with extra memory, execution and scheduling over-
head. Furthermore, tuples may be processed twice in the
pipeline (i.e., the first time as new tuples and the second
time as negative tuples), therefore doubling the number of
tuples traveling the pipeline. We overcome the first over-
head by implementing W-Expire as part of the Scan opera-
tor. Therefore, W-Expire is not scheduled separately.

In the following section we present a hybrid approach that
reduces the overhead of NTA.

3.3 Hybrid
One important observation is that join operations do not

produce a new output when their tuples expire (notice how
this is different from Group-By and Aggregate operations,
which have to produce a new output when their tuples ex-
pire). As a result, the join operation in the NTA approach

OperatorOperatorOperatorOperator

t
+ +

t t
−−

t

t t t t
−− ++

out out

in in in

Case 4Case 3Case 2Case 1

out

in

out

Figure 4: Different relationships between tuples in
input and output streams.

simply propagates the negative tuples to the parent opera-
tor in the pipeline. Furthermore, the join cost for processing
negative tuples and constructing the output is significant.
Therefore, by pulling-up the W-Expire operator just after
the join operations, the join overhead will decrease. Fur-
thermore, W-Expire would reduce the complexity of its par-
ent operators (especially when followed by multiple window
operators such as the DISTINCT, Group-By, Aggregate and
Set operations). Moreover, pushing the join operation down
the pipeline is a common approach in stream processing sys-
tems to increase the possibility of sharing the join between
multiple concurrent queries [8, 16].

The operator scheduling in the hybrid approach is as fol-
lows: The pipelined position of W-Expire constitutes a par-
tition point in the query plan where all operators that follow
W-Expire are scheduled using the NTA approach. However,
the Time Probing approach schedules all operators in the
child sub-tree that is rooted at the partition point. We il-
lustrate the hybrid approach in Figure 3(c).

4. STREAM-IN STREAM-OUT WINDOW
OPERATORS

In this section, we present window-based algorithms for
window DISTINCT, window Group-By, window Set and
window join operations. All presented algorithms adhere
to the measure of correctness introduced in Section 2.2 (i.e.,
operators always maintain their window-output tuples equiv-
alent to the output of a corresponding snapshot query).
Throughout this section, we use the term positive tuples or
t+ for new tuples appended to the stream and the term
negative tuples or t− for expired or invalid tuples from the
stream. t− removes the previous effect of the correspond-
ing expired or invalid tuple. Based on the type of input
and output tuples, we can identify the following four cases:
(Figure 4)

• Case 1: A positive tuple, t+out, is produced at the out-
put stream as a result of a positive tuple, t+in, being
added to the input stream.

• Case 2: A negative tuple, t−out, is produced at the
output stream as a result of a positive tuple, t+in, being
added to the input stream.

• Case 3: A positive tuple, t+out, is produced at the out-
put stream as a result of a negative tuple, t−in, being
added to the input stream.

• Case 4: A negative tuple, t−out, is produced at the
output stream as a result of a negative tuple, t−in, being
added to the input stream.

Algorithm 4.1. W-DISTINCT Algorithm

1) For all expired tuples,te =< De, TOe >, in H
2) Remove te from H

3) If te is found in DL

/* te was reported as distinct */
4) Remove < De, TOe > from DL
5) Probe H using the values in De

6) If a matching tuple < De, TOh > is found in H

/* A duplicate of the expired tuple
still exists in the current window.
If multiple tuples have the same De,
choose one with the maximum TOh.minTS */

7) Add < De, [TOh.minTS, TOe.minTS + |w|] >
to DL and to the output stream.

8) EndIf
9) EndIf
10) Delete te
11) EndFor
12) If new tuple < Dn, TOn > exists at the input stream
13) Probe H using the values in Dn

14) If no matching tuple is found in H

/* Tuple < Dn, TOn > is distinct */
15) Add < Dn, TOn > to DL and to the output stream
16) EndIf
17) Add < Dn, TOn > to H

18) EndIf

Different cases are relevant to different window operators.
For example, Cases 1 and 2 can arise in all window operators
(e.g., window aggregate and window join). In the next sec-
tions, we describe execution models for window operators
with different cases. We do not plan to cover all possible
operators. However, we present sample algorithms for a set
of window operators having different combinations of the
above cases.

4.1 Window DISTINCT (W-DISTINCT)
Algorithm. Algorithm 4.1 gives the pseudo code of the

hash-based W-DISTINCT operator that takes an input of
the form < D, TO >, where D represents the values of the
distinct attributes and TO is the tuple-order. The basic idea
of the algorithm is to produce a new tuple t to replace an
expired tuple te, if te was produced before as a distinct tuple
and t is a duplicate for te (Case 3 in Figure 4). The tuple-
order of the output tuples is assigned at either Step (7) or
Step (15) of the Algorithm. The W-DISTINCT algorithm
handles Case 1 and Case 4 in Figure 4. The W-DISTINCT
Algorithm uses the following data structures:

• Hash table, H: stores the distinct tuples in the current
window. The size of H never exceeds the window size.

