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ABSTRACT

This paper introduces the Scalable INcremental hash-based
Algorithm (SINA, for short); a new algorithm for evaluat-
ing a set of concurrent continuous spatio-temporal queries.
SINA is designed with two goals in mind: (1) Scalability
in terms of the number of concurrent continuous spatio-
temporal queries, and (2) Incremental evaluation of contin-
uous spatio-temporal queries. SINA achieves scalability by
employing a shared execution paradigm where the execu-
tion of continuous spatio-temporal queries is abstracted as
a spatial join between a set of moving objects and a set
of moving queries. Incremental evaluation is achieved by
computing only the updates of the previously reported an-
swer. We introduce two types of updates, namely positive
and negative updates. Positive or negative updates indicate
that a certain object should be added to or removed from
the previously reported answer, respectively. SINA manages
the computation of positive and negative updates via three
phases: the hashing phase, the invalidation phase, and the
joining phase. The hashing phase employs an in-memory
hash-based join algorithm that results in a set of positive
updates. The invalidation phase is triggered every T sec-
onds or when the memory is fully occupied to produce a
set of negative updates. Finally, the joining phase is trig-
gered by the end of the invalidation phase to produce a set
of both positive and negative updates that result from join-
ing in-memory data with in-disk data. Experimental results
show that SINA is scalable and is more efficient than other
index-based spatio-temporal algorithms.

1. INTRODUCTION

With the increasing number of computer applications that
rely on large spatio-temporal data sets, it becomes essential
to provide efficient query processing techniques for spatio-
temporal databases. Examples of these applications in-
clude location-aware services, traffic monitoring, and en-
hanced 911 service. Unlike traditional databases, spatio-
temporal databases are concerned with objects that con-

tinuously change their locations and/or shapes over time.
As a consequence of adding the temporal dimension, spatio-
temporal databases become highly dynamic environments.

Unlike traditional applications, spatio-temporal applica-
tions (e.g., location-aware services) have the following dis-
tinguishing characteristics: (1) A large number of mobile
and stationary objects, and consequently a large number of
mobile and stationary queries. (2) Spatio-temporal queries
are continuous in nature. Unlike snapshot queries that
are evaluated only once, continuous queries require contin-
uous evaluation as the query result becomes invalid with
the change of information of the query or the database ob-
jects [27]. (3) Any delay of the query response results in an
obsolete answer. For example, consider a query that asks
about the moving objects that lie in a certain region. If the
query answer is delayed, the answer may be outdated where
objects are continuously changing their locations. These
distinguished characteristics call for special spatio-temporal
query processing algorithms to achieve scalability and effi-
cient evaluation of continuous spatio-temporal queries.

In this paper, we propose the Scalable INcremental hash-
based Algorithm (SINA, for short) for continuously evalu-
ating a dynamic set of continuous spatio-temporal queries.
SINA exploits two main paradigms: Shared execution and
incremental evaluation. By utilizing the shared execution
paradigm, continuous spatio-temporal queries are grouped
together and joined with the set of moving objects. By
utilizing the incremental evaluation paradigm, SINA avoids
continuous reevaluation of spatio-temporal queries. Instead,
SINA updates the query results every T' time units by com-
puting and sending only updates of the previously reported
answer. We distinguish between two types of query updates:
Positive updates and negative updates. Positive updates in-
dicate that a certain object needs to be added to the result
set of a certain query. In contrast, negative updates indi-
cate that a certain object is no longer in the answer set of a
certain query. As a result of having the concept of positive
and negative updates, we achieve two goals: (1) Fast query
evaluation, since we compute only the update (change) of
the answer not the whole answer. (2) In a typical spatio-
temporal application (e.g., location-aware services and traf-
fic monitoring), query results are sent to customers via satel-
lite servers [11]. Thus, limiting the amount of data sent to
the positive and negative updates only rather than the whole
query answer saves in network bandwidth.

SINA introduces a general framework that deals with all
mutability combinations of objects and queries. Thus, it is
applicable to: Stationary queries on moving objects (e.g.,



?Continuously report the cars that are within 8 miles of my
home”), moving queries on stationary objects (e.g., ”Con-
tinuously report all gas stations that within 3 miles of my lo-
cation”), and moving queries on moving objects (e.g., ”Con-
tinuously report all police cars that within 3 miles of my car
location”). For simplicity, we present SINA in the context of
continuous spatio-temporal range queries. However, as will
be discussed in Section 5, SINA is applicable to a broad class
of continuous spatio-temporal queries (e.g., nearest-neighbor
and aggregate queries). In general, the contributions of this
paper are summarized as follows:

1. We utilize the shared execution paradigm as a means
to achieve scalability for continuous spatio-temporal
queries (Section 3).

2. We propose SINA; a new algorithm for incrementally
evaluating a set of concurrently executing continu-
ous spatio-temporal queries. Incremental evaluation
is achieved through computing positive and negative
updates of the previously reported answer (Section 4).

3. We prove the correctness of SINA by proving the fol-
lowing: (a) Completeness, i.e., all query results will
be produced by SINA. (b) Uniqueness, i.e., SINA pro-
duces duplicate-free results. (c) Progressiveness, i.e.,
SINA reports only the updates of the previously re-
ported answer (Section 6).

4. We provide experimental evidence that SINA outper-
forms other R-tree-based algorithms (e.g., Q-index [19]
and Frequently Updated R-tree [16]) (Section 7).

The rest of the paper is organized as follows: Section 2
highlights related work for continuous spatio-temporal query
processing. In Section 3, we introduce the concept of shared
execution for a group of spatio-temporal queries. Sec-
tion 4 proposes the Scalable INcremental hash-based Algo-
rithm (SINA). The extensibility of SINA to a variety of con-
tinuous spatio-temporal queries and to handle clients that
are disconnected from the server for short periods of times
is discussed in Section 5. The correctness proof of SINA
is given in Section 6. Section 7 provides an extensive list
of experiments to study the performance of SINA. Finally,
Section 8 concludes the paper.

2. RELATED WORK

Most of the recent research in spatio-temporal query pro-
cessing (e.g., [15, 23, 25, 31, 32]) focus on continuously
evaluating one spatio-temporal query at a time. Issues of
scalability, incremental evaluation, mutability of both ob-
jects and queries, and client overhead are examples of chal-
lenges that either are overlooked wholly or partially by these
approaches. Mainly, three different approaches are investi-
gated: (1) The validity of the results [31, 32]. With each
query answer, the server returns a valid time [32] or a valid
region [31] of the answer. Once the valid time is expired or
the client goes out of the valid region, the client resubmits
the continuous query for reevaluation. (2) Caching the re-
sults. The main idea is to cache the previous result either
in the client side [23] (assuming computational and stor-
age capabilities at the client side) or in the server side [15].
Previously cached results are used to prune the search for
the new results of k-nearest-neighbor queries [23] and range

queries [15]. (3) Precomputing the result [15, 25]. If the
trajectory of the query movement is known apriori, then by
using computational geometry for stationary objects [25]
or velocity information for moving objects [15], we can iden-
tify which object will be nearest-neighbors [25] to or within
a range [15] from the query trajectory. If the trajectory
information is changed, then the query needs to be reevalu-
ated.

