
LUGrid: Update-tolerant Grid-based Indexing for Moving Objects ∗

Xiaopeng Xiong1 Mohamed F. Mokbel2 Walid G. Aref1

1Department of Computer Science, Purdue University, West Lafayette, IN
2Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN

Abstract

Indexing moving objects is a fundamental issue in spatio-
temporal databases. In this paper, we propose an adap-
tive Lazy-Update Grid-based index (LUGrid, for short) that
minimizes the cost of object updates. LUGrid is designed
with two important features, namely, lazy insertion and lazy
deletion. Lazy insertion reduces the update I/Os by adding
an additional memory-resident layer over the disk index.
Lazy deletion reduces update cost by avoiding deleting sin-
gle obsolete entry immediately. Instead, the obsolete en-
tries are removed later by specially designed mechanisms.
LUGrid adapts to object distributions through cell split-
ting and merging. Theoretical analysis and experimental
results indicate that LUGrid outperforms former work by
up to eight times when processing intensive updates, while
yielding similar search performance.

1 Introduction

The integration of mobile devices and positioning tech-
nologies enables new environments where locations of
moving objects can be tracked continuously. In such en-
vironments, objects send their current locations to a server
either periodically or based on their moving distance. The
server collects the location information and processes in-
terested queries. A wide range of applications rely on the
maintenance of current locations of moving objects. Exam-
ples of these applications include traffic monitoring, nearby
information accessing and enhanced 911 service, etc.

However, existing indexes for moving objects (as dis-
cussed in Section 2) suffer from intensive updates. The rea-
sons are observed from the following three aspects. First,
most of the indexing approaches process one single update
at a time, which hinders largely the update ability of the
index. Second, most of existing approaches locate and re-
move the old object entry upon an update. This process

∗This work was supported in part by the National Science Foundation
under Grants IIS-0093116 and IIS-0209120.

incurs large disk overhead. Third, to quickly search the old
object entry to be removed, many index structures maintain
a secondary index on object IDs (e.g., [8, 9, 10, 24]). For
each update, the secondary index is searched to locate the
old object entry. Further, the secondary index has to be up-
dated every time an object changes its locality of disk page.

In this paper, we propose LUGrid, an adaptive Lazy-
Update Grid-based index for indexing current locations of
moving objects. LUGrid aims to avoid all the above men-
tioned drawbacks of existing indexing techniques. LUGrid
is designed with two important features: (1) Lazy-insertion.
In LUGrid, object updates going to the same disk page are
buffered together before flushed to disk in one run. Lazy-
insertion avoids excessive I/O costs caused by multiple in-
dependent updates so that the amortized I/O cost for one
update is low; (2) Lazy-deletion. In contrast to other in-
dexing approaches, LUGrid does not require deleting old
entries before inserting new entries. Instead, LUGrid de-
lays the deletion process until the disk pages where the old
entries reside are retrieved into memory. This is achieved
by a structure called “miss-deletion memo” (MDM). LU-
Grid guarantees that the size of MDM is upper-bounded to
a small size so that it can be easily accommodated in main
memory. Besides, LUGrid adapts to object distribution by
inheriting the structure of Grid file.

The contributions of this paper are summarized as fol-
lows:

1. We propose LUGrid; an adaptive update-tolerant in-
dexing structure for indexing current locations of mov-
ing objects. LUGrid is designed to minimize the cost
of processing object updates.

2. We present the structure of LUGrid and algorithms for
update and query processing along with an analysis of
the update cost in LUGrid.

3. We provide a comprehensive set of experiments
demonstrating that LUGrid outperforms significantly
former work in update processing while maintaining
similar query performance.

The rest of this paper is organized as follows. Section 2



highlights related work. LUGrid is discussed in Section 3.
Section 4 gives an analysis of the update cost of the pro-
posed update scheme. Experiments evaluating the perfor-
mance of LUGrid are presented in Section 5. Finally, Sec-
tion 6 concludes the paper.

2 Related Work

Traditional spatial access methods (e.g., the Grid
file [11] and R-tree [5]) are designed mainly for static data.
Updating traditional structures is cumbersome where the
update is treated as a delete followed by an insert. The
claim is that updates are not frequent in traditional applica-
tions. However, in spatio-temporal databases, objects con-
tinuously send new-location updates to the index as they
move.