• Distinct List, DL: stores all output distinct tuples
sorted by their minTS.

Example. Figure 5 utilizes the example presented in
Figure 2(b) (Stream S1 only). Stream S2′ is the proposed
correct execution. We use the syntax < a, [6, 7] > to refer to
tuple a with tuple-order [6,7]. For equal values of the tuple-
order we use one timestamp (e.g., < a, 2 > for < a, [2, 2] >).
The window size |w| equals six clock ticks. In Figure 5 tuple
< a, 2 > expires at clock time 8. However, tuple < a, 2 >

was already reported as distinct. Since at clock time 8, value
a is still one of the distinct values in the current window,

S1

S2’
a c d e

adca

w

Time

Time543 8

87654321

S1

S2’

w

d e a d a a

Time

aed

4 5 6 7 8 9 10

54 Time

a aa

a

de

[7,10]

d

8

a

Figure 5: Evaluation of W-DISTINCT operator.

we output tuple < a, 8 > as a new distinct tuple (Stream
S2′ at time 8). While at time 8 we have two choices for the
distinct tuple a (i.e., < a, 6 > and < a, 8 >), to optimize
the performance of the algorithm, we always choose (from a
set of duplicate tuples) the tuple that is expected to expire
last. In this way, output distinct tuples will have extended
lifetime before expiring. Similar to the case when tuple <

a, 2 > expires, we output tuple < d, [7, 10] > to replace
tuple < d, 4 > that expires at clock times 10. Notice that
we choose the tuple-order of tuple < d, [7, 10] > such that
minTS equals the minTS of tuple < d, 7 > in S1 and maxTS
equals the current time.

Discussion. One interesting observation in W-
DISTINCT is that the output rate from the W-DISTINCT
operator never exceeds n key

|w|
, where n key is the total num-

ber of distinct tuples in the input stream and |w| is the
window size in time units. Therefore, for high input rate, W-
DISTINCT regulates the output rate. This observation sup-
ports the traditional optimization of pushing W-DISTINCT
down the query pipeline to limit the number of propagating
tuples.

4.2 Window Aggregate and Group-By
Similar to W-DISTINCT, the correct execution of win-

dow aggregate (W-Aggregate) and window Group-By (W-
Group-By) may produce a new positive output tuple when a
tuple expires (Case 3 in Figure 4). In this section, we focus
on the W-Group-By operator as W-Aggregate is a special
case of W-Group-By with a single group.

Algorithm. Algorithm 4.2 gives the pseudo code of W-
Group-By operator. The W-Group-By algorithm utilizes
the following data structures:

• GroupHandle, GH (one for each group): stores the
state of the current group such as current aggregate
values and the smallest minTS among all tuples in the
group(GH.minTS).

• Hash table, H: stores all tuples in the current window
hashed by values in their grouping attributes. An en-
try in H stores the tuple and the corresponding GH
and has the form: (< G,A, T O >,GH).

We present the W-Group-By Algorithm while considering
a general execution framework that can support any aggre-

Algorithm 4.2. W-Group-By Algorithm

1) For all expired tuples, (< Ge,Ae, TOe >,GHe), in H
2) Remove (< Ge,Ae, TOe >,GHe) from H

3) Probe H with values in Ge

4) If found a matching entry (< Ge,Ah, TOh >,GHe)
/* The group still has non-expired tuples

and should report its new aggregate values */
5) Apply Fe for tuples in group Ge to get V.
6) Add < Ge,V , [GHe.minTS, TOe.minTS + |w|] >

to the output stream
7) Else /* The Group expires */
8) Add < Ge, NULL,TOe.minTS + |w| >

to the output stream
9) Delete GHe

10) EndIf
11) Delete (< Ge,Ae, TOe >,GHe)
12) EndFor
13) If exists new tuple < Gn,An, TOn > at the input stream
14) Probe H with values in Gn

15) If found a matching entry, (< Gn,Ah, TOh >,GHn)
/* Do nothing */

16) Else /* Tuple < Gn,An, TOn > forms a new group */
17) Create GHn for Gn

18) EndIf
19) Add (< Gn,An, TOn >,GHn) to H

20) Apply Fn for tuples in group Gn to get V.
21) Add < G,V , [GHe.minTS, TOn.max] >

to the output stream
22) EndIfd

gate function (e.g., SUM, COUNT, MEDIAN . . . etc). Input
tuples have the form < G, A, TO >, where G represents the
values of the group attributes, A represent the values of
the aggregate attributes (attribute ai ∈ A if ai appears in
the AggrFn1(a1). . . AggrFnn(an) list of the SQL SELECT
clause), and TO is the tuple-order of the input tuple. For
Simplicity, we use F to represent the aggregate functions
AggrFn1(.),. . . , AggrFnn(.). Also, we also use V to re-
fer to set of results after applying function F on the group
tuples.