There is lot of research in optimizing the execution of mul-
tiple queries in traditional databases (e.g., see [22]), contin-
uous web queries (e.g., see [7]), and continuous streaming
queries (e.g., see [6]). Optimization techniques for evalu-
ating a set of continuous spatio-temporal queries are re-
cently addressed for centralized [19] and distributed environ-
ments [5, 8]. Distributed environments assume that clients
have computational and storage capabilities to share query
processing with the server. The main idea of [5, 8] is to
ship some part of the query processing down to the moving
objects, while the server mainly acts as a mediator among
moving objects. This assumption is not always realistic.
In many cases, clients use cheap, low battery, and passive
devices that do not have any computational or storage capa-
bilities. While [5] is limited to stationary range queries, [8]
can be applied for both moving and stationary queries. Our
work is distinguished from these approaches where we do
not assume any storage or computational capabilities at the
clients. Instead, clients are required to submit the minimal
possible information to the servers, mainly the identifier and
location of the moving objects.

Up to the authors’ knowledge, the only work that ad-
dresses the scalability issue with no client overhead is the
Q-index [19]. The main idea of the Q-index is to build an
R-tree-like [9] index structure on the queries instead of the
objects. Then, at each time interval 7', moving objects probe
the Q-index to find the queries they belong to. The Q-
index is limited in two aspects: (1) It performs reevaluation
of all the queries (through the R-tree index) every T time
units. (2) It is applicable only for stationary queries. Mov-
ing queries would spoil the Q-index and hence dramatically
degrade its performance.

In general, spatio-temporal queries can be evaluated us-
ing a spatio-temporal access method [2]. The TPR-tree [20]
and its variants (e.g., the TPR*-tree [26]) are used to in-
dex objects with future (predictive) trajectories. However,
there are no special mechanisms to support the continu-
ous spatio-temporal queries in any of these access methods.
Thus, to emulate the continuity, a client may need to is-
sue the query multiple times at consecutive time intervals
for reevaluation. In addition, these spatio-temporal access
methods can answer only queries about moving objects but
not for stationary objects.

Our proposed Scalable INcremental hash-based Algorithm
(SINA) distinguishes itself from the above approaches,
where we go beyond the idea of reevaluating continuous
queries. Instead, we use incremental evaluation to compute
only the updates of the previously reported result. In addi-
tion, unlike [5, 8], SINA does not assume any computational
capabilities on the client side. Moreover, SINA is scalable to
support a large number of concurrently outstanding continu-
ous queries and can deal with many variations of continuous
spatio-temporal queries. Table 1 gives a comparison of our
proposed approach with previous approaches [15, 19, 23, 25]
and with the usage of the TPR-tree [20].



Property SR [23] | DQ [15] | CNN [25] | Q-index [19] | TPR[20] || SINA
Execution Incremental X v/ X X X V4
Model Shared execution X X X V4 X VA
Query Moving queries on stationary objects v/ v/ v/ X X V4
types Stationary queries on moving objects X X X V4 VA VA
Moving queries on moving objects X VA X X VA VA
Assumptions | No client overhead X v/ v/ v/ V4 V4
No velocity assumptions VA X X VA X VA

Table 1: Comparison of different algorithms for continuous spatio-temporal queries.

Q f Q f
Select ID Where Select ID Where
location inside R2

Moving Objects

(a) Local query plan for two range queries

location inside R1

Moving Objects

Moving Objects

(b) A global shared plan for two range queries

Figure 1: Shared execution of continuous queries.

3. SHARED EXECUTION OF CONTINU-
OUS SPATIO-TEMPORAL QUERIES

In this section, we exploit the shared execution paradigm
as a means of achieving scalability for concurrently execut-
ing continuous spatio-temporal queries. The main idea is to
group similar queries in a query table. Then, the evaluation
of a set of continuous spatio-temporal queries is abstracted
as a spatial join between the moving objects and the mov-
ing queries. Similar ideas of shared execution have been
exploited in the NiagaraCQ [7] for web queries, PSoup [6],
and [12] for streaming queries.

Figure la gives the execution plans of two simple contin-
uous spatio-temporal queries, Q1: ”Find the objects inside
region R1”, and Q2: ”“Find the objects inside region Ra”.
Each query performs a file scan on the moving object ta-
ble followed by a selection filter. With shared execution,
we have the execution plan of Figure 1b. The table for
moving queries contains the regions of the range queries.
Then, a spatial join is performed between the table of ob-
jects (points) and the table of queries (regions). The output
of the spatial join is split and is sent to the queries.

For stationary objects (e.g., gas stations), the spatial join
can be performed using an R-tree index [9] on the object ta-
ble. Similarly, if the queries are stationary, the Q-index [19]
can be used for query indexing. However, if both objects and
queries are highly dynamic, the R-tree and Q-index struc-
tures result in poor performance. To avoid this drawback,
we can follow one of two approaches: (1) Utilize the tech-
niques of frequently updating R-tree (e.g., see [14, 16]) to
cope with the frequent updates of moving objects and mov-
ing queries. (2) Use a spatial join algorithm that does not as-
sume the existence of any indexing structure. Our proposed
Scalable INcremental hash-based Algorithm (SINA) utilizes
the second approach. Experimental results, given in Sec-
tion 7, compare SINA with the first approach and highlights
the drawbacks and advantages of each approach.
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Figure 2: State diagram of SINA.

4. INCREMENTAL
CONTINUOQUS
QUERIES

The main idea of the Scalable INcremental hash-based Al-
gorithm (SINA) is to maintain an in-memory table, termed
Updated_Answer, that stores the positive and negative up-
dates during the course of execution to be sent to the clients.
Positive updates indicate that a certain object needs to be
added to the query results. Similarly, negative updates in-
dicate that a certain object needs to be removed from the
previously reported answer. Entries in the Updated_Answer
table have the form (QID, Update_List(+,0ID)) where QI D
is the query identifier, the Update_List is a list of OI Ds (ob-
ject identifiers) and the type of the update (+ or —). To
reduce the size of the Updated_Answer table, negative up-
dates may cancel previous positive updates and vice versa.
SINA sends the set of updates to the appropriate queries
every 1" time units.

SINA has three phases: The hashing, invalidation, and
joining phases. Figure 2 provides a state diagram of SINA.
The hashing phase is continuously running where it re-
ceives incoming information from moving objects and mov-
ing queries. While tuples arrive, an in-memory hash-based
join algorithm is applied between moving objects and mov-
ing queries. The result of the hashing phase is a set of
positive updates added to the Updated_Answer table. The
invalidation phase is triggered every T time units or when
the memory is full to flush in-memory data into disk. The
invalidation phase acts as a filter for the joining phase where
the invalidation phase reports negative updates of some ob-

EVALUATION OF
SPATIO-TEMPORAL
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Figure 3: Example of range spatio-temporal queries.

jects to save their processing in the joining phase. The join-
ing phase is triggered by the end of the invalidation phase
to perform a join between in-memory moving objects and
queries with in-disk stationary objects and queries. The
joining phase results in reporting both positive and negative
updates. Once the joining phase is completed, the positive
and negative updates are sent to the users that issued the
continuous queries.