To reduce the frequency of updates, a prediction scheme
helps predict the updates for a certain period of time.
Predicted updates are presented as trajectories. Four ap-
proaches have been investigated for indexing such trajecto-
ries: (1) The duality transformation (e.g., see [1, 3, 7, 12]),
(2) Quad-tree-based methods (e.g., see [20]), (3) R-tree-
based index structures (e.g., see [13, 14, 15, 16, 19]), and
(4) B-tree-based structures [6]. However, indexing future
trajectories solves only part of the update problem. Two
main drawbacks still remain: (1) The ability of prediction
is controlled by the prior knowledge and/or assumptions of
the object velocity, which is not always available. (2) In
many cases when the prediction scheme fails (e.g., moving
freely in a downtown area or pedestrian movement), fre-
quent updates would suffer from the same drawbacks as in
traditional data structures.

The insufficiency of indexing moving objects by their fu-
ture trajectories motivates the need for special data struc-
tures. The Lazy-update R-tree (LUR-tree) [8] modifies the
original R-tree structure to support frequent updates. The
main idea is that if an update to a certain object p would
result in a deletion followed by an insertion in a new R-
tree node, it would be better to increase slightly the size of
the minimum boundary rectangle of the R-tree node which
p lies in to accommodate its new location. The Frequently
Updated R-tree (FUR-tree) [9] extends the LUR-tree by per-
forming a bottom-up approach in which a certain moving
object can move to one of its siblings. Both the LUR-tree
and the FUR-tree rely on an auxiliary index to locate the
old locations of moving objects. One of the key features of
our proposed LUGrid is that we eliminate the use of such
auxiliary disk indexes.

The difficulties in dealing with tree-based structures mo-
tivate the use of simpler data structures (e.g., hash-based
and grid-based data structures) that are updated easily. A
hash-based structure is used in [17, 18] where the space is
partitioned into a set of overlapped zones. An update is

processed only if an object moves out of its zone. SETI [2]
is a logical index structure that divides the space into non-
overlapped zones. Both SETI and hash-based structures ig-
nore deleting the old location of a moving object. Thus, an
update is reduced to only an insertion where past trajecto-
ries are maintained. Grid-based structures have been used to
maintain only the current locations of moving objects (e.g.,
see [4, 10, 24]). However, two drawbacks can be distin-
guished: (1) The used grid is fixed, so it is not suitable in
the case of a non-uniform distribution of data. One prop-
erty of the proposed LUGrid is adapting to data distribution
through its underlying grid file basis. (2) In many cases,
the old location can be in a grid cell that is different from
the one containing the new location. In this case, an extra
search and extra I/Os are needed to clean up the old entry.
Our proposed LUGrid efficiently resolves the issue of dele-
tion, where a delete is performed lazily. Thus, no overhead
I/O is incurred due to deletion.

In our recent work [22], we use an Update Memo to re-
duce the update cost. The main idea is to avoid immediate
deletion of obsolete entries by maintaining a memo struc-
ture in main memory. [22] only focuses on R-tree-based
indexes. Motivated by [22], in this paper, we explore sim-
ilar ideas in the context of adaptive grid-based indexes to
achieve lazy deletion. Furthermore, by utilizing lazy inser-
tion along with lazy deletion, the update performance is sig-
nificantly enhanced.

3 LUGrid: Lazy Update Grid-based Index

LUGrid adopts a grid structure that is similar to the Grid
file [11]. In LUGrid, however, the directory of grid cells is
maintained in memory instead of being stored on disk. Fur-
thermore, the grid directory is extended to buffer object up-
dates. We refer to the extended in-memory directory as the
Memory Grid, and refer to the set of in-disk bucket pages
as the Disk Grid. Additionally, a hashing-based structure
termed the Miss-Deletion Memo is maintained to identify
obsolete entries.

3.1 LUGrid Indexing Structure

Disk Grid (DG)

The Disk Grid (DG, for short) consists of a set of non-
overlapped disk-based grid cells. A DG cell has the for-
mat (NE , E1, · · · , En) (n > 0), where NE is the number
of objects stored in the DG cell. E1 to En are object en-
tries, each of them stores an object identifier along with its
corresponding location.



