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Abstract

The tremendous increase in the use of cellular phones, GPS-like devices, and RFIDs re-
sults in highly dynamic environments where objects as well as queries are continuously mov-
ing. In this paper, we present a continuous query processor designed specifically for highly
dynamic environments (e.g., location-aware environments). We implemented the proposed
continuous query processor inside the PLACE server (Pervasive Location-Aware Computing
Environments); a scalable location-aware database server developed at Purdue University.
The PLACE server extends data streaming management systems to support location-aware
environments. These environments are characterized by the wide variety of continuous spatio-
temporal queries and the unbounded spatio-temporal streams. The proposed continuous query
processor includes: (1) New incremental spatio-temporal operators to support a wide variety of
continuous spatio-temporal queries, (2) Extended semantics of sliding window queries to deal
with spatial sliding windows as well as temporal sliding windows, and (3) A shared-execution
framework for scalable execution of a set of concurrent continuous spatio-temporal queries.
Experimental evaluation shows promising performance of the continuous query processor of

the PLACE server.

*This work was supported in part by the National Science Foundation under Grants I11S-0093116, 1IS-0209120,
and 0010044-CCR.



1 Introduction

The rapid increase in spatio-temporal applications calls for new query processing tech-
niques to deal with both the spatial and temporal domains. Examples of these appli-
cations include location-aware services [36], traffic monitoring [42], and enhanced 911 ser-
vice (http://www.fcc.gov/911/enhanced/). Such applications continuously receive data from mo-
bile objects (e.g., moving vehicles in road networks). The streaming nature of incoming spatio-
temporal data poses new challenges that require combining and/or modifying the recent advances

in both spatio-temporal database systems and data stream management systems.

Recent research efforts for continuous spatio-temporal query processing, e.g., see [21, 28, 31,
32, 33, 38, 44, 48, 56, 57| rely mainly on the ability of storing and indexing spatio-temporal data.
Given the dynamic environment of spatio-temporal applications, the main idea is to modify tradi-
tional data indices to support frequent updates. Examples of these indices include modified grid
structures, e.g., [18, 38], modified B-trees, e.g., [29], modified R-trees, e.g., [31, 33], and time-
parameterized R-trees, e.g., [47, 48, 57]. Although these indexing schemes give better support for
updates than their counterpart traditional indices, issues of high arrival rates of both objects and
queries, infinite source of data, and spatio-temporal streams are not addressed by these approaches.
With the notion of spatio-temporal streams, only in-memory algorithms for continuous queries need

to be realized.

Numerous research efforts are devoted to stream query processing (e.g., see 2, 1, 9, 16, 26, 41,
66]). The main focus is to provide the ability to process incoming data streams online against a
set of outstanding and continuous queries. However, the spatial and temporal properties of both
data and queries are not addressed. A spatio-temporal data stream distinguishes itself from a
traditional data stream in the following: (1) Queries as well as data have the ability to change
their locations continuously. Thus, the arrival of a new data item (e.g., the location) of an object,
say p, at some time ty (5 > ¢1) may result in expiring the previous location information of p at
time ¢, (predicate-based sliding window). This is in contrast to traditional data streams where data
is expired only as it becomes old in the system (time-based expiration in sliding window queries).
(2) An object may be added to or removed from the answer set of a spatio-temporal query (positive
and negative answers). For example, consider a set of moving vehicles that move in and out of

a certain range query. Thus the query answer may be represented progressively by a sequence of



positive and negative updates. This is in contrast to traditional queries where only an addition
to the query answer is permitted. (3) Due to the mobility of both objects and queries, any delay
in processing spatio-temporal queries may result in an obsolete answer. Consider a query that
asks about moving objects that lie in a certain region. If the query answer is delayed, the answer
may be outdated where objects are continuously changing their locations. These distinguishing
characteristics of spatio-temporal streams require revisiting traditional data stream management

systems to have special handling of spatio-temporal streams.