Throughout this section, we use the example given in Fig-
ure 3 to illustrate the ideas and execution of SINA. Figure 3a
gives a snapshot of the database at time T with nine moving
objects, p1 to pg, and five continuous range queries, ()1 to
Q5. At time T1 (Figure 3b), only the objects p1,p2, ps, and
pa and the queries Q1, @3, and @5 change their locations.
The old query locations are plotted with dotted borders.
Black objects are stationary, while white objects are mov-
ing. We use the term ”mowving” object/queries at time T;
to indicate the set of objects/queries that report a change
of information from the last evaluation time 7T;_1. Moving
objects and queries are stored in memory for the evalua-
tion time T;. Similarly, we use the term ”stationary” ob-
jects/queries to indicate the set of objects/queries that did
not report any change of information from the last evalu-
ation time T;_1. Stationary objects and queries are stored
in disk at the evaluation time 7;. Notice that stationary
objects/queries at time T; may become moving objects and
queries at time T;41 and vice versa.

4.1 Phase I: Hashing

Data Structure. The hashing phase maintains two in-
memory hash tables, each with N buckets for sources P and
R that correspond to moving objects (i.e., points) and mov-
ing queries (i.e., rectangles), respectively. In addition, for
the moving queries, we keep an in-memory query table that
keeps track of the corresponding buckets of the upper-left
and lower-right corners of the query region. In the follow-
ing, we use the symbols P and Rj, to denote the kth bucket
P and R, respectively.

Algorithm. Figures 4 and 5 provide an illustration and
pseudo code of the hashing phase, respectively. Once a new
moving object tuple ¢ with hash value k = hp(t) is received
(Step 2 in Figure 5), we probe the hash table Ry for moving
queries that can join with ¢ (i.e., contain t) (Step 2b in
Figure 5). For the queries that satisfy the join condition (i.e.,
the containment of the point objects in the query region),
we add positive updates to the Updated_Answer table (Step
2c in Figure 5). Then, we store ¢t in the hash bucket Py
(Step 2d in Figure 5). Similarly, if a moving query tuple ¢ is
received, we probe all the hash buckets of P that intersect
with ¢. For the objects that satisfy the join condition, we

ash table for Hash table for

Query Table
Memory
Incremental join results

Figure 4: Phase I: Hashing.

Procedure HashingPhase(tuple ¢, source (P/ R)) Begin

1. If there is not enough memory to accommodate t, start the
InvalidationPhase(), return

2. If (source==P) //Moving object
(a) k = the hash value hp(t) of tuple t.
(b
(c
(d
(e
3. Sk = Set of buckets result from hash function hgr(t)
4. For each bucket k € Sy,

Sq = Set of queries from joining t with queries in Ry,
For each Q € Sq, add (Q,+t) to Updated-Answer
Store t in Bucket Py,

return

)
)
)
)

(a) So = Set of objects from joining t with objects in Py
(b) For each O € S,, add (t,+0O) to Updated_Answer
(c) Store a clipped part of t in Bucket Ry,

5. Store t in the query table
End.

Figure 5: Pseudo code of the Hashing phase

add positive updates to the Updated_Answer table (Step 4b
in Figure 5). Then, the tuple ¢ is clipped and is stored in
all the R buckets that t overlaps. Finally, to keep track
of the list of buckets that t intersects with, we store t in
the in-memory query table with two bucket numbers; the
upper-left and the lower-right (Step 5 in Figure 5).

Example. In the example of Figure 3, the hashing phase
is concerned with objects and queries that report a change
of location in the time interval [To,T1]. Thus, the objects
p1,Pp2,P3,pa are joined with the queries Q1,Qs,Qs. Only
the positive update (Qs, +p2) is reported.

Discussion. The hashing phase is designed to deal only
with memory, thus, there is no I/O overhead. Joining the
in-memory data with the in-disk objects and queries is to be
performed at the joining phase. The fact that the hashing
phase performs in-memory join within the hashing process
enables sending early and fast results to the users. In many
applications, it is desirable that the user have early and fast
partial results, sometimes at the price of slightly increas-
ing the total execution time. Similar ideas for in-memory
hash-based join have been studied in the context of non-
blocking join algorithms, e.g., the symmetric hash join [29],
XJoin [28], and the hash-merge join [17].

4.2 Phase Il: Invalidation

Data Structure. Figure 6 sketches the data structures
used in the invalidation phase. The invalidation phase relies
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Figure 6: Phase II: Invalidation.

Procedure InvalidationPhase() Begin
e For (k=0;k< MAX_GRID_CELL:k++)

1. For each moving object M, € Pi, call Invali-
date_Object(Mo,Gy)

2. For each moving query My € Ry,
(a) if My € Gy, update the information of My in Gy,

(b) else, insert a new entry in Gy, for Mgy, with an
OList initialized from the Updated-Answer

o call Invalidate_Queries()
End.

Figure 7: Pseudo code of the Invalidation phase

on partitioning the two-dimensional space into N x N grid
cells’. Objects and queries are stored in grid cells based
on their locations. To handle skewed data distribution of
objects and queries, we employ similar techniques as in [18]
where we map grid cells into smaller size tiles in a round
robin fashion. Tiles are directly mapped to disk-based pages.
An object entry O has the form (OID,loc,t,QList), where
OID is the object identifier, loc is the recent location of
the object, t is the timestamp of the recently reported lo-
cation loc, and @QList is the list of the queries that O is
satisfying. A query Q is clipped to all grid cells that @Q
overlaps with. For any grid cell C, a query entry @ has
the form (QID,region,t,OList), where QID is the query
identifier, region is the recent rectangular region of @) that
intersects with C, t is the timestamp of the recently reported
region, and OList is the list of the objects in C' that satisfy
Q.region. In addition to the grid structure, we keep track
of two auxiliary data structures; the object index and the
query index. The object and query indexes are indexed on
the OID and QID, respectively, and are used to provide
the ability for searching the old locations of moving objects
and queries given their identifiers.

Algorithm. The pseudo code of the invalidation phase is
given in Figures 7, 8, and 9. The invalidation phase starts by
flushing the non-empty buckets that contain moved objects
(Step 1 in Figure 7) and moved queries (Step 2 in Figure 7)
into the corresponding grid cells in disk. Figure 8 gives
the pseudo code of invalidating a moving object M, that is
mapped into grid cell Gi. If there is an old entry of M,
in Gy, this means that M, did not cross a cell boundary.
Thus, we update only the information of M, in Gy (Step 1
in Figure 8). If M, is a new entry in G, we insert a new

'For simplicity, we present SINA in the context of a disk-
based grid. However, the uniform grid can be substituted
by more sophisticated structures e.g., the FUR-tree [16] or
quad-tree-like structures [21].