1

A 1

C D

2 3

4

B

5 6

1 2

9
6

7

4

5
3

8 1
4

1(a) 1(b)

Disk Grid Memory Grid

A

C D

B

2

9
6

7

4

5
3

8

2(a)

1 2 3

4 5 6

2(b)

4

6
7

1 2 3

4 5 6

3(b)

1

A

C D

B

2

9
6

75
3

8

3(a)

4

6

MDM

(O4, Loc4, 1)

(O4, Loc4, 0)
(removed)

(O6, Loc6, 1)

2(c)

3(c)

…
…

1(c)

…
…

Figure 1. Example: Buffering and Flushing

Memory Grid (MG)

The Memory Grid (MG, for short) consists of a set of non-
overlapped memory-based grid cells. Each MG cell has a
limited amount of memory to buffer object updates. Each
MG cell points to a DG cell where its flushed data is stored.
For an MG cell m and its corresponding DG cell d, we re-
fer to d as the repository cell of m, and refer to m as the
buffer cell of d. To avoid under-utilized disk pages, sev-
eral neighbored MG cells may point to a common repos-
itory cell. However, one MG cell always has exactly one
repository cell.

An MG cell has the form of (Nu, MRegion, Did, NE ,
DRegion, E1, · · ·, Em) (m > 0), where Nu is the number
of updates buffered in this MG cell, MRegion is the space
region covered by this MG cell, Did is the disk page identi-
fier of the repository cell, NE is the total number of object
entries stored in the repository cell, DRegion is the space
region covered by the repository cell, and E1 to Em are ob-
ject entries storing an object identifier along with its new
location.

Miss-Deletion Memo (MDM)

In LUGrid, old object entries may co-exist with current en-
tries since the deletion of old entries is delayed. The Miss-
Deletion Memo (MDM, for short) is employed to distin-
guish obsolete entries from current entries. MDM is an
in-memory hash-based table, it uses a counter to track the
number of deletions that each object has missed. An MDM
entry has the form (OID, OLoc, MDnum), where OID is

the object identifier, OLoc is the most recent object location
that has been flushed to DG, and MDnum is the number of
missed deletions for the object OID. As an example, an
MDM entry (O12, (34, 64), 1) is interpreted as that the ob-
ject with identifier O12 has missed the deletion of old entry
for 1 time (i.e., there is 1 entry of O12 in DG that is obsolete
but that has not been deleted yet), and the newest location of
O12 is (34, 64). For one MDM entry, if MDnum changes
to 0, which means all obsolete entries for the object OID
have been deleted, the MDM entry can be safely removed
from the MDM to reduce the memory usage.

Example 1. We use the example given in Figure 1 to
illustrate our ideas. Figure 1.1(a) gives a DG structure with
the four DG cells A, B, C and D. Nine objects o1 to o9 are
stored in DG. Figure 1.1(b) gives the MG structure that is
partitioned into six cells, 1 to 6. MG cells 1 and 2 have the
same repository cell (DG cell A), while MG cells 3 and 6
have the same repository cell (DG cell B). Assume at this
moment, there is no obsolete entry that exists on disk. Thus
MDM, given in Figure 1.1(c), is empty.

3.2 Processing Updates

Update processing in LUGrid is performed in three
stages.

Stage I: Buffering updates. Initially, continuously
received updates are buffered in MG.

Stage II: Flushing updates into disk. Flushing buffered
updates into disk cells is triggered when an in-memory
grid cell CM is full. In this case, CM is flushed into
its corresponding repository disk grid cell.

Stage III: Splitting/Merging cells. If a DG cell is over-
full or under-utilized, cell splitting/merging takes place
in both memory grid and disk grid.

Buffering updates. Figure 2 gives the pseudo code for
buffering incoming updates in MG. For a certain MG update
entry u, we denote the MG cell containing u as MGC(u).
Further, we say that u is consumed if u is flushed to disk.

Since it may happen that one update arrives to the server
while the previous update for the same object has not been
consumed, the buffering algorithm starts by searching MG
for the entry with the same object identifier (OID). The
search is performed through an OID hash link that links all
updates in MG based on their OIDs. If an entry with the
same OID is found, the found entry is deleted from MG.