In this paper, we present the PLACE server (Pervasive Location-Aware Computing
Environments) [4, 39]; a scalable location-aware database server currently being developed at Pur-
due University. The PLACE server extends the Nile [26] data stream management system to sup-
port continuous query processing of spatio-temporal streams. The PLACE server aims to bridge
the areas of spatio-temporal databases and data stream management systems. The main idea is to
furnish traditional data stream management systems with the basic functionalities that support pro-
cessing incoming spatio-temporal streams against a set of outstanding continuous spatio-temporal
queries. In particular, the continuous query processor of the PLACE server [40] has the following

distinguishing characteristics:

1. Predicate-based window queries: The PLACE continuous query processor extends the
processing of continuous sliding window queries beyond time-based and tuple-count windows
to accommodate for the so called predicate-based window queries. In predicate-based window
queries, objects are qualified to be part of the window once they satisfy a certain query
predicate. Similarly, objects are expired only when they no longer satisfy a certain predicate.

Predicate-based windows are a generalization of time-based and tuple-count sliding windows.

2. Incremental evaluation. The PLACE continuous query processor employs an incremental
evaluation paradigm by continuously updating the query answer. We distinguish between
two types of updates; namely positive and negative updates [38]. A positive/negative update

indicates that a certain object needs to be added to/removed from the query answer.

3. Spatio-temporal operators. The PLACE continuous query processor goes beyond the
idea of implementing high level algorithms for continuous spatio-temporal queries. Instead,

the PLACE server encapsulates the spatio-temporal query algorithms into a set of primitive



spatio-temporal pipelined operators (e.g., INSIDE and kNN operators) that can be part of a
larger query plan. Having a set of primitive spatio-temporal operators results in supporting
a wide variety of continuous spatio-temporal queries and in having flexible query optimizers

where multiple candidate query plans can be produced.

4. Scalability. We use a shared-ezecution paradigm as a means of achieving scalability in terms

of the number of outstanding continuous spatio-temporal queries.

The rest of the paper is organized as follows. Section 2 highlights the challenges in realizing the
continuous query processor of the PLACE server along with the related work of each challenge. In
Section 3, we present an overview of the data model and SQL language used by the PLACE server.
Section 4 presents predicate-based window queries. The incremental evaluation of the PLACE server
is discussed in Section 5. The scalability in terms of the number of outstanding spatio-temporal
queries is addressed in Section 6. The GUI interfaces for the PLACE server and PLACE clients
are presented in Section 7. Section 8 presents experimental results that evaluate the performance

of the PLACE server. Finally, Section 9 concludes the paper.

2 Challenges and Related Work

In this section, we highlight some challenges in realizing the continuous query processor of the
PLACE location-aware server. With each challenge, we summarize the related work in the areas of
spatio-temporal databases and data streams. Then, we highlight briefly how the PLACE continuous

query processor deals with these challenges.

2.1 Challenge I: Massive Size of Incoming Spatio-temporal Data

Streams

Spatio-temporal databases. Existing continuous query processors for spatio-temporal databases
assume explicitly that all incoming data can be stored in secondary storage. A wide variety of spatio-
temporal access methods (e.g., see [37] for a survey) has been introduced to deal with massive sizes of
spatio-temporal data. However, with the streaming input, only in-memory algorithms are feasible.

There is limited work that exploits the spatial and/or temporal properties of data streams. The
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spatial properties of data streams are addressed recently in [15, 27] to solve geometric problems,
e.g., computing the convex hull [27]. In [53], spatio-temporal histograms are used as synopses for
approximate query processing on spatio-temporal data streams. Up to the authors’ knowledge,

there is no existing work that addresses continuous query processing for spatio-temporal streams.

Data stream management systems. A common challenge for all data stream management
systems is the infinite size of the incoming data streams. With the inability to store all the
incoming data into memory, data stream management systems tend to store only data that is of
interest to any outstanding continuous query. Once a stored data becomes out of interest of all
outstanding queries, it is expired from the memory leaving its space to a more important incoming
tuple. One approach of expiring in-memory data is to use punctuation [61]. A punctuated tuple
indicates the expiration of a certain set of stored tuples. To decide whether a certain incoming tuple
is important or not, every continuous query is associated with a historical window that limits the
important tuples to the most recent ones. A historical window could be time-based (e.g., the last
1 hour) or tuple-based (e.g., the last 100 tuples). Such queries are termed sliding-window queries
(e.g., see [2, 5,9, 19, 24, 30, 34, 52]). In sliding-window queries, tuples are dropped (expired) from
the system in a first-in-first-expire policy. In case of large window sizes, load shedding techniques,

e.g., [9] are utilized to drop some tuples from memory.