Discussion. To comply with the measure of correctness
in Section 2.2, our proposed incremental evaluation of W-
Group-By has the following properties:

1. W-Group-By reacts for every change in the input win-
dow contents.

2. The W-Group-By produces a NULL tuple for a group
G that is no longer part of the current output (i.e., all
tuples ∈ G expire).

3. Operators followed by W-Group-By are able to dis-
tinguish those tuples that belong to the current W-
Group-By result from the output stream.

To address the last property, W-Group-By assigns the tuple-
order for the output tuples (either Step (8) or Step (21) of
the Algorithm) such that only the output tuples that belong
to the current window are part of the result. Furthermore, a
basic assumption is that the latest output value for a group
overrides any previous value for the same group. This as-
sumption must be considered by any operator that accepts
the output from W-Group-By as its input (e.g., nested sub-
queries).

4.3 Window Set Operations
The window UNION (W-UNION) operator is straight-

forward and can be implemented with little modification
using traditional UNION operator. However, W-UNION
must process input tuples from different sources in-order
(increasing maxTS) and expire the old tuples. On the other
hand, the window MINUS (W-MINUS) and window IN-
TERSECT (W-INTERSECT) operators are quite involved.
W-INTERSECT has similar Cases to those of W-Group-
By. Therefore, in this section, we focus on the W-MINUS
operator.

Algorithm. Algorithm 4.3 gives the pseudo code of
the duplicate-preserving W-MINUS operator (e.g., MINUS
ALL). The duplicate-free version of the operator can be eas-
ily implemented by having a W-DISTINCT operator follow-
ing the W-MINUS. Invalid tuples are tagged with a special
flag to be distinguished from output tuples. The invalid
tuple is important only for the operators that follow the
W-MINUS (if any). The processing of invalid tuples is de-
scribed in detail in Section 4.5. The W-MINUS Algorithm
stores the input tuples for streams S and R in the hash
tables HS and HR, respectively. We consider input tuples
of the form: < A, T O >, where A represents the attribute
values and TO is the tuple-order. The tuple-order for an
output tuple is specified at Step(7), Step(19) and Step (27)
of the Algorithm while the invalid tuple are generated at
Step (27).

Discussion. The W-MINUS between streams S and R

produces in the output stream tuples in S that are not in-
cluded in R during the last window. Recalling the example
in Figure 2(a), W-MINUS can produce invalid output tuple
as it receives a new input tuple (Case 2). Furthermore, W-
MINUS can produce new output tuples when a previously
input tuples expires (Case 3). For example, consider an ex-
pired tuple te from Stream R that has no duplicates in R.
However, te has duplicate tuples in Stream S. All duplicate
tuples in S must be reported as new output when tuple te

expires. In addition to Cases 2 and 3, W-MINUS also ex-
hibits Cases 1 and 4. Therefore, the W-MINUS operator
presents all the cases of Figure 4.

4.4 Window Join (W-Join)
Binary join iterates over all tuples in one input source (the

outer data source) and retrieves all matching tuples from
the inner data source. For joining data streams, a sym-
metric evaluation is more appropriate than the fixed-outer
evaluation since both sides of the join can act as outer to
perform the join. The extension of the symmetric approach
for W-Joins over data streams is presented in [14, 18].

W-Join needs to address Cases 1 and 4 in Figure 4. W-
Join needs to process tuples in increasing maxTS and as-
signs tuple-order for its output tuples as follows: The minTS
equals the minimum value of minTS for all joined input tu-
ples. The maxTS equals the maximum value of maxTS for
all joined input tuples. Figure 6 illustrates the symmetric
evaluation of W-Join assuming window size of five clock
ticks. The output tuples are presented at each execution
time. The W-Join execution at time 8 starts at top diagram
in the second column of Figure 6.

4.5 Processing of Invalid and Negative Tuples
The proposed algorithms for window operators do not

consider the case that they may receive an invalid or a neg-

Algorithm 4.3. W-MINUS Algorithm

1) For all expired tuples, te =< Ae, TOe >, from HS or HR

/* Expired tuples from different streams must
be processed in the order of their expiration */

2) If te from stream R

3) Remove te from HR

4) If no duplicates for te exists in HR

/* Expiring tuple from R may generate
new output tuples from S */

5) Probe HS with values in Ae

6) For all matching tuples, < Ae, TOh > in HS

7) Add < Ae, [TOh.minTS, TOe.minTS + |w|] >

to the output stream
8) EndFor
9) EndIF
10) Else/* te is from stream S */
11) Remove te from HS

12) EndIF
13) Delete te
14) EndFor
15) If exists new tuple tn =< An, TOn > at the input stream of S

16) Add tn to HS

17) Probe HR with values in An

18) If no matching is found in HR

19) Add tn to the output stream
20) EndIf
21) EndIf
22) If exists new tuple tn =< An, TOn > at the input stream of R

23) Add tn to HR

24) If tn is unique in HR

25) Probe HS with values in An

26) For all matching tuples < An, TOh > in BS

27) Add invalid tuple < An, [TOh.minTS, TOn.maxTS] >

to the output stream
29) EndFor
28) EndIf
30) EndIf

ative tuple. Therefore, we modify the proposed algorithms
for window operators to process invalid and negative tuples
as follows (we refer to the original tuple (before invalidation)
as t and the corresponding invalid or negative tuple as t−):
For project (with duplicates) and select operators, t− is pro-
cessed in the same way as t (e.g., project out some attributes
or apply the selection predicate). For operators that main-
tain stored state (e.g., join and aggregate), t is first removed
from the stored state of the operator (e.g., hash table, list,
. . . etc). Afterwards, the processing of t− differs depending
on the type of the operator.