Procedure Invalidate_Object(Object Mo, GridCell Gy) Begin
1. If Mo € Gy,
(a) Update the location and timestamp of Mo in Gy,
(b) Sq = Quertes in Updated_Answer that contains M,

(¢) For each query Q € Sq N Mo.QList, add (Q,—M,) to
Updated_Answer

(d) Mo.QList = Mo.QListU S,
(e) return

2. Insert M, as a new entry in Gy with timestamp and a
QList initialized with from the Updated_Answer

. Goig = Old cell M, from the Object index table
. If Goiqg = NULL, return
. Retrieve Og14; the old entry of M, from Ggiq
. For each query Q € Oy1q.QList
(a) Add (Q,-M,) to Updated-Answer table
(b) Remove the entry M, from Q.Olist
7. Delete the entry Og1q from Goig
End.

[ Y

Figure 8: Pseudo code invalidating moving objects

entry for M, in G with the current timestamp and a @ List
that contains the moving queries from the Updated_Answer
table that are satisfied by M, (Step 2 in Figure 8). Then, we
utilize the auxiliary structure object index using M,.OID
to get the old entry Ogq of M, (Step 3 in Figure 8). For
all queries in O,14.Q List, we report negative updates to the
Updated_Answer table and update the corresponding O Lists
(Step 6 in Figure 8). Finally, we delete the old entry of M,
(Step 7 in Figure 8).

The invalidation process of moving queries starts by flush-
ing query parts in the corresponding disk-based cells (Step 2
in Figure 7). Similar to moving objects, we either update
an old entry or insert a new one. Then, we compare the in-
memory query table with the in-disk query index. For each
moving query, we keep track with a set Si that contains the
cells that were part of the old region of the query, but are
not in the new query region (Step 1 in Figure 9). Then, we
send negative updates for each object that was part of the
query answer in each grid cell of Sy (Step 1 in Figure 9).
Finally, we delete the old entry of the moving query.

Example. For the example given in Figure 3, the inval-
idation phase is concerned only with moving objects and
queries that change their locations in the time interval
[To,T1]. Moving objects p1,p2 do not report any updates
where p1 does not cross its cell boundaries and ps was not
involved in any query answer at time Tp. Although ps is still
in Q4, however, the negative update (Q4, —p3) is reported
since object ps crosses its cell boundaries. To guarantee that
only incremental results will be maintained, this negative tu-
ple will be deleted in the joining phase. For object ps4, we
report the negative update (Q4, —p4). For moving queries
Q1,Qs, we do not report any result, where they do not leave
any of their old cells. Query Q3 reports a negative update
(@3, —ps) where Q3 completely leaves its old cell that con-
tains pe. Notice that we do not report any negative update
for p7 where Q3 still did not leave the cell that contains p7.

Discussion. The invalidation phase uses the object index
and the query index to retrieve the old information for mov-



Procedure Invalidate_Queries() Begin

o For each query My in the in-memory query table

1. S = Set of grid cells that was covered by the old value
of My and not covered by the new value of My

2. For each grid k € S

(a) Retrieve Qoiq; the old entry of My in cell k
(b) For each O € Qu1q4-OList, add (Mg, —O) to Up-
dated_Answer and remove My from O.QList

3. Delete the entry Qo1q from k
End.

Figure 9: Pseudo code invalidating moving queries

ing objects and moving queries that cross their cell bound-
aries, respectively. Another approach is to let the client send
the old location information along with the new location in-
formation. In this case, there will be no need for maintaining
the two auxiliary data structures. Although this approach
would simplify SINA, and save I/O overhead, however, this
approach lacks practicality. The main reason is that this
approach assumes that the client has the ability to store
its old location information, which is not guaranteed for all
clients. The objective of SINA is to assume the minimal
computation and storage requirement from clients.

Using auxiliary data structures to keep track of the old
locations is utilized in the LUR-tree as a linked list [14]
and in the frequently updated R-tree as a hash table [16].
However, the invalidation phase in SINA limits the access of
the auxiliary data structures to only the objects that move
out of their cells, rather than to all moved objects, which is
the case in [14, 16].

The invalidation phase reports negative updates that cor-
respond to moving objects that cross their cell boundaries
and moving queries that leave some of their old cells. For
moving objects and queries that move within their cell
boundaries, we defer their invalidation process to the join-
ing phase. Another approach for the invalidation phase is to
report negative updates from all moving objects and queries
regardless of their old locations. This approach would incur
redundant I/O overhead. In the joining phase, the cells that
contain in-cell moving objects or queries have to be fetched
into memory to perform a join between objects and queries.
Computing negative updates for the in-cell movement in the
invalidation phase results in redundant operations between
the two phases. Thus, the invalidation phase acts as a filter
to avoid unnecessary joins in the joining phase.

4.3 Phase Ill: Joining

Data Structure. The joining phase does not require any
additional data structure where it uses only the grid data
structure that is utilized in the invalidation phase.

Algorithm. Figure 10 gives the pseudo code of the join-
ing phase. For each grid cell, the joining phase performs
two spatial join operations: (1) Joining in-memory objects
with in-disk queries (Steps 1 and 2 in Figure 10), (2) Join-
ing in-memory moving queries with in-disk objects (Steps 3
and 4 in Figure 10). For each moving object/query, we get
the set of queries/objects from applying a spatial join algo-
rithm, respectively (Steps 2a and 4a in Figure 10). Then,
based on the answer set, we report positive and negative
updates while updating the corresponding data structures.

Procedure JoiningPhase() Begin
e For (k=0; k < MAX_GRID_CELL; k++)

1. Join moving objects in the in-memory bucket Py, with
stationary quertes in the in-disk grid cell G

2. For each moving object M, € Py,

(a) Sq = Set of queries that results from the join
(b) For each query Q@ € (Sq — M,.QList), add
(Q,+M,) to Updated-Answer, update Q.OList

(c) For each stationary Q € (Mo.QList — Sy), add
(Q,—M,) to Updated-Answer, update Q.OList

(d) Mo.QList = SqU M,.QList

3. Join moving queries in the in-memory bucket Ry with
stationary objects in the in-disk grid cell Gy,

4. For each moving query My € Ry

(a) So = Set of objects that results from the join
(b) For each object O € (So — Mq.OList), add
(Mg, +0) to Updated_Answer, , update O.QList
(¢) For each stationary O € (Mg.OList — S,), add
(Mg, —0O) to Updated-Answer, update O.QList
(d) M4.OList =S, U M4.OList
e Send the Updated_Answer table to the users

o Empty all memory data structure
End.

Figure 10: Pseudo code for the joining phase

After performing the spatial join for all grid cells, we send
the Updated_Answer to the clients, and clear all memory
data structures.