The PLACE approach. Trying to deploy the idea of sliding-window queries from traditional data
streams would result in limiting the functionality of the PLACE server. A wide variety of contin-
uous spatio-temporal queries are considered as NOW queries [14] (i.e., no historical information is
needed). Thus, in the PLACE server, we generalize the time-based and tuple-based sliding window
queries to predicate-based window queries. A tuple is considered important if it satisfies at least
one query predicate from all outstanding continuous queries. Once a tuple no longer satisfies any
query predicate, it is expired from the server. This implies that tuple expiration is predicate-based
rather than first-in-first-expire as in the commonly used time-based or tuple-count data streams.
Expiration in predicate-based window queries is different from punctuated streams [61] in that tuples
in predicate-based windows are expired one at a time, rather than expiring a set of tuples using a

certain punctuated tuple.



2.2 Challenge II: Continuous Evaluation of Continuous Queries

Spatio-temporal databases. Most of the existing techniques in spatio-temporal databases ab-
stract the continuous query into a series of snapshot queries executed at regular interval times.
Mainly, three different approaches are investigated: (1) The validity of the results [67, 68]. With
each query answer, the server returns a valid time [68] or a valid region [67] of the answer. Once the
valid time is expired or the client goes out of the valid region, the client resubmits the continuous
query for reevaluation. (2) Caching the results. The main idea is to cache the previous result either
in the client side [51] or in the server side [32]. Previously cached results are used to prune the
search for the new results of k-nearest-neighbor queries [51] and range queries [32]. (3) Precom-
puting the result [32, 56]. If the trajectory of query movement is known apriori, then by using
computational geometry for stationary objects [56] or velocity information for moving objects [32],
we can identify which objects will be nearest-neighbors [56] to or within a range [32] from the query
trajectory. If the trajectory information changes, then the query needs to be reevaluated. Up to
the authors’ knowledge, our earlier work, SINA [38], is the only work that addresses incremental

evaluation of continuous queries in spatio-temporal databases.

Data stream management systems. Due to the newly introduced sliding-window queries,
several algorithms are proposed for each query operator, e.g., window join [19, 23, 24, 30, 52] and
window aggregates [3, 17]. All window algorithms for traditional data streaming provide progressive

updates of the query answer.

The PLACE approach. A distinguished characteristic of spatio-temporal streams is that we
need to have the ability to remove some parts of the query answer (e.g., an object moves out of
the range query). This feature is not available in traditional data streams where the query answer
is append-only. In the PLACE server, we apply a progressive evaluation paradigm by extending
the ideas of SINA [38] to be applicable to spatio-temporal streams rather than being tied to disk

storage.

2.3 Challenge III: Wide Variety of Continuous Query Types

Spatio-temporal databases. A major challenge for spatio-temporal query processors is the

wide variety of spatio-temporal query types (e.g., see [36] for a thorough classification of spatio-



temporal queries). Thus, it becomes a difficult task to provide a database system with the ability
to support all kinds of spatio-temporal queries. The DOMINO database system [62] is the first
attempt to build a database of moving objects on top of existing DBMSs [63]. One main focus
of DOMINO is to support new kinds of spatio-temporal attributes and query language for moving
objects. However, the query processing issues are not addressed. Other than DOMINO, most of the
existing query processing techniques focus on solving special cases of continuous spatio-temporal
queries, e.g., [b1, 56, 67, 68] focus on moving queries on stationary objects while [8, 18, 21, 44]
focus on stationary range queries on moving objects. Other work focuses on aggregate queries (e.g.,

see [21, 53, 55]), k-NN queries (e.g., see [28, 51]) and reverse nearest-neighbor queries [6].

Data stream management systems. Existing data stream management systems (e.g., Bo-
realis [1], Telegraph [9], Nile [26], and STREAM [41]) provide new algorithms for (almost) all
traditional query operators. However, there is no special handling and/or optimization for spatio-

temporal queries.

The PLACE approach. In the PLACE server, we go beyond the idea of having tailored high-
level algorithms for each specific spatio-temporal query. Instead, we furnish existing data stream
management systems by a set of primitive spatio-temporal pipeline operators (e.g., the INSIDE
and kNN operators). Spatio-temporal operators are combined with traditional streaming operators
to provide the ability of having complex query plans that represent a wide variety of continuous
spatio-temporal queries. In addition, the PLACE server provides a uniform framework that is
applicable to all mutability combinations of objects and queries, e.g., moving queries on stationary

objects, stationary queries on moving objects, and mowving queries on moving objects.