After the deletion of the unconsumed update for the same
object, the new update is inserted into the MG cell whose
region covers the new location. The update is also linked in
the OID hash link to facilitate future search. If the MG cell
where the object update is inserted becomes full after the
insertion, the flushing stage is invoked to flush all buffered
updates in this MG cell to its repository cell.



Procedure BufferingUpdate(UpdateTuple u(oid, loc))

1. Search u.oid in MG by exploring the OID hash link in MG.
If an MG entry m where m.OID equals to u.oid is found

(a) Delete m from MG;

(b) MGC(m).Nu−−; usedSlots−−;

2. Insert u into the MG cell whose MRegion covers u.loc;

3. MGC(u).Nu++; usedSlots++;

4. Link u in MG’s OID hash link based on u.oid;

5. If (MGC(u).Nu >= MaxUpdPerMGCell)

(a) Call FlushingUpdates(MGC(u));

Figure 2. Buffering Object Updates

Procedure FlushingUpdates(MGCell mc)

1. dc = the repository cell of mc; Read dc into memory;

2. For each entry d in dc, if an MDM entry e where e.OID
equals to d.OID is found

(a) If (d.OLoc 6= e.Oloc)

i. Delete d from dc; dc.NE−−; e.MDnum−−;

A. If (e.MDnum == 0) delete e from MDM;

3. For each entry m in mc

(a) If a DG entry dold in dc where dold.OID equals to
m.OID is found

i. dold.Oloc = m.Oloc;

ii. If an MDM entry e where e.OID equals to
m.OID is found

A. e.Oloc = m.Oloc;

iii. Delete m from mc; mc.Nu−−; usedSlots−−;

(b) Else //if such dold does not exist

i. If an MDM entry e where e.OID equals to
m.OID is found

A. e.Oloc = m.Oloc; e.MDnum++;

ii. Else //if such e does not exist

A. Create e as a new MDM entry; e.OID =
m.OID; e.OLoc = m.OLoc; e.MDnum
= 1; Insert e into MDM;

4. If (mc.Nu + dc.NE <= MaxEntPerDGCell)

(a) Move all remaining MG entries in mc to dc; dc.NE

= dc.NE + mc.Nu; usedSlots = usedSlots - mc.Nu;
mc.Nu = 0; mc.NE = dc.NE;

(b) For all buffer cells of dc, set their values of NE to
dc.NE ;

(c) Call MergingCell(mc, dc);

5. Else call SplittingCell(mc, dc);

Figure 3. Flushing Buffered Updates

Flushing updates. Figure 3 gives the pseudo code for
flushing updates into DG cells. First, the repository cell
is read into memory. For entries in the repository cell, it
is possible that some entries have become obsolete due to
newer updates in other disk cells. To identify such ob-
jects, for each DG entry, the miss-deletion memo (MDM)
is searched. If the MDM entry with the same OID exists
and is associated with a location different to that of the DG
entry, the DG entry is obsolete. Such obsolete disk entry is
removed from the repository cell. Then, the miss deletion
number of the MDM entry is decremented. In the case the
miss deletion number returns to zero, the MDM entry itself
is removed from MDM.

After deleting obsolete entries, each update in the MG
cell searches its original entry in the repository cell. If the
original entry is found, the entry is updated with new loca-
tion information. In this case, if an MDM entry exists for
the object, the location field of the MDM entry is updated.
At the end, the update is deleted from the MG cell. Other-
wise, if no original entry for the updating object is found,
the original entry must reside in another DG cell and is ob-
solete due to the new update. In this case, if one MDM
entry exists for the object, the MDM entry is updated with
new location, and the miss deletion number is incremented
by one. If no such MDM entry exists, a new MDM entry is
created. The new entry is filled with the latest location and
the miss deletion number is set to one.

After the above processing, the MG cell contains only
object updates that are “new” to the repository cell. If all
such updates can be added to the repository cell without
causing overflowing, they are inserted into the repository
cell and are removed from the MG cell. Related coun-
ters and pointers are adjusted accordingly. All buffer cells
that point to this repository cell need update their counters
for the number of disk entries. Then, a merging function
is called to seek the opportunity of merging this DG cell
with neighbored cells. Otherwise, if putting all remaining
updates into the repository cell causes overflowing of the
repository cell, the repository cell is split to two disk cells.