Example. For the example given in Figure 3, during
this phase, moving object p: reports the negative update
(Q2,—p1). Object p2 does not report any updates where
there are no in-disk stationary queries to join with p2’s new
cell (Qs3 is a moving query). The moving object p3 is joined
with the stationary query Qu that produces (Q4,+p3) as a
positive update. Notice that this positive update cancels the
corresponding previously reported negative update in the in-
validation phase. Thus, the size of the Updated_Answer ta-
ble is minimized and only the incremental results are main-
tained. Object ps4 does not produce any results where there
are no in-disk queries to join with. For moving queries, Q1
reports the negative update (Q1, —ps) where ps and Q1 are
not joined together in the upper-left corner cell. Query @3
reports the positive update (Q3,+ps) as a result of the spa-
tial join of one of the news cells covered by Q3. Also, Qs
reports (@3, —p7). Query Qs does not report any of the
updates where object pg is still in the new region of Qs.

Discussion. The joining phase only joins the cells that
have new moving objects and/or queries. Cells that con-
tain only stationary (i.e., not recently moving) objects and
queries are not processed in the joining phase. In addition,
cells that contain stationary or old information of moving
objects and/or queries are filtered out and are processed at
the invalidation phase (e.g., the cells that contain ps, p3, and
pa at time Ty in Figure 3a). Each iteration of the joining
phase deals with only one grid cell. Thus, the I/O cost of
each iteration is bounded by the number of disk pages of a
grid cell. For the CPU time, we utilize a plane-sweep-based
spatial join algorithm similar to the ones used in hash-based
spatial join algorithms (e.g., [18]).
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Figure 11: Querying the future

5. EXTENSIBILITY OF SINA

In this section, we explore the extensibility of SINA to
support a broad class of continuous spatio-temporal queries
(e.g., future, k-nearest-neighbor, and aggregate spatio-
temporal queries) and to support clients that may be dis-
connected from the server for short periods of time (i.e.,
out-of-sync clients).

5.1 Querying the Future

Future queries [24], also termed as predictive queries [26,
30], are interested in predicting the locations of moving ob-
jects. An example of a future query is ”Alert me if a non-
friendly airplane is going to cross a certain region in the next
30 minutes”. Notice that the alert is set before the actual
event happens, thus, the term future or predictive query.
To support future queries, D-dimensional moving objects
report their current location o = (x1,x2, - ,xq) at time
to and a velocity vector U = (v1,v2,- - ,v4). The predicted
location 3 of the moving object at any instance time ¢t > tg
is computed by z3 = @0 + U(t — to).

Figure 11a gives an example of querying the future. Five
moving objects p1 to ps, have the ability to report their cur-
rent location at time Tp and a velocity vector that is used to
predict their future locations at times 77 and T>. The range
query @ is interested in objects that will intersect with its
region at time T> > Tp. At time Ty the rectangular query
region is joined with the lines representation of the moving
objects. The returned answer set of @ is (p1,p3). At Th
(Figure 11b), only the objects p2, p3, and ps change their lo-
cations. Based on the new information, SINA reports only
the positive update (Q, +p2) and negative update (Q, —ps3)
that indicate that p2 is considered now as part of the an-
swer set of () while p3 is no longer in the answer set of Q.
Notice that, due to the incremental property of SINA, no
tuples are produced for object p; where it does not change
its information from the previously reported result at time
To.

The extension of SINA to support future queries is
straightforward. Moving objects are represented as lines in-
stead of points. Thus, in the hashing phase, moving objects
are clipped into several hash buckets (same as rectangular
queries). In the invalidation and joining phases, moving ob-
jects will be treated as moving queries in the sense that
they may span more than one grid cell. The shared execu-
tion paradigm can exactly fit for future queries. Also, mov-
ing queries do not need any special handling other than the
ones used in the original description of SINA in Section 4.

5.2 k-Nearest-Neighbor Queries

(b) Snapshot at time Ty

(a) Snapshot at time T,

Figure 12: k-NN spatio-temporal queries

Although continuous spatio-temporal k-nearest-neighbor
queries (kNN) are widely addressed (e.g., see [2, 23, 25, 32]),
scalability, incremental evaluation, mutability of both ob-
jects and queries, and client overhead are examples of chal-
lenges that either are overlooked wholly or partially by pre-
vious approaches. An example of a continuous kNN spatio-
temporal query is ”Continuously, find the nearest three po-
lice cars relative to my current location.

SINA can be utilized to continuously report the changes
of a set of concurrent kNN queries. Figure 12a gives an
example of two ENN queries where k£ = 3 issued at points
Q1 and Q2. Assuming that both queries are issued at time
To, we compute the first-time answer using any of the tra-
ditional algorithms of kNN queries (e.g., [13]). For Q1, the
answer would be Q1 = pi1,p2, ps while for ()2, the answer
would be Q2 = ps, ps, pr. In this case, we present )1 and
Q2 as circular range queries with radius equal to the dis-
tance of the kth neighbor. Later, at time 71 (Figure 12b),
object ps and p7 are moved. Thus, SINA can be utilized
to allow for a shared execution among the two queries and
to compute the updates from the previously reported an-
swer. Notice that the only change to the original SINA is
that we utilize circular range queries rather than rectangu-
lar range queries. For @1, object p4 intersect with the query
region. This results in invalidating the furthest neighbor
of @1, which is p1. Thus, two update tuples are reported
(Q1,—p1) and (Q1,+pa). For Q2, the object p7 was part of
the answer at time Ty. However, after p7 moves,the join-
ing phase checks whether p7 still inside the query region or
not. If p7 is outside the circular query region, we compute
another nearest-neighbor, which is ps. Thus, two update
tuples are reported, (Q2,—p7) and (Q2,+ps). Notice that
the query regions of Q1 and Q2 are changed from Ty to T3.
However, this does not affect the execution of SINA, where
we always store the previous region of the query.

5.3 Aggregate Queries

Continuous aggregate spatio-temporal queries are those
queries that always report statistical and/or summary in-
formation. An example of aggregate queries is: ”Contin-
uously, verify that the mumber of police cars in a certain
area is above a certain threshold” where the aggregate func-
tion is COUNT. Another example is: Continuously, report
the moving object with maximum speed in a certain region,
where the aggregate function is MAX.

Continuous spatio-temporal aggregate queries are recently
addressed in [10] where dense areas are discovered online
(i.e., areas with the number of moving objects above a cer-
tain threshold) (aggregate function COUNT). The areas to
be discovered are limited to pre-defined grid cells. Thus,
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if a dense area is not aligned to a grid cell, it will not be
discovered. The work in [10] can be modelled as a special
instance of SINA in the following way: For a N x N gird,
we can consider having N? spatio-temporal disjoint aggre-
gate range queries, where each query represents a grid cell.
Moreover, SINA can extend [10] to have the ability to dis-
cover pre-defined dense areas of arbitrary regions. Thus,
important areas (e.g., areas around airport or in downtown)
can be discovered even if it is not aligned to grid cells. All
pre-defined dense areas are treated as range queries. Then,
the shared execution paradigm with the incremental evalua-
tion of SINA continuously reports the density of such areas.
Positive and negative updates report only the increase and
decrease of the density from the previously reported result.