2.4 Challenge IV: Large Number of Concurrent Continuous Queries

Spatio-temporal databases. Most of the existing spatio-temporal algorithms focus on evaluating
only one spatio-temporal query (e.g., [6, 28, 32, 51, 56, 58, 67, 68]). Optimization techniques for
evaluating a set of continuous spatio-temporal queries are addressed recently for centralized [38, 44]
and distributed environments [8, 18]. In centralized environments, the Q-index [44] is presented as
an R-tree-like index structure to index the stationary queries instead of objects. SINA [38] uses a
shared grid structure to index both objects and queries. Then, evaluating a set of continuous queries

is abstracted as a spatial join (using the grid index) between objects and queries. In distributed



environments, the main idea of [8, 18] is to ship part of the query processing down to the moving

objects, while the server acts mainly as a mediator among moving objects.

Data stream management systems. There is a lot of research in sharing the execution of
concurrent continuous queries (e.g., NiagaraCQ [12, 13] and PSoup [10, 11]). The main idea is to
have a shared query plan for all continuous queries. Other forms of sharing at the operator level

are investigated, for window join [20, 24] and window aggregate operators [3].

The PLACE approach. In the PLACE server, we employ a shared-execution paradigm similar
to that in NiagaraCQ [13] and SINA [39]. The execution of a set of concurrent continuous spatio-
temporal queries is performed as a spatial join between two incoming streams. The first stream

represents the streaming objects while the second stream represents the streaming queries!.

3 The PLACE Server

In this section, we present the data modelling and SQL language used by the PLACE server.

3.1 Data Model

By subscribing with the PLACE server, moving objects are required to send their location updates
periodically to the PLACE server. A location update from the client (moving object) to the server
has the format (OID, x,y), where OID is the object identifier, (x,y) is the location of the moving
object in the two-dimensional space. An update is timestamped upon its arrival at the server side.
Once an object P stops moving (e.g., P reaches its destination or P is shut down), either P sends
an explicit disappear message to the server or the server will timeout due to not receiving any
updates from P for a certain time T7;00u:- In both cases, the server recognizes that object P is no

further moving.

Due to the highly dynamic nature of location-aware environments and the infinite size of incom-
ing spatio-temporal streams, we cannot store all incoming data. Thus, the PLACE server employs

a three-level storage hierarchy. First, a subset of the incoming data streams is stored in in-memory

IFor simplicity, we present the spatial join in the context of a uniform grid structure. However, the uniform
grid can be substituted by more sophisticated structures e.g., the FUR-tree [33] or quad-tree-like structures [49].
A detailed experimental study between the usage of grid structures and the usage of R-tree-like structures is given
in [38]



buffers. In-memory buffers are associated with the outstanding continuous queries at the server.
Each query determines which tuples are needed to be in its buffer and when these tuples are expired,
i.e., deleted from the buffer. Second, we keep an in-disk storage that keeps track with only one
reading of each moving object and query. Since, we cannot update the disk storage every time we
receive an update from moving objects, we sample the input data by choosing every kth reading to
flush to disk. Moreover, we cache the readings of moving objects/queries and flush them once to the
secondary storage every T time units. Data on the secondary storage are indexed using a simple
grid structure [38]. Third, every T chive time units, we take a snapshot of the in-disk database
and flush it to a repository server. The repository server acts as a multi-version structure of the
moving objects that supports historical queries. Stationary objects (e.g., gas stations, hospitals,

restaurants) are preloaded to the system as relational tables that are infrequently updated.

In this paper, we focus on the memory part of the PLACE server where continuous queries over
spatio-temporal streams can be evaluated. For processing and querying spatio-temporal data in
the secondary storage, the reader is referred to [38, 64]. Archival storage is used to query historical

spatio-temporal data which is not the focus of this paper.

3.2 Extended SQL Syntax

As the PLACE server [39] extends both PREDATOR [50] and NILE [26], we extend the SQL
language provided by both systems to support spatio-temporal operators. As a proof of concept,
we focus on two main operators, namely the INSIDE and kNN operators to support continuous
range queries and k-nearest-neighbor queries, respectively. Other operators (e.g., reverse-nearest-
neighbor [6], trajectory-based operators [43, 60], and navigation [54]) are subject to future research.