Splitting/merging cells. LUGrid inherits the splitting
and merging mechanism of the grid file [11]. Special atten-
tions are carried out to cope with our unique lazy-insertion
and lazy-deletion techniques. Due to space limitation, we
do not present the splitting/merging details in this paper.
Please refer to our technical report [23] for detailed discus-
sion.

Example 2. In the example given in Figure 1, we as-
sume that an MG cell needs a flushing if two updates are
buffered. In Figure 1.1(b), MG cell 2 receives updates from
o1 and o4. Since cell 2 is full, it flushes the two updates
to DG cell A. First, entries in DG cell A are checked with
MDM. Since MDM is empty, both o1 and o8 are identified
as current entries. Then, the update of o1 finds the original



o1 entry in DG cell A, and further updates the location of
the entry. For the update of o4, however, does not find the
original entry in DG cell A. So it creates an entry in MDM
to indicate that this update invalidates a former entry of o4.
The resulting DG and MDM are shown in Figure 1.2(a) and
Figure 1.2(c), respectively. Note that the former entry of o4

in DG cell D (plotted with cross mark) still remains on disk.

After some time, cell 5 receives two updates from o6 and
o7 and starts flushing to DG cell D (Figure 1.2(b)). The
entry for o4 is identified as obsolete because the location of
the o4 entry does not equal to the location in MDM. There-
fore, the obsolete entry is deleted out of cell D. Note that
the MDM entry for o4 is removed because the miss dele-
tion number returns to zero. The update of o7 replaces the
original entry of o7 with the new location. On the other
hand, the update of o6 does not find an original entry in cell
D. Therefore, it creates an entry in MDM for o6. The final
states of DG, MG, and MDM are plotted, respectively, in
Figure 1.3(a), Figure 1.3(b) and Figure 1.3(c).

3.3 Obsolete Entry Cleaning

In this section, we discuss issues related to the number
of obsolete disk entries. Throughout this section, let Nold

be the total number of old entries on disk, and let Ment be
the total number of MDM entries. Note that Nold is always
larger than or equal to Ment, since one MDM entry repre-
sents one or more missed deletions for a certain object.

Recall that when flushing a memory cell, obsolete en-
tries in the repository cell are first deleted. The removal of
obsolete entries reduces both Nold and Ment, so that both
Nold and Ment are kept small. In our experiments (see Sec-
tion 5), both numbers are less than 1% of the total number
of objects.

To guarantee that MDM is of small size, LUGrid adopts
a cleaning technique termed cleaner to bound the number
of obsolete entries and the size of MDM. The basic task of
the cleaner is to pick a DG cell and clean all old entries
whenever LUGrid is updated a fixed number of times. Such
a fixed number is termed the clean interval. The clean pro-
cedure follows the same step as we discussed in Section 3.2
(see Step 2 in Figure 3). With the cleaner, the maximum
value of Nold and Ment is limited by (i ∗ P ), where i is
clean interval, and P is the total number of DG cells.

To maximize the number of old entries deleted from a
DG cell, the cleaner always picks the DG cell that has expe-
rienced the longest time since its latest flushing. Such DG
cell has the potential to contain more old entries than the
other cells. To identify the oldest DG cell quickly, LUGrid
maintains page identifiers of all DG cells in a Least Recently
Flushed list.

3.4 Query Processing in LUGrid

In this section, we discuss query processing in LUGrid.
Query processing in LUGrid exploits both memory and disk
grids. The steps for answering a query are generalized as
follows: (1) Identify a set of MG and DG cells that cover all
objects needed in answering the query; (2) Obtain an initial
answer set by processing only the entries in the MG and DG
cells from the last step; (3) Obtain the final answer set by
purging obsolete entries from the initial answer set.

As the first two steps are straightforward and depend on
the query type, here we focus on the last step, namely, to
identify obsolete entries in the initial query answer. First,
any MG entry is a current entry because, as discussed in
Section 3, the newer update replaces the older one in MG.
For a DG entry, if it satisfies any of the following two con-
ditions, the entry is obsolete. (1) An MG entry for the same
object is found in MG; (2) An MDM entry for the same ob-
ject is found, and the location of the MDM entry does not
equal to the location of the DG entry. The existence of such
MDM entry indicates that a newer update has been flushed
to some other DG cell. If a DG entry has not been identified
as obsolete, the entry is a current entry and is put in the final
answer set.