5.4 Out-of-Sync Clients

Mobile objects tend to be disconnected and reconnected
several times from the server for some reasons beyond their
control, i.e., being out of battery, losing communication sig-
nals, being in a congested network, etc. This out-of-sync
behavior may lead to erroneous query results in any incre-
mental approach. Figure 13 gives an example of erroneous
query result. The answer of query @ that is stored at both
the client and server at time T4 is (p1,p2) . At time T3, the
client is disconnected from the server. However, the server
does not recognize that @) is disconnected. Thus, the server
keeps computing the answer of @), and sends the negative
update (@, —p2). Since the client is disconnected, the client
could not receive this negative update. Notice the incon-
sistency of the stored result at the server side (p2) and the
client side (p1,p2). Similarly, at time T3, the client is still
disconnected. The client is connected again at time 74. The
server computes the incremental result from 73 and sends
only the positive update (Q, +p4). At this time, the client
is able to update its result to be (p1,p2,p4). However, this
is a wrong answer, where the correct answer is kept at the
server (p1,ps3,pa). SINA can easily be extended to resolve
the out-of-sync problem by adding the following catch-up
phase.

Catch-up Phase. A naive solution for the catch-up
phase is once the client wakes up, it empties its previous
result and sends a wakeup message to the server. The server
replies by the query answer stored at the server side. For
example, in Figure 13, at time T4, SINA will send the whole
answer (p1,ps,ps). This approach is simple to implement
and process in the server side. However, it may result in sig-
nificant delay due to the network cost in sending the whole
answer. Consider a moving query with hundreds of objects
in its result that gets disconnected for a short period of time.
Although, the query has missed a couple of points during its
disconnected time, the server would send the complete an-
swer to the query.

To save the network bandwidth, SINA maintains a repos-
itory of committed query answers. An answer is considered

committed if it is guaranteed that the client has received it.
Once the client wakes up from the disconnected mode, it
sends a wakeup message to the server. SINA compares the
latest answer for the query with the committed answer, and
sends the difference of the answer in the form of positive and
negative updates. For example, in Figure 13, SINA stores
the committed answer of @ at time T1 as (p1,p2). Then, at
time Ty, SINA compares the current answer with the com-
mitted one, and send the updates (Q, —p2, +p3, +ps). In a
real life example, the size of the incremental answer is much
less than the complete answer. Thus, SINA saves in network
bandwidth.

Once SINA receives any information from a moving query,
SINA considers its latest answer as a committed one. How-
ever, stationary queries are required to send explicit commit
message to SINA to enable committing the latest result.
Commit messages can be sent at the convenient times of the
clients. Handling the commit message is easier in the case
of moving queries. This is acceptable at SINA since the out-
of-sync problem is a property of moving queries rather than
stationary queries.

6. CORRECTNESS OF SINA

In this section, we provide a proof of correctness of the
Scalable INcremental hash-based Algorithm (SINA). The cor-
rectness proof is divided into three parts: First, we prove
that SINA is complete, i.e., all result tuples are produced.
Second, we prove that SINA is a duplicate-free algorithm,
i.e., output tuples are produced exactly once. Third, we
prove that SINA is progressive, i.e., only new results will be
sent to the user.

THEOREM 1. For any two sets of moving objects P and
moving queries R, SINA produces all output results (p,r) of
P X R, where the join condition p inside r is satisfied at
any time instance t.

PROOF. Assume that I(p,7) : p € P,r € R, and at some
time instance ¢, p was located inside r. However, the tu-
ple (p,r) is not reported by SINA. Since (p,r) satisfies the
join condition, then there exists a hash bucket h such that
h = hp(p) and h € hr(r). Assume that the latest informa-
tion sent from p and r were in time intervals [T;, T;+1] and
[T}, Tj+1], respectively. Then, there are exactly two possible
cases:

Case 1: i = j. In this case, both p and r reports their re-
cent information at the same time interval [T;, T;41]. Thus,
we guarantee that p and r were resident in the memory at
the same time. If p arrives before r, then p will be stored in
bucket P, without joining with r. Later when r arrives, it
will probe the bucket P}, and join with p. The same proof
is applicable when r arrives before p. Thus, the tuple (p,r)
cannot be missed in case of ¢ = j.

Case 2: i # j. Assume i < j. This indicates that p
arrives before r. Then, in the invalidation phase, p is flushed
into disk before r arrives. Once r arrives, it is stored in an
in-memory hash bucket h that corresponds to the disk-based
cell of object p. Since the joining phase join all in-memory
hash buckets with their corresponding in-disk grid cells, we
guarantee that r will be joined with p. The same proof is
applicable when 7 > j where the in-memory object p will
be joined with the in-disk query r. Thus, the tuple (p,r)
cannot be missed in case of i # j.



From Cases 1 and 2, we conclude that the assumption
that (p,r) is not reported by SINA is not possible. Thus,
SINA produces all output results. [

THEOREM 2. At any evaluation time T;, SINA produces
the output result that corresponds to all information change
in [Ti—1,T;] exactly once.

PROOF. Assume that 3(p,7) : p € P,r € R, and (p,r)
satisfies the join condition. Assume that SINA reports the
tuple (p,r) twice. We denote such two instances as (p,r)1
and (p,7)2. Since, we are interested only on tuples that
satisfy the join condition (i.e., positive updates), then, we
skip the invalidation phase where it produces only negative
updates. Thus, we identify the following three cases:

Case 1: (p,7)1 and (p,r)2 are both produced in the
hashing phase. Assume that p arrives after r. Once p ar-
rives, it probes the hash bucket of r and outputs the result
(p,7)1. Then, during the hashing phase, only newly incom-
ing tuples are used to probe the hash buckets of p and r.
Thus, (p,r) cannot be produced again in the hashing phase.

Case 2: (p,7)1 and (p,r)2 are both produced in the
joining phase. The joining phase produces positive up-
dates at two outlets: in-memory moving objects with in-disk
(not recently moving) queries and moving queries with in-
disk objects. If (p,r)1 is produced in the former outlet, then
p is a moving object that reports its recent information in
[Ti-1,T;]. Thus, (p,r)2 cannot be produced in the second
outlet where it is concerned only with in-disk objects. The
same proof is applicable when (p, 7)1 is produced in the sec-
ond outlet. Thus, the tuple (p,r) cannot be produced again
in the joining phase.

Case 3: One of the tuples, say (p,7)1, is produced
in the hashing phase, while the other one is pro-
duced in the joining phase. Since (p,7): is reported in
the hashing phase, then we guarantee that both p and r were
in memory (moving) in the same time interval [T;—1,T;].
Thus, p is a moving object and 7 is a moving query. In the
joining phase, (p,r) cannot be produced again in the first
outlet where 7 is not stationary. Similarly, (p,r) cannot be
produced again in the second outlet where p is not station-
ary. Thus, the tuple (p,r) cannot be produced again in the
joining phase.