A continuous query is registered at the PLACE server using the SQL:

REGISTER QUERY guery_name AS
SELECT select_clause

FROM from_clause

WHERE where_clause

INSIDE inside_clause

kNN knn_clause



WINDOW window_clause

The REGISTER QUERY statement registers the continuous query at the PLACE server with the
query_name as its identifier. The select_clause, from_clause, and where_clause are inherited from
the PREDATOR [50] database management statement. The window_clause is inherited from the
NILE [26] stream query processor to support continuous sliding window queries [24]. A continuous

query is dropped form the system using the SQL DROP QUERY query_name.

The inside_clause may represent stationary/moving rectangular or circular range queries. Mov-
ing queries are tied to focal objects. As the focal object reports movement update to the server, we
update the query region. Notice that we do not need to represent the object and query movement
with a motion vector. Instead, the motion is presented in terms of frequent location updates. One
focal object may issue several queries. A rectangular range query can have one of the following two

forms:

e Static range query (x1, y1, T2, y2), where (x1,y1) and (z2, yo) represent the top left and bottom

right corners of the rectangular range query.

e Moving rectangular range query ("M’, I D, zdist,ydist), where "M’ is a flag to indicate that
the query is moving, I D is the identifier of the query focal point, and xzdist and ydist are the
length and width of the query rectangle.

A circular range query has the same syntax except that we define only the radius instead of
(z,y). Similarly, the knn_clause for continuous k-nearest-neighbor queries may have one of the

following two forms:

e Static kNN query (k,z,y), where k is the number of the neighbors to be maintained, and
(x,y) is the center of the query point.

e Moving kNN query ("M’ k,ID), where M’ is a flag to indicate that the query is moving, k is

the number of neighbors to be maintained, and I D is the identifier of the query focal point.

4 Predicate-based Sliding Windows

With the unbounded incoming spatio-temporal streams, it becomes infeasible to store all incoming

tuples. However, some input tuples may be buffered in memory for a limited time. The choice of
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the stored tuples is mainly query dependent, i.e., we store only the tuples that are of interest to any
outstanding continuous query. In addition, there should be a mechanism to expire (delete) some of
the stored tuples and replace them with other tuples that become more relevant to the outstanding
continuous queries. The PLACE server employs a predicate-based window policy, where each query
is associated with a certain predicate. Only tuples that satisfy at least one query predicate are
stored in memory. Based on predicate-based window queries, the PLACE server supports three
types of tuple expiration, namely, temporal expiration (sliding-window queries), spatial expiration,
and predicate-based expiration. In general, expired tuples may result in a query uncertainty where a
future query or a moving query would ask for these tuples. In PLACE, we deal with different types
of query uncertainty using a caching technique. For more detailed about uncertainty and caching

in PLACE, the reader is referred to [35].

4.1 Temporal Expiration

Temporal expiration is used commonly to support continuous sliding-window queries in data
streams. A sliding window query involves a historical time window w. Any object that has a
timestamp within the current sliding window of any outstanding query @) is buffered in-memory

with the associated buffer of (). Stored tuples follow strictly a first-in-first-expire policy.

An example for a historical sliding window query submitted to the PLACE server is: Qi:

“Continuously, report the number of cars that passed by region R in the last hour”.

SELECT COUNT(ObjectID)
FROM MovingObjects
WHERE type = Clar
INSIDE R

WINDOW 1 hour

Notice that ()1 buffers all incoming tuples during the previous hour. A tuple is expired (i.e.,
deleted from the query buffer) once it goes out of the sliding time window (i.e., when the car tuple

becomes more than one hour old).
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Figure 1: Temporal and spatial expiration.

4.2 Spatial Expiration

NOW queries are more common in spatio-temporal data stream applications than historical queries.
For example, monitoring applications are concerned with the actual current answer not the accu-
mulated historical one. Such applications cannot be realized using only temporal expiration. Thus,
the PLACE server introduces a new type of expiration that depends on the spatial location of the
moving objects instead of their timestamps. An incoming tuple, say o, is stored in the in-memory
buffer associated with a query @ only if o satisfies the spatial window (e.g., region) of Q). A stored

tuple is expired only when it steps out of the spatial window.