For the W-DISTINCT operator, t− falls into two cases:
In the first case, t+ was reported as distinct in the output
stream (i.e., t+ is found in the distinct list). Therefore, t−

must be reported again as invalid in the output stream. In
addition, t− may generate a new positive output (similar
to case when expiring an old tuple in Algorithm 4.1, Steps
1-11). In the second case, t+ was not reported as distinct
in the output stream (i.e., t+ is found in the distinct list).
Therefore, there is no need to report t− in the output stream.

For W-Group-By and W-Aggregate, the processing of t−

would generate a new output. The generated output rep-
resents the aggregate value over the new stored state (after
removing tuple t+). For a W-MINUS operator between two
streams S and R, the processing of t− is as follows: If t−

appears in input stream S, then t− is produced in the out-
put if t+ matches no tuples in HR. If t− appears in input

1 3 542 6

1 3 542 6 7

1 3 542 6 7

1 3 542 6 7

Time

Time

T

S

w
b c

x z
4 62

w

Time

Time

T

S b
4 6

5Time

Time

T

S b

z
4 6

w

Time

Time

T

S
zy w

ca
2

db c
64

z w o

8

dc
8

w w

a

<c,z,[5,6]>
<c,y,[3,6]>

<c,z,[5,6]>
<c,y,[3,6]>

<b,w,[4,7]>
<c,w,[6,7]>

<c,w,[6,7]>

d

o

o

w o

d

<c,z,[5,6]> <d,w,[7,8]>
<d,w,[5,8]>

<c,w,[6,7]>
<b,w,[4,7]>

<c,z,[5,6]> <d,o,[8,9]><d,w,[7,8]>
<c,o,[6,9]><d,w,[5,8]>

9

8

y

y

8

Figure 6: W-Join.

stream R, and no duplicate exists for t+ in HR then for each
matching tuple in S produce a corresponding invalid output
tuple. Finally, for W-Join, t− from one stream joins with
matching tuples in the other stream and produces invalid
joined tuples (if any).

5. PROTOTYPE IMPLEMENTATION
To study the performance of the proposed approaches

and algorithms, we implemented them inside a prototype
stream data management system, based on a version of
PREDATOR [23] extended for stream processing. Stream-
ing is introduced using an abstract data type stream-type
that can present source data types with streaming capabili-
ties. To connect a query execution plan with an underlying
stream, we introduce a StreamScan operator to communicate
with the stream table and retrieve new tuples. To schedule
the operators, we implement each operator (including the
StreamScan operator) as a separate thread that is sched-
uled preemptively by the operating system. The operators
communicate with each other through a network of FIFO
queues. Although our proposed approaches and algorithms
can be adapted easily to work with user-controlled schedul-
ing, we choose the operating system thread library for the
following reasons: (1) Simplicity (no need for a complex
user-defined scheduler). (2) To accommodate new types
of operators recently proposed for stream query process-
ing with intra-scheduling capabilities such as XJoin [28],
PMJ [12], [21], and Shared W-Join [16].

We implemented the W-DISTINCT, W-Aggregate, W-
Group-By and W-Set algorithms presented in Section 4. For
the W-Join operator, we used a hash-based implementation
similar to [14]. We augmented each window operator with
the capability to process invalid tuples. Invalid tuples are
tagged with special flags to distinguish them from input tu-
ples (negative tuples are tagged similarly). The window op-
erators in the Time Probing approach are scheduled period-
ically.

To study the Negative Tuple approach, we implemented
the negative tuple version of all the above-mentioned oper-
ators. We added two implementations of the W-Expire: (1)
as part of the StreamScan operator and (2) as an indepen-
dent operator. We use the first implementation of W-Expire
in the Negative Tuple approach. The Hybrid approach uses
the second implementation of W-Expire. In the Negative
Tuple approach, the arrival of an input tuple triggers oper-
ator scheduling.

The query execution plan is constructed using multi-level
binary join operations on the streams and relations in the
FROM clause. The Aggregate, Group-By and DISTINCT

operators are added as separate operators. We introduce
the Set operators to the original code of PREDATOR.

The window specification is added as a special construct
for the query syntax as was shown in the examples of Fig-
ures 1 and 2.