4 Cost Analysis

In this section, we analyze the update cost for the pro-
posed techniques. Our analysis studies three cases: ap-
plying lazy-insertion only, applying lazy-deletion only, and
applying lazy-insertion plus lazy-deletion. The analysis is
based on a uniform distribution of moving objects in the
two-dimensional space. As a dominating metric, the num-
ber of I/O operations is investigated for the updating cost.

Let U represent the maximum number of updates that
can be buffered in MG, and let Nm represent the total num-
ber of MG cells. We define δ as the percentage of updates
that a certain object moves from a certain DG cell to another
one.

Lazy-insertion only. Applying only lazy-insertion
means that incoming updates are buffered and grouped in
memory cells before they are flushed to disk in batches. At
every time of flushing, old disk entries of the flushed up-
dates must be cleaned. This requires an auxiliary index on
object IDs for quickly locating old object entries.

Assume that nu is the number of buffered updates in a
flushing MG cell. For lazy-insertion only, the total I/O cost
for flushing an MG cell is given by Equation 1.

IOLI = 2 + 4(nu ∗ δ) (1)

In Equation 1, 2 is introduced by reading and writing the
repository cell only once for all nu updates. (nu ∗ δ) repre-
sents the expected number of updates that have old entries



in other DG cells. For each such update, four additional I/O
operations are required to delete the old entry. The opera-
tions include searching and updating

both the auxiliary index and the old DG cell. The ex-
pected number of updates in an MG cell is U/Nm. So, ac-
cording to Equation 1, the average updating cost for one
object is:

IOLI avg = 2Nm

U
+ 4δ (2)

Lazy-deletion only. Applying only lazy-deletion means
that an object update goes to disk immediately whenever it
arrives. If the old entry for the object resides in a different
disk page, the old entry stays on disk until it is cleaned later.
MDM hash table is used to identify old entries of objects.
No secondary index is required for locating objects.

For the case of lazy-deletion only, the overall update I/O
cost consists of the following: (1) Reading the repository
DG cell to memory, (2) Writing the DG cell back to disk,
and (3) If the cleaner is invoked, reading and writing the
cleaned DG cell. Hence, if let c be the clean interval, the
expected I/O cost per update is given by:

IOLD avg = 2 + 2

c
(3)

Lazy-insertion plus lazy-deletion. Combining lazy-
insertion with lazy-deletion minimizes the updating cost.
For a set of nu updates in an MG cell, only two I/O oper-
ations and cost of periodical cleaning are required. There-
fore, the average updating cost is simply given by:

IOLI&LD avg = 2

nu

+ 2

c
= 2Nm

U
+ 2

c (4)

5 Performance Evaluation

PARAMETERS VALUES USED
Object distribution Uniform, Normal distribution
Object velocity 10, 50, 100, 500 miles/hour
Update ratio of objects 0%, 30%, 5%/cycle
MG buffer size 0%, 1%, 2% of object number

Table 1. Experiment Parameters and Values

In this section, we evaluate the performance of LUGrid
with various settings. LUGrid is compared with the Fre-
quently Updated R-tree (FUR-tree, for short) [9] in both
update and query processing. To make our comparison fair,
we make the following two changes. (1) The first two lev-
els of the FUR-tree are assumed to reside in memory; (2)
Whenever LUGrid consumes some amount of memory, we
give FUR-tree a same size buffer maintained in a Least Re-
cently Used (LRU) manner. FUR-tree makes use of the

Figure 4. Size of the Miss-Deletion Memo

buffer when accessing the R-tree nodes and the auxiliary
index.

In all experiments, we collect the results of LUGrid when
the system becomes stable. In this case, cell splitting or
merging rarely happens. The number of updates that MG
can buffer is an experiment parameter. In all experiments,
the clean interval of the cleaner is set to 50.

All the experiments are conducted on an Intel Pentium
IV machines with CPU 3.2GHz and 512MB RAM. In all
experiments, 100,000 objects are moving inside a space
that represents 1000 * 1000 square miles. We generate the
original objects and consequent updates in a way similar to
GSTD [21]. Objects continuously move with given veloc-
ities. We count the number of object updates in cycles. In
each cycle, a certain ratio of objects report their new lo-
cations by issuing updating requests. Experiments are car-
ried out under both uniform distribution and normal distri-
butions. We use Normal(µ, σ) to denote a normal distri-
bution with mean µ (miles) and variance σ (miles). Three
types of distributions are used in our experiments, namely,
Uniform, Normal(500, 200) and Normal(500, 100). In our
experiments, the page size is fixed as 4096 bytes. Various
parameters for our experiments are outlined in table 1, the
default values are given in bold.