An example of a spatial expiration query is: QQo: “Continuously, report the number of cars in a
certain area.” Notice that unlike ()1, in (02, we are concerned about the actual current number of
cars not the number of cars in the recent history. The SQL of ()5 is similar to that of (); with only

the removal of the window statement.

Figure 1 gives the difference between a temporal-expiration and a spatial-expiration in a range
query. Figure 1la gives a snapshot of the database at time Tj. The vertical bold line represents the
spatial predicate window in the one-dimensional space (along the y axis). The shaded rectangular
area represents the temporal window along the time dimension (the x axis). A query with a temporal
window is interested in objects that lie in the shaded area while a query with a spatial window is
interested in the actual objects that lie in the spatial region regardless of their timestamps. The
answer to both the temporal and spatial window queries at time Ty is (P, Ps, Ps). Figure 1b gives
a snapshot of the database at time 7. Only objects P; and P, change their locations (the new
locations are plotted as white circle while the old location of Pj is plotted as a gray circle). For

the temporal query, although P; still satisfies the query spatial predicate, P; is discarded from
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the server. Also, although P35 becomes out of the query predicate, the old value of P53 has not yet
expired. Thus, the temporal query answer at T would be (P, Py, Ps). However, the answer of the

spatial window query would be (P, Py, Ps).

4.3 Predicate-based Expiration

Predicate-based expiration generalizes both the temporal- and spatial-based expiration methods.
Punctuation-based expiration [61] can be considered as a special case of predicate-based when we
consider the predicate as the arrival of a certain artificial tuple (the punctuated tuple). An incoming
tuple is stored in-memory only when it satisfies a certain query predicate. A predicate could be
as simple as a temporal or a spatial predicate. Due to the nature of spatio-temporal streams,
other forms of predicates may arise. For example, consider the query Q3: “For each moving object,
continuously report the elapsed time between each two consecutive readings”. Such a query contains
a self-join where objects from the stream of moving objects are self-joined based on the object
identifier. The query buffer needs to maintain only the latest reading of each moving object. Once

the reading of a certain object is reported, the previous reading is expired.

Predicate-based expiration is expressed with the same SQL as the spatial expiration except that
there is no limit on the predicate complexity. For any query @), predicate evaluation is triggered in
two cases: (1) Movement of an object P that is candidate to cross any of the query ) boundary,
(2) Movement of query Q. To avoid excessive evaluations of the query predicate, the underlying
data structure (e.g., a grid structure) is used to limit the evaluation to those tuple that are candidate

to produce results.

5 Incremental Evaluation

To avoid reevaluating continuous spatio-temporal queries, we employ an incremental evaluation
paradigm in the PLACE continuous query processor. The main idea is to only report the changes
of the answer from the last evaluation time. By employing incremental evaluation, the PLACE
server achieves the following goals: (1) Fast query evaluation, since we compute only the updates
of the answer not the whole answer. (2) In a typical location-aware server, query results are sent

to the users via satellite servers [22]. Thus, limiting the amount of transmitted data to the updates
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Figure 2: Incremental evaluation of range queries

only rather than the whole query answer saves in network bandwidth. (3) When encapsulating
incremental algorithms into physical pipelined query operators, limiting the tuples that go through
the whole query pipeline to only the updates reduces the flow in the pipeline. Thus, efficient query

processing is achieved.

To realize the incremental evaluation processing in the PLACE server, we go through three
main steps. First, we define the high level concept of incremental updates, by defining two types of
updates; positive and negative updates [38]. Second, we encapsulate the processing of incremental
algorithms into pipelined query operators. Third, we modify traditional pipelined query operators

(e.g., distinct and join) to deal with the concept of negative tuples [25].

5.1 Positive/Negative Updates

Incremental evaluation is achieved through updating the previous query answer. Mainly, we dis-
tinguish between two types of updates; positive updates and negative updates. A positive/negative
update indicates that a certain object needs to be added to/removed from the query answer. A
query answer is represented in the form (QID, OList), where QI D is the query identifier and O List
is the query answer. The PLACE server continuously updates the query answer with updates of

the form (QID,+, OID) where + indicates the type of the update and OID is the object identifier.