6. EXPERIMENTS

σ

SUM

σ

Group−ByGroup−By

SS

MINUS
F

SA SB

FI

FS

COUNT

DISTINCT

S

SB

SA

DISTINCT

F

S

Q1 Q2 Q3 Q4 Q5

Figure 7: Execution plans for workload queries.

In this section, we compare the performance of the three
proposed approaches for pipelined sliding window queries
(i.e., Time Probing, Negative Tuples, and Hybrid ap-
proaches) against the Input Triggered approach. Our mea-
sures of performance are the average and maximum output
delay (described in Section 2.2). To show the performance
of the proposed approaches on different window operators
(e.g., the window operators described in Section 4), we con-
sider a workload of five different queries given in Table 1.
We present the execution plans for the workload queries in
Figure 7. The queries follow the schema from the motivating
application in Section 2.3. In addition, we use two relational
tables that store favorite items (FavoriteItems) and favorite
stores (FavoriteStores). The schema for FavoriteItems and
FavoriteStores tables is a single attribute (primary key) for
ItemsID and StoreID, respectively.

Unless mentioned otherwise, the predicate selectivity for
Q1 and Q2 are set to 0.25. The window join selectivity in
Q2 is 0.6 (the overall selectivity in Q2 is ≈ 0.1) and the join
selectivity in Q3, Q4, and Q5 is 0.1. All the experiments
were run on Intel Pentium 4 CPU 2.4 GHz with 512 MB
RAM running Windows XP. We use synthetic data streams
where the inter-arrival time between two data items follows
the exponential distribution with mean λ tuples/second.

6.1 Different Query Workloads
Figure 8 gives the output delay for the five workload

queries (Table 1) when scheduled using the Input Triggered,
Time Probing, Negative Tuple, and Hybrid approaches. We
using synthetic input streams with average arrival rate of
10 tuples/second. The Hybrid approach is not applicable
for Q1 where there are no joins operators. In all queries,
the Input Triggered approach incurs significant delays (0.85
seconds on average and 4.8 seconds maximum). The Time
Probing, Negative Tuple and Hybrid approached give com-
parable performance. However, the Time Probing approach
always provides the smallest output delay, followed by the
Hybrid approach and finally the Negative Tuple approach.
For Q2, the Negative Tuple approach has higher response
time compared with those of the Time Probing and Hy-
brid approaches. The reason is that Q2 includes a W-Join
(an expensive operator). Processing both new and negative
tuples by the W-join increases processing time and output
delay. The Hybrid approach gives improved performance

Table 1: Workload Queries.

Q1 Q2 Q3 Q4 Q5

SELECT SUM(S.Price) SELECT DISTINCT SA.ItemID SELECT SELECT SELECT S.ItemID, SUM(S.Price)
FROM SalesStream S FROM COUNT (DISTINCT S.StoreID) SS.ItemID, SUM(SS.Price) FROM FavoriteItems F,
WHERE SalesStream A SA, SalesStream B SB FROM FROM FavoriteItems FI, (SELECT ItemID, Price
S.ItemID > Threshold WHERE SA.ItemID = SB.ItemID SalesStream S, FavoriteItems F SalesStream SS, FROM SalesStream A
Window 1 minute; AND SA.Price > Threshold WHERE S.ItemID = F.ItemID FavoriteStores FS MINUS

Window 1 minute; Window 1 minute; WHERE FI.ItemID = SS.ItemID SELECT ItemID, Price
AND SS.StoreID = FS.StoreID FROM SalesStream B) as S

Group By SS.ItemID WHERE F.ItemID = S.ItemID
WINDOW 1 minute; Group By S.ItemID

WINDOW 1 minute;

Q1 Q2 Q3 Q4 Q5
Workload Queries

0.0

0.2

0.4

0.6

0.8

1.0

O
u

tp
u

t
D

el
ay

 (
S

ec
.)

Average

Input Triggered
Time Probing
Negative Tuple
Hybrid

Q1 Q2 Q3 Q4 Q5
Workload Queries

0.0

1.0

2.0

3.0

4.0

5.0
O

u
tp

u
t

D
el

ay
 (

S
ec

.)

Maximum

Input Triggered
Time Probing
Negative Tuple
Hybrid

(a) (b)
Figure 8: Summary for Workload Queries.

similar to that of Time Probing. For Q4, the Time Probing
approach has better performance compared to the Nega-
tive Tuple and Hybrid approaches. The reason is that the
W-Group-By operator is an expensive operator. Doubling
the traffic bandwidth by processing new and negative tuples
results in an increased overhead when using the Negative
Tuple and Hybrid approaches.