5.1 Size of MDM

We first study the size of the Miss-Deletion Memo. Fig-
ure 4 gives the size of the MDM with various object veloci-
ties (i.e., 10, 50, 100, and 500 miles/hour). For each studied
velocity, we increase the ratio of objects that report updates
per cycle from 5% to 30%. The size of MDM is expressed
as the ratio of the number of MDM entries over the total
number of objects. When the object velocity increases, the
size of MDM becomes larger. The main reason is that when
objects move with a higher velocity, more objects will move
out of their original cells. Consequently, more MDM entries
are needed to track information of these cell-changing ob-
jects. However in all cases, the number of MDM entries



(a) Upd. cost vs. # of upd. (b) Upd. cost vs. obj. dist. (c) Upd. cost vs. obj. vel.

Figure 5. Update Performance

is less than 0.7% of the total number of objects. On the
other hand, the update ratio of objects does not affect the
size of MDM. The reason is that the size of MDM is deter-
mined only by the number of cell-changing objects in one
MG flushing. The number is not affected by the update ra-
tio. The experiment demonstrates that the size of MDM is
small in practice and hence can fit in main memory.

5.2 Update Performance

In this section, we study the update performance of LU-
Grid and FUR-tree. For LUGrid, we use different sizes of
MG buffers. Specifically, the MG buffer is set as 0%, 1%
and 2% of the indexed objects. A 0% size buffer represents
a lazy-deletion only scenario, as discussed in Section 4. Fig-
ure 5(a) plots the number of I/Os when the ratio of objects
that report updates increases from 0 to 10% per cycle. For
different update ratios, LUGrid outperforms the FUR-tree
consistently. The update costs for LUGrid range from 20%
to 50% of that for the FUR-tree. The efficiency in updates
in LUGrid with 0% size buffer comes solely from the lazy-
deletion technique. When the MG buffer becomes larger,
the update cost becomes lower because more updates are
flushed to disk at one time by lazy-insertion.

Figure 5(b) compares the update costs under various ob-
ject distributions. LUGrid exhibits almost stable update per-
formance independent of object distributions. This is be-
cause the update cost of LUGrid is determined primarily by
the flushing frequency. Object distribution does not dramat-
ically affect the flushing frequency. However, the FUR-tree
incurs larger update cost when object distribution is skewed.
The main reason is that when more objects are clustered to-
gether, the R-tree contains more nodes with small Minimal
Bounding Rectangles (MBRs). Therefore, an object is more
likely to move out of its MBR quickly and invalidates the

Figure 6. Query cost vs. obj. distribution

bottom-up updating technique.
Figure 5(c) demonstrates the effect of object velocity,

where objects are moving with various velocities (10, 50,
100 and 500 miles/hour). As shown in Figure 5(c), when
object velocity increases, the FUR-tree incurs a growing I/O
overhead due to updates. This is because with a larger ve-
locity, an object moves out of the MBR of its original node
more frequently, and voids the endeavor of the bottom-up
update. In contrast, for LUGrid, the I/O from updates is not
affected by object velocities. This is because LUGrid does
not delete old entries when updating, so objects moving out
of their original cells do not affect the performance.

5.3 Query Performance

In this section, we study the query performance of LU-
Grid. We focus on the processing of range queries as it is
one of the most important types of spatial queries. In our
experiments, queries are specified as squares and are uni-
formly distributed in space. Figure 6 compares the querying
costs with respect to object distributions. In this experiment,



Figure 7. Query cost vs. query size

each query covers 1% of the whole space. The experiment
shows that under all object distributions, LUGrid is simi-
lar to FUR-tree. Both FUR-tree and LUGrid are slightly
affected by object distribution.

Figure 7 gives the effect when different sizes of queries
are issued. We increase the query size from 2% to 10% in
terms of the percentage of the whole space. Both FUR-tree
and LUGrid have almost linear increase on querying costs.
Again, the performance of LUGrid is similar to the perfor-
mance of FUR-tree in all cases. These experiments show
that LUGrid achieves similar range search performance as
the FUR-tree.