Figure 2 gives an example of applying the concept of positive/negative updates on a set of
continuous range queries. The snapshot of the database at time Tj is given in Figure 2a with nine
moving objects, p; to pg, and five continuous range queries, )1 to (J5. The answer of the queries
at time Tj is represented as (Q1, Ps), (Qa, P1), (Qs, Ps, Pr), (Q4, Ps, Py), and (Qs, Py). At time T}
(Figure 2b), only the objects p1, ps, p3, and py and the queries Q1, @3, and Q5 change their locations.
As a result, the PLACE server reports the following updates: (Q1, —Ps), (Q3, —Fs), (Q3,+Fs), and
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5.2 Spatio-temporal Incremental Pipelined Operators

Two alternative approaches can be utilized in implementing spatio-temporal algorithms inside the
PLACE server: using SQL table functions [45] or by encapsulating the algorithms in physical
query operators. Since there is no straightforward method for pushing query predicates into table
functions [46], the performances is limited and the approach does not give enough flexibility in
optimizing the issued queries. In the PLACE server we encapsulate our algorithms inside physical
pipelined query operators that can be part of a query execution plan. By having pipelined query
operators, we achieve three goals: (1) Spatio-temporal operators can be combined with other
operators (e.g., distinct, aggregate, and join operators) to support incremental evaluation for a
wide variety of continuous spatio-temporal queries. (2) Pushing spatio-temporal operators deep in
the query execution plan reduces the number of tuples in the query pipeline. This reduction comes
from the fact that spatio-temporal operators act as filters to the above operators. (3) Flexibility in

the query optimizer where multiple candidate execution plans can be produced.

The main idea of spatio-temporal operators is to keep track of the recently reported answer of
each query @ in a query buffer termed Q.Answer. Then, for each newly incoming tuple P, we
perform two tests: Test I: Is P part of the previously reported Q.Answer? Test II: Does P qualify
to be part of the current answer? Based on the results of the two tests, we distinguish among four

cases:

e Case I: P is part of Q. Answer and P still qualify to be part of the current answer. As we

process only the updates of the previously reported result, P will not be processed.

e Case II: P is part of QQ.Answer, however, P does not qualify to be part of the answer
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anymore. In this case, we report a negative update P~ to the above query operator. The

negative update indicates that P is spatially expired from the answer.

e Case III: P is not part of Q.Answer, however, P qualifies to be part of the current answer.

In this case, we report a positive update to the above query operator.

e Case IV: P is not part of Q. Answer and P still does not qualify to be part of the current

answer. In this case, P has no effect on Q.

5.3 Negative Tuples in Traditional Operators

Having the spatio-temporal operators at the bottom or at the middle of the query evaluation
pipeline requires that all the above operators be equipped with special handling of negative tuples.
Fortunately, recent data stream management systems (e.g., Borealis [1], NILE [26], STREAM [41])
have the ability to process such negative tuples. The NILE query processor [26] handles negative
tuples in pipelined operators as follows: Selection and Join operators handle negative tuples in the
same way as the regular positive tuples. The only difference is that the output will be in the form of
a negative tuple. Aggregates update their aggregate functions by considering the received negative
tuple. The Distinct operator reports a negative tuple at the output only if the corresponding
positive tuple is in the recently reported result. For more detail about handling the negative tuples

in various query operators, the reader is referred to [25].

6 Scalability

The PLACE continuous query processor exploits a shared-ezecution paradigm [36, 38, 65] as a
means for achieving scalability in terms of the number of concurrently executing continuous spatio-
temporal queries. The main idea is to group similar queries in a query table. Then, the evaluation of
a set of continuous queries is modelled as a spatial join between moving objects and moving queries.
Similar ideas of shared-execution have been exploited in the NiagaraCQ [13] for web queries and

PSoup [10, 11] for streaming queries.

Figure 3a gives the execution plans of two simple continuous spatio-temporal queries, Q)1: “Find

the objects inside region Ry”, and Qy: “Find the objects inside region Ry”. With shared-execution,
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we have the execution plan of Figure 3b. Shared-execution for a collection of spatio-temporal range

queries can be expressed in the PLACE server by issuing the following continuous query:

SELECT Q.ID, O.ID
FROM QueryTable Q, ObjectTable O

WHERE O.location inside Q.region

7 User interface in PLACE

Figures 4 and 5 give snapshots of the server and client graphical user interface (GUI) of PLACE,
respectively. The server GUI displays all moving objects on the map?. The client GUI simulates
a client end-device used by the users. Users can choose the type of query from a list of available
query types (stationary/moving queries and stationary/moving k-nearest-neighbor queries). The
spatial region of the query can be determined using the map of the area of interest. By pressing the
submit button, the client translates the query into SQL language and transmits it to the PLACE
server. The result appears both in the list of Figure 5 and as moving objects on the map. A client

can see only, on its map, the objects that belong to its issued query.