From the above three cases, we conclude that the assump-
tion that the tuple (p,r) is reported twice at the evaluation
time 7T} is not valid. [

THEOREM 3. For any two sets of moving objects P and
moving queries R, at any evaluation time T;, SINA produces
ONLY the changes of the previously reported result at time
Ti1.

PROOF. Assume that Jpi,p2,ps € P,r € R, and only
(p1,7), (p2, ) satisfy the join condition at time T;_1. Then,
at time Tj, p1 is still inside r, p2 is moved out of r while
p3 is moved inside r. In the following we prove that only
the tuples (r, —p2) and (r,+ps) are produced at time 7.
Mainly, we identify the following three cases:

Case 1: r is a moving query, pi, p2, and p3 are
moving objects. This case is processed only in the hashing
and invalidation phases. Based on Theorem 2, the hashing
phase produces only the updates (r,+p1) and (r,+p3). In
the invalidation phase, (r,+p1) is deleted either in Step 1c in
Figure 8 (if p1 moves within its cell boundary) or in Step 6a
in Figure 8 (if p1 moves out of its cell) by adding the coun-
terpart tuple (r,—pi1). The tuple (r, —p2) is produced only

Figure 14: Road network map of Oldenburg City

in the invalidation phase either in Step lc or Step 6a of
Figure 8.

Case 2: r is a moving query, pi, p2, and p3 are
stationary objects. This case is processed only in the in-
validation and joining phases. Since p; is still in the answer
set of r, then p; is inside some grid cell ¢ that intersects
with both the old and new regions of r. Thus, pi1 will be
processed only in the joining phase, particulary at Step 4 in
Figure 10. However, since p; is an old answer, no action will
be taken. For object p2, assume that C;_1, C; are the set
of grid cells that are covered by r in T;_1,T;, respectively.
cz2 is the gird cell of p2. Since p2 is not in the answer set of
r at time Tj, then c2 ¢ C; — Ci—1. If p2 € Ci_1 — C}, then
the tuple (r, —p2) will be produced in the invalidation phase
(Step 2b in Figure 9). However, if po € C;—1 N C;, then the
tuple (r, —p2) will be produced in the joining phase (Step 4c
in Figure 10). For object ps, since ps is not an old an-
swer, then it will not be processed in the invalidation phase.
Thus, the tuple (r, +ps) will be reported in the joining phase
(Step 4b in Figure 10).

Case 3: r is a stationary query, pi, p2, and p3 are
moving objects. The proof is very similar to Case 2 by
reversing the roles of queries and objects.

We do not include the case of stationary queries on sta-
tionary objects where it is not precessed. Also, we assume
that either all p;s are moving or stationary. However, the
proof is still valid for any combination of moving and sta-
tionary pjs. Thus, from the above three cases, we conclude
that: At time T3, SINA only produces the change of the re-
sult from the previously reported answer at time T;—1. [

7. EXPERIMENTAL RESULTS

In this section, we compare the performance of SINA with
the following: (1) Having an R-tree-based index on the ob-
ject table. To cope with the moving objects, we implement
the frequently updated R-tree [16] (FUR-tree, for short).
The FUR-tree modifies the original R-tree to efficiently han-
dling moving objects. (2) Having a Q-index [19] on the
query table. Since Q-index is designed for static queries, we
modify the original Q-index to employ the techniques of the
FUR-tree to handle moving queries. Thus, the Q-index can
handle moving queries as efficient as the FUR-tree handles
moving objects. (3) Having both the FUR-tree on moving
objects and the modified Q-index on the query table. Then,
we employ an R-tree based spatial join algorithm [4] (RSJ,
for short) to join objects and queries.

We use the Network-based Generator of Moving Objects (3]
to generate a set of moving objects and moving queries. The
input to the generator is the road map of Oldenburg (a city
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in Germany) given in Figure 14. The output of the gen-
erator is a set of moving points that moves on the road
network of the given city. Moving objects can be cars, cy-
clists, pedestrians, etc. We choose some points randomly
and consider them as the centers of square queries. Unless
mentioned otherwise, we generate 100K moving objects and
100K moving queries. Each moving object or query reports
its new information (if changed) every 100 seconds. The
space is represented as the unit square, query sizes are as-
sumed to be square regions of side length 0.01. SINA is
adopted to refresh query results every 7" = 10 seconds. The
percentage of object and queries that report a change of in-
formation within 7" seconds is 10% of the moving objects
and queries, respectively.

All the experiments in this section are conducted on Intel
Pentium IV CPU 1.4GHz with 256MB RAM running Linux
2.4.4. SINA is implemented using GNU C++. The page size
is 2KB. We implement FUR-tree, Q-index, and RSJ using
the original implementation of R*-tree [1]. Our performance
measures are the I/O overhead and CPU time incurred. For
the I/O, we consider that the first two levels of any R-tree-
based structures are in memory. The CPU time is computed
as the time used to perform the spatial join in the memory
(i.e., once the page is retrieved from disk). For SINA, the
CPU time also includes the time that the hashing phase
consumes for the in-memory join.

7.1 Properties of SINA
7.1.1 Szeof the Result

Figure 15 compares between the size of the answer re-
turned by SINA and the size of the complete answer re-
turned by any non-incremental algorithm. In Figure 15a,
the percentage of moving objects varies from 0% to 10%.
The size of the complete answer is constant and is orders of
magnitude of the size of the incremental answer returned by
SINA. A complete answer is not affected by recently moved
objects. However, for SINA, the size of the answer is increas-
ing slightly, where it is affected by the number of objects be-
ing evaluated at every T seconds. In Figure 15b, the query
side length varies from 0.01 to 0.02. The size of the complete
answer is increased dramatically to up to seven times that
of the incremental result returned by SINA. The saving in
the size of the answer directly affect the communication cost
from the server to the clients.

7.1.2  Number of Grid Cells
Figures 16a and 16b give the effect of increasing the grid
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size N on the I/O and CPU time incurred by SINA, respec-
tively. With small number of grid cells (i.e, less than 10),
each cell contains a large number of disk pages. Thus a spa-
tial join within each cell results in excessive I/O and CPU
time. On the other hand, with a large number of grid cells
(i.e., more than 60), each cell contains a small number of
moving objects and queries. Although this results in lower
CPU time, where the spatial join is performed among few
tuples. However, disk pages are under utilized. Thus, addi-
tional I/O overhead will be incurred. Based on this experi-
ment, we set the number of grid cells N along one dimension
to be 40.