6 Conclusion

In this paper, we proposed LUGrid; an adaptive Lazy-
Update Grid-based indexing structure. LUGrid efficiently
handles object updates by its unique lazy-update features.
Lazy-deletion converts the update cost from traditional “in-
sertion cost plus deletion cost” to “insertion cost only”.
The lazy-deletion functionality is provided by maintaining a
memo structure to identify obsolete entries. Lazy-insertion
groups updates and flushes multiple updates at one time,
thus amortize the cost for single update. We believe that the
proposed lazy-update schemes can be applied to other index
families.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing Moving
Points. In PODS, pages 175–186, May 2000.

[2] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing Large
Trajectory Data Sets with SETI. In Proc. of the Conf. on
Innovative Data Systems Research, CIDR, 2003.

[3] H. D. Chon, D. Agrawal, and A. E. Abbadi. Storage and
Retrieval of Moving Objects. In Mobile Data Management,
pages 173–184, Jan. 2001.

[4] B. Gedik and L. Liu. MobiEyes: Distributed Processing of
Continuously Moving Queries on Moving Objects in a Mo-
bile System. In EDBT, 2004.

[5] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD, 1984.

[6] C. S. Jensen, D. Lin, and B. C. Ooi. Query and Update Effi-
cient B+-Tree Based Indexing of Moving Objects. In VLDB,
2004.

[7] G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing
Mobile Objects. In PODS, 1999.

[8] D. Kwon, S. Lee, and S. Lee. Indexing the Current Positions
of Moving Objects Using the Lazy Update R-tree. In Mobile
Data Management, MDM, 2002.

[9] M.-L. Lee, W. Hsu, C. S. Jensen, and K. L. Teo. Supporting
Frequent Updates in R-Trees: A Bottom-Up Approach. In
VLDB, 2003.

[10] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable
Incremental Processing of Continuous Queries in Spatio-
temporal Databases. In SIGMOD, 2004.

[11] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid
File: An Adaptable, Symmetric Multikey File Structure.
TODS, 9(1), 1984.

[12] J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: An Ef-
ficient Index for Predicted Trajectories. In SIGMOD, pages
637–646, 2004.

[13] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying Mobile
Objects in Spatio-Temporal Databases. In SSTD, pages 59–
78, Redondo Beach, CA, July 2001.

[14] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and
S. E. Hambrusch. Query Indexing and Velocity Constrained
Indexing: Scalable Techniques for Continuous Queries
on Moving Objects. IEEE Transactions on Computers,
51(10):1124–1140, 2002.

[15] S. Saltenis and C. S. Jensen. Indexing of Moving Objects for
Location-Based Services. In ICDE, 2002.

[16] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez.
Indexing the Positions of Continuously Moving Objects. In
SIGMOD, 2000.

[17] Z. Song and N. Roussopoulos. Hashing Moving Objects. In
Mobile Data Management, 2001.

[18] Z. Song and N. Roussopoulos. SEB-tree: An Approach to
Index Continuously Moving Objects. In Mobile Data Man-
agement, MDM, pages 340–344, Jan. 2003.

[19] Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An
Optimized Spatio-temporal Access Method for Predictive
Queries. In VLDB, 2003.

[20] J. Tayeb, Ö. Ulusoy, and O. Wolfson. A Quadtree-Based Dy-
namic Attribute Indexing Method. The Computer Journal,
41(3), 1998.

[21] Y. Theodoridis, J. R. Silva, and M. A. Nascimento. On the
Generation of Spatiotemporal Datasets. In SSD, 1999.

[22] X. Xiong and W. G. Aref. R-trees with Updated Memos. In
ICDE, 2006.

[23] X. Xiong, M. F. Mokbel, and W. G. Aref. LUGrid: Update-
tolerant Grid-based Indexing for Moving Objects. Purdue
University Department of Computer Sciences Technical Re-
port, No. CSD TR 05-022, 2005.

[24] X. Xiong, M. F. Mokbel, and W. G. Aref. SEA-CNN: Scal-
able Processing of Continuous K-Nearest Neighbor Queries
in Spatio-temporal Databases. In ICDE, 2005.