Figure 9 gives the performance of the scheduling ap-
proaches for different arrival rates (from 5 to 40 tu-
ples/second) when applied for Q3 and Q4. Other queries
give similar performance measures as Q3 and Q4. The per-
formance of all approaches converges as we increase input
arrival rates. This behavior is expected where higher input
rates produce more tuples to propagate up in the pipeline.
Hence, refreshing the stored state of window operators and
producing output tuples with shorter delays. However, the
Input Triggered approach still provides higher output de-
lay compared to the other approaches. The main reason is
that the Input Triggered approach is much constrained by
the underlying operator selectivity. Q3 shows little improve-
ment in the Input Triggered approach while increasing the
input rate, mainly because Q3 has a DISTINCT operator
followed by the Aggregate operator (COUNT). The DIS-
TINCT operator, as illustrated in Section 4.1, regulates the
output rate even for higher input rates (i.e., never exceeds
a threshold output rate even while increasing the input ar-
rival rate). Therefore, the improvement of performance in
the Input Triggered approach significantly reduces as the
DISTINCT operator is executed earlier in the pipeline. The
Time Probing approach has the lowest output delay in all
the queries with little improvement as we increase the input
rate.

6.2 Depth of the Pipeline
Figures 10(a) and 10(b) give the average and maximum

output delay incurred by Q2 when increasing the number of
joined streams from 2 to 5. In Figure 10(a), the Input Trig-
gered approach gives the worst performance. This is mainly
because as the pipeline gets deeper, a less number of tuples

1 2 3 4 5 6
Number of W−Joins

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

O
u

tp
u

t
D

el
ay

 (
S

ec
.)

Average

Input Triggered
Time Probing
Negative Tuple
Hybrid

1 2 3 4 5 6
Number of W−Joins

0.0

1.0

2.0

3.0

4.0

5.0

O
u

tp
u

t
D

el
ay

 (
S

ec
.)

Maximum

Input Triggered
Time Probing
Negative Tuple
Hybrid

(a) (b)
Figure 10: Changing number of W-Joins in Q2.

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
u

tp
u

t
D

el
ay

 (
S

ec
.)

Average

Input Triggered
Time Probing
Negative Tuple

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

O
u

tp
u

t
D

el
ay

 (
S

ec
.)

Maximum

Input Triggered
Time Probing
Negative Tuple

(a) (b)
Figure 11: Changing predicate selectivity.

is expected to travel up the pipeline. Thus, the Input Trig-
gered approach will not be refreshed frequently. The Nega-
tive Tuple approach has lower performance compared with
the Hybrid and Time Probing approaches. The main rea-
son is that the Negative Tuple approach almost doubles the
number of tuples flowing in the pipeline. Thus, as the num-
ber of W-join operators increases, the overhead of doubling
the traffic increases. The Hybrid approach performs similar
to to that of Time Probing up to pipeline depth four. For
a pipeline with depth five, the Time Probing approach has
better performance than that of the Hybrid approach. This
is mainly the result of the scheduling overhead introduced
by the Hybrid approach (W-Expire imposes one additional
operator to schedule).

The maximum output delay in Figure 10(b) has similar
trend as that of Figure 10(a), however, with higher values
of the output delays. This experiment illustrates the effec-
tiveness of the Time Probing, Negative Tuple, and Hybrid
approaches over the Input Triggered approach. Also, the ex-
periments illustrate the superior performance of the Hybrid
approach compared to the Negative Tuple approach.

6.3 Changing Selectivity
Figure 11(a) and 11(b) give the effect of changing the se-

lectivity (from 0.1 to 1) on the average and maximum out-
put delay, respectively, when using the different scheduling
approaches. We present only the results of the experiment

0.0 10.0 20.0 30.0 40.0
Input Rate (tuples/second)

0.0

0.2

0.4

0.6

0.8

1.0
O

u
tp

u
t

D
el

ay
 (

S
ec

.)

Average

Input Triggered
Time Probing
Negative Tuple
Hybrid

0.0 10.0 20.0 30.0 40.0
Input Rate (tuples/second)

0.0

2.0

4.0

6.0

8.0

O
u

tp
u

t
D

el
ay

 (
S

ec
.)

Maximum

Input Triggered
Time Probing
Negative Tuple
Hybrid

0.0 10.0 20.0 30.0 40.0
Input Rate (tuples/second)

0.00

0.10

0.20

0.30

O
u

tp
u

t
D

el
ay

 (
S

ec
.)

Average

Input Triggered
Time Probing
Negative Tuple
Hybrid

0.0 10.0 20.0 30.0 40.0
Input Rate (tuples/second)

0.0

1.0

2.0

3.0

4.0

5.0

O
u

tp
u

t
D

el
ay

 (
S

ec
.)

Maximum

Input Triggered
Time Probing
Negative Tuple
Hybrid

(a)Q3(Average) (b)Q3(Maximum) (c) Q4(Average) (d)Q4(Maximum)
Figure 9: Output delay for Q3 and Q4.

0 10 20 30
Number of ouput tuples (in thousands)

50

100

150

200

250

O
u

tp
u

t
D

el
ay

 (
S

ec
.)

Input Triggered
Time Probing
Negative Tuple

0 10 20 30 40
Number of ouput tuples (in thousands)

0

200

400

600

800
O

u
tp

u
t

D
el

ay
 (

S
ec

.)