7.2 Number of Objects/Queries

In this section, we compare the scalability of SINA with
the FUR-tree, Q-index, and RSJ algorithms. Figures 17a
and 17b give the effect of increasing the number of mov-
ing objects from 10K to 100K on I/O and CPU time, re-
spectively. In Figure 17a, SINA outperforms all other algo-
rithms. RSJ has double the I/O’s of SINA due to the R-tree
update cost. Notice that the performance of the R-trees is
degraded with the increase in the number of moving objects
and moving queries. The performance of Q-index is dramati-
cally degraded with the increase of the number of moving ob-
jects as moving objects are not indexed. The FUR-tree has
the worst performance for all cases where there is no index
of the 100K queries. However, the performance is slightly
affected by the increase of the moving objects. The slight
increase is due to the maintenance of the increasing size of
the moving objects. When the number of moving objects is
increased up to 100K, both the FUR-tree and the Q-index
have similar performance which is eight times worse than
that of the performance of SINA. The main reason is that
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both FUR-tree and Q-index utilize only one index struc-
ture. Thus, the non-indexed objects and queries worsen the
performance of FUR-tree and Q-index, respectively.

In Figure 17b, SINA has the lowest CPU time. The rel-
ative performance of SINA over other R-tree-based algo-
rithms increases with the increase of the number of moving
objects. The main reason is that the update cost of SINA is
much lower than updating R-tree structures. As the num-
ber of moving objects increases, the quality of the bounding
rectangles in the R-tree structure is degraded. Thus, search-
ing and querying an R-tree incurs higher CPU time. The
RSJ algorithm gives lower performance in CPU time than
FUR-tree and Q-index since RSJ needs to update in two
R-trees. The performance of RSJ ranges from 1.5 to 3 times
worse than the performance of SINA.

Figure 18 gives similar experiment to Figure 17 with ex-
changing the roles of objects and queries. Since both SINA
and RSJ treat objects and queries similarly, their perfor-
mance is similar to the one in Figure 17. However, the
FUR-tree and Q-index exchange their performance as they
deal with objects and queries differently.

7.3 Percentage of Moving Objects/Queries

Figure 19 investigates the effect of increasing the percent-
age of the number of moving objects and queries on the
performance of SINA and R-tree-based algorithms. The per-
centage of moving objects varies from 1% to 10%. The per-
centage of moving queries is set to 5%. For the I/O overhead
(Figure 19a), RSJ has similar performance as SINA for up
to 5% of moving objects. Then, RSJ incurs up to double
the number of I/O’s over that of SINA for 10% of moving
objects. Both the FUR-tree and the Q-index have simi-

i
o

[
I
<

/7
% »
novi ng queri es=10% —@—

noving queries=20% —v—
novi ng queri es=30% —v»—

15 20 25 30
Percentage for noving objects (%

1/0 (*1000)
B
N w
< <
;\\
Tinme (sec)
O B N W A OO N O
o < 4

h
11%1,’4/./0/—/‘

novi ng queri es=10% —@—
10 novi ng queri es=20% —v—
novi ng queri es=30% —»—

9
10 15 20 25 30
Percentage for noving objects (%

[
S}

(a) 1/0 (b) CPU Time

Figure 20: Scalability of SINA with update rates

lar performance which is almost eight times of magnitude
worse than that of SINA. When the percentage of moving
objects is lower than 5% (i.e., lower than the percentage
of moving queries), the FUR-tree has better performance.
When the percentage of the number of moving objects and
moving queries are equal (i.e., 5%) both FUR-tree and Q-
index have similar performance. Basically, the performance
of FUR-tree and Q-index are degraded with the increase of
the percentage of moving objects and moving queries, re-
spectively.

For the CPU time (Figure 19b), SINA outperforms all R~
tree based algorithms. This is mainly due to the high update
cost of the R-tree. The RSJ algorithm has the highest CPU
time, where it updates in two R-trees. In addition, SINA
computes incremental results while R-tree-based algorithms
are non-incremental.

Similar performance is achieved when fixing the number
of moving objects to 5% while varying the number of mov-
ing queries from 0% to 10%. The only difference is that
we replace the roles of objects and queries. Thus, the per-
formance of the FUR-tree and Q-index is exchanged while
SINA and SRJ maintain their performance.

In Figure 19, we limit the number of moving queries to 5%
and the number of moving objects to 10%. Having more dy-
namic environment degrades the performance of all R-tree
based algorithms. In the following experiment, we explore
the scalability of SINA in terms of handling highly dynamic
environments. In Figure 20, the percentage of moving ob-
jects varies from 10% to 30%. We plot three lines for SINA
that correspond to the percentage of moving queries as 10%,
20%, and 30%. We do not include any performance results of
any of the R-tree-based algorithms where their performance
is dramatically degraded in highly dynamic environments.
Figures 20a, and 20b gives the I/O and CPU time incurred
by SINA, respectively. The trend of SINA is similar with
all percentages of moving queries. Also, the performance of
SINA increases linearly with the increase of moving objects.
Thus, SINA is more suitable for highly dynamic environ-
ments.

7.4 Locality of movement

This section investigates the effect of locality of movement
on SINA and R-tree-based algorithms. By locality of move-
ment, we mean that objects and queries are moving within
a certain distance. As an extreme example, if all objects
are moving within small distance, then at each evaluation
time T of SINA, all objects and queries are moving within
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Figure 21: Effect of movement locality

their cells. Thus, SINA achieves its best performance. On
the other side, SINA has its worst performance if 100% of
the objects change their cells. By tuning the moving dis-
tance of moving objects, we can keep track of the number of
moving objects that cross their cell boundaries. Figures 21a
and 21b give the effect of the movement locality on the I/O
and CPU time, respectively. For 1/0O, even the worst case
of SINA is still better than R-tree-based algorithms (similar
to RSJ and four times better than the FUR-tree and the
Q-index). The performance of R-tree-based algorithms is
almost not affected even all objects change their cells. The
main reason is that changing the cell in the grid structure
does not necessarily mean changing the R-tree node. For
the CPU time, SINA outperforms all other algorithms by
two orders of magnitude. In addition, the performance of
SINA has only slight increase with the number of objects
that change their cells.

8. CONCLUSION

This paper introduces the Scalable INcremental hash-
based Algorithm (SINA, for short); a new algorithm for eval-
uating a set of concurrent continuous spatio-temporal range
queries. SINA employs the shared execution and incremen-
tal evaluation paradigms to achieve scalability and efficient
processing of continuous spatio-temporal queries. SINA has
three phases: Hashing phase, invalidation phase, and joining
phase. The hashing phase employs an in-memory hash based
join algorithm that results in a set of positive updates. The
invalidation phase is triggered every T time units or when
the memory is full to produce a set of negative updates.
Then, the joining phase is triggered to produce a set of both
positive and negative updates that result from joining in-
memory data with in-disk data. We discussed the extensi-
bility of SINA to support a wide variety of spatio-temporal
queries and out-of-sync clients. The correctness of SINA is
proved in terms of completeness, uniqueness, and progres-
siveness. Comprehensive experiments show that the per-
formance of SINA is orders of magnitude better than other
R-tree based algorithms where the experiments demonstrate
that SINA is: (1) Scalable to a large number of moving ob-
jects and/or moving queries, (2) Stable in highly dynamic
environments. Finally, SINA saves in the network band-
width by minimizing the data sent to clients.
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