2The map in Figures 4 and 5 is for the Greater Lafayette area, Indiana, USA.
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8 Performance Evaluation

In this section, we present experiments that show the promising performance of the continuous
query processor in the PLACE server. We use the Network-based Generator of Moving Objects [7]
to generate a set of 100K moving objects and 100K moving queries. The output of the generator
is a set of moving objects that move on the road network of a given city. We choose some points

randomly and consider them as centers of square range queries.

8.1 Size of Incremental Answer

Figure 6 compares between the size of the incremental answer returned by utilizing the incremental

approach and the size of the complete answer. The location-aware server buffers the received
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updates from moving objects and queries and evaluates the queries every 5 seconds. Figure 6a
gives the effect of the number of moving objects that reported a change of location within the last
5 seconds. The size of the complete answer is constant and is orders of magnitude of the size of
the worst-case incremental answer. In Figure 6b, the query side length varies from 0.01 to 0.02.
The size of the complete answer increases dramatically to up to seven times that of the incremental
result. The saving in the answer size affects directly the communication cost from the server to the

clients.

8.2 Pipelined Spatio-temporal Operators

In this section, we compare the implementation of spatio-temporal algorithms at the application-
level (e.g., table functions) with the encapsulation of the spatio-temporal algorithms inside query
operators. In our experiments, we direct the query optimizer to have the spatio-temporal operators
at the bottom of the pipeline. However, appropriate query optimization techniques and/or cost
models would ensure more optimized query pipelines. Query optimizations along with cost models

are in our top list of future research directions.

8.2.1 Pipeline with a Select Operator

Consider the query Q: “Continuously report all trucks that are within MyArea”. MyArea can be
either a stationary or moving range query. A high-level implementation of this query has only a se-
lection operator that selects only the “trucks”. Then, a high-level algorithm implementation would
take the selection output and produce incrementally the query result. However, an encapsulation

of the INSIDE algorithm into a physical operator allows for more flexible plans.

Figure 7 compares the high-level implementation of the above query with pipelined operators
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for both stationary and moving queries. The selectivity of the queries varies from 2% to 64%. The
selectivity of the selection operator is 5%. Our measure of comparison is the number of tuples that
go through the query evaluation pipeline. When algorithms are implemented at the application
level, the performance is not affected by the selectivity. However, when INSIDE is pushed before the
selection, it acts as a filter for the query evaluation pipeline, thus, limiting the tuples through the
pipeline to only the incremental updates. With INSIDE selectivity less than 32%, pushing INSIDE

before the selection affects the performance greatly.

8.2.2 Pipeline with a Join Operator

In this section, we consider a more complex query plan that contains a join operator. Consider
the query Q: “Continuously report moving objects that belong to my favorite set of objects and lie
within MyArea”. A high-level implementation would probe a streaming database engine to join all
moving objects with my favorite set of objects. Then, the output of the join is sent to the algorithm
for further processing. However, with the INSIDE operator, we can have a query evaluation plan as

that of Figure 8a where the INSIDE operator is pushed below the Join operator.

Figure 8 compares the high-level implementation of the above query with the pipelined INSIDE
operator for both stationary and moving queries. The selectivity of the queries varies from 2% to
64%. Unlike the case of selection operators, there is a dramatic increase in performance (around
ten orders of magnitude) when INSIDE is implemented as a pipelined operator. The main reason in
this dramatic gain in performance is the high overhead incurred when evaluating the join operation.
Thus, the INSIDE operator filters out the input tuples and limits the input to the join operator to

only the incremental positive and negative updates.
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9 Conclusion

In this paper, we presented the continuous query processor of the PLACE (Pervasive Location-
Aware Computing Environments) server; a database server for location-aware environments cur-
rently developed at Purdue University. The PLACE server extends both the PREDATOR database
management system and the NILE stream query processor to deal with unbounded spatio-temporal
streams. In addition to the temporal tuple expiration defined in sliding-window queries, we main-
tain other forms of tuple expirations (e.g., spatial