Input Triggered
Time Probing
Negative Tuple
Hybrid

(a) Q1 (b) Q4

Figure 12: Output Throughput.

for Q1 since similar performance is obtained from the other
queries. With the increase in selectivity, all the scheduling
approaches have low output delays. This is a result of having
more tuples through the pipeline. With selectivity 1.0 (i.e.,
no filtration), all the scheduling approaches have the same
performance. This indicates that for simple queries that do
not have any filtration, the Input Triggered approach can
be candidate for scheduling. Other scheduling approaches
have a slight increase in the output delay with the increase
in selectivity. This is mainly due to the additional process-
ing overhead incurred by the Time Probing, Negative Tuple,
and Hybrid approaches.

6.4 Output Throughput
In this section, we measure the execution speed of the

various scheduling approaches. To measure the execution
speed, we run the workload queries using very high input
rate (more than the maximum capacity of the available sys-
tem resources). Then, we measure the number of tuples
produced by each approach in a unit time. Figures 12(a)
and 12(b) give the execution time needed by the schedul-
ing approach to output up to 40K tuples for Q1 and Q4,
respectively. Notice that, for Q1 the Hybrid approach is in-
applicable (no joins). We use synthetic data streams with
arrival rate of 2056 tuples/second.

For Q1, the Input Triggered approach provides the small-
est execution time followed by Time Probing. The main
reason is that Time Probing includes additional overhead
of probing child operators. The Negative Tuple approach
clearly gives higher execution time that increases as we re-
ceive more output tuples. For Q4, the Input Triggered, Time
Probing and Hybrid approaches provide comparable perfor-
mance with little advantage for Time Probing at higher out-
put values. The execution time of the Negative Tuple ap-
proach increases exponentially for the same reason as in Q1.

7. RELATED WORK
In this section we discuss the related work in the areas

of sequence databases, temporal databases, and continuous
query evaluation of streams and append-only relations.

Sequence Databases and Temporal Databases are well-
studied areas of research in the database literature. Seshadri
et al. [24] present the SEQ model and implementation for
sequence databases. In this work, a sequence is defined as
a set with a mapping function to an ordered domain. Ja-
gadish et al. [17] provide a data model for chronicles (i.e.,
sequences) of data items and discuss the complexity of exe-
cuting a view described by the relational algebra operators.
The focus of both these efforts was on stored time-ordered
data rather than on the pipelined processing of live data
streams.

Snodgrass [25] addresses handling of time in traditional
databases. His seminal work includes a SQL formulation
to evaluate complex predicates and joins over the time at-
tributes. Temporal join [29] and Band-Join [11], are join
operators that use a distance-guided predicate (similar to
window join).

Industrial-strength DBMS with extensible index struc-
tures and optimized buffer management can be considered
as strong candidates to evaluate temporal queries on large
stored sequences of input data. Push-based execution of
query operators as execution threads connected by queues
is listed by Graefe in [15] as one design alternative followed
by traditional database systems. Duplicate-elimination and
the effect of early DISTINCT operators on reducing pro-
cessing work is addressed in [7]. Early work on extending
database systems to process Continuous Queries is presented
in Tapestry [26], which investigated the incremental evalu-
ation of queries over append-only databases. None of these
efforts addressed the execution of queries with windows.

As stated previously, stream query processing is currently
being addressed in a number of systems such as Aurora [3],
Telegraph [5] and STREAM [22]. All of these projects have
recognized the need for windows to make queries over data
streams practical. To date, however, these systems have
focused on input-triggered approaches and have not detailed
how they address the problems with that approach that we
identified earlier in the paper. Thus, our work is largely
complementary to these other projects.

Finally, work on punctuating data streams [27] is related
to our Negative Tuple approach, however, such punctuations
as described in that work have been used to delineate among
groups of tuples, rather than referring to a single tuple as in
our approach. Thus, the optimizations that we proposed in
the Hybrid scheme were not investigated in that work.

8. CONCLUSIONS
Pipelined execution of sliding window queries is at the

core of emerging architectures for continuous query process-
ing over data streams. Correct execution of multiple win-
dowed and pipelined operators is essential for implementing
a reliable query execution engine and benchmarking the per-
formance among different stream processing systems.

We have described a correctness measure for the pipelined
execution of sliding window queries. We proposed three
scheduling approaches to guarantee the correct execution.
The Time Probing approach synchronizes the local clock of
each operator based on the most recent processed or probed
tuple. The Negative Tuple approach uses the new idea of
propagating a special tuple (negative tuple) to undo the ef-
fect of the expired tuples. The Hybrid approach mixes the
techniques in Time Probing and Negative Tuple to improve
performance. Among all the proposed approaches, the Neg-
ative Tuple approach was the simplest to implement. We
also described the different relationships between input and
output tuples using the positive-negative tuple paradigm.
This helps in identifying various classes of sliding window
operators.

We presented incremental algorithms for window DIS-
TINCT, window Group-By, and Window MINUS as exam-
ples of different classes of sliding window operators. We de-
scribed how each operator processes both positive and nega-
tive tuples to maintain correct execution. We performed ex-
periments based on an implementation of the three proposed
approaches and algorithms in a prototype stream DBMS.
The results showed that the proposed scheduling algorithms
provide more than an order of magnitude reduction in out-
put delays when compared to the Input Triggered scheduling
approach. Remarkably, this performance is achieved at low
input stream arrival rate.

In terms of future work, we believe that the negative tuple,
in addition to being essential for correct execution, provides
a uniform framework to describe sliding window operations.
Based on the idea of the Negative Tuple approach, we plan
to study traditional and new optimizations in stream query
processing and how it can be applied for processing sliding
window queries over data streams.

9. ADDITIONAL AUTHORS

10. REFERENCES
[1] D. Abadi, D. Carney, U. Cetintemel, and et al.

Aurora: A new model and architecture for data
stream management. In VLDB Journal, August, 2003.

[2] B. Babcock, S. Babu, , M. Datar, and et al. Chain:
Operator scheduling for memory minimization in
stream systems. In SIGMOD, 2003.

[3] D. Carney, U. Cetintemel, M. Cherniack, and et al.
Monitoring streams - a new class of data management
applications. In VLDB Conference, Aug., 2002.

[4] D. Carney, U. Cetintemel, A. Rasin, and et al.
Operator scheduling in a data stream manager. In
VLDB, Sep, 2003.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, and
et al. Telegraphcq: Continuous dataflow processing for
an uncertain world. In 1st CIDR Conf., Jan 2003,
Asilomar, CA., 2003.

[6] S. Chandrasekaran and M. J. Franklin. Streaming
queries over streaming data. In VLDB, Aug., 2002.

[7] S. Chaudhuri and K. Shim. Including group-by in
query optimization. In Proceedings of the Twentieth
International Conference on Very Large Databases,
Santiago, Chile, 1994.

[8] J. Chen, D. J. DeWitt, and J. F. Naughton. Design
and evaluation of alternative selection placement
strategies in optimizing continuous queries. In ICDE,
Feb., 2002.

[9] C. D. Cranor, T. Johnson, O. Spatscheck, and et al.
Gigascope: A stream database for network
applications. In SIGMOD, 2003.

[10] M. Datar, A. Gionis, P. Indyk, and et al. Maintaining
stream statistics over sliding windows. In of the
Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, 2002.

[11] D. J. DeWitt, J. F. Naughton, and D. A. Schneider.
An evaluation of non-equijoin algorithms. In VLDB,
1991.

[12] J.-P. Dittrich, B. Seeger, D. S. Taylor, and et al.
Progressive merge join: A generic and non-blocking
sort-based join algorithm. In VLDB, 2002.

[13] J. Gehrke, F. Korn, and D. Srivastava. On computing
correlated aggregates over continual data streams. In
SIGMOD, 2001.

[14] L. Golab and M. T. Ozsu. Processing sliding window
multi-joins in continuous queries over data streams. In
VLDB, 2003.

[15] G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2):73–170,
1993.

[16] M. A. Hammad, M. J. Franklin, W. G. Aref, and et al.
Scheduling for shared window joins over data streams.
In VLDB, 2003.

[17] H. V. Jagadish, I. S. Mumick, and A. Silberschatz.
View maintenance issues for the chronicle data model.
In PODS, 1995.

[18] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating
window joins over unbounded streams. In ICDE, Feb.,
2003.

[19] S. Madden and M. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In
ICDE, Feb., 2002.

[20] S. Madden, M. J. Franklin, J. M. Hellerstein, and
et al. The design of an acquisitional query processor
for sensor networks. In SIGMOD, 2003.

[21] M. F. Mokbel, M. Lu, and W. G. Aref. Hash-merge
join: A non-blocking join algorithm for producing fast
and early join results. In ICDE, 2004.

[22] R. Motwani, J. Widom, A. Arasu, and et al. Query
processing, approximation, and resource management
in a data stream management system. In 1st CIDR
Conf., Jan., 2003.

[23] P. Seshadri. Predator: A resource for database
research. SIGMOD Record, 27(1):16–20, 1998.

[24] P. Seshadri, M. Livny, and R. Ramakrishnan. The
design and implementation of a sequence database
system. In VLDB, 1996.

[25] R. T. Snodgrass. Developing Time-Oriented Database
Applications in SQL. Morgan Kaufmann, 2000.

[26] D. Terry, D. Goldberg, D. Nichols, and et al.
Continuous queries over append-only databases. In

SIGMOD, 1992.

[27] P. A. Tucker, D. Maier, T. Sheard, and et al.
Exploiting punctuation semantics in continuous data
streams. In TKDE, 15(3):555-568, May, 2003.

[28] T. Urhan and M. Franklin. Xjoin: A
reactively-scheduled pipelined join operator. IEEE
Data Engineering Bulletin 23(2), 2000.

[29] D. Zhang, V. J. Tsotras, and B. Seeger. Efficient
temporal join processing using indices. In ICDE, Feb.,
2002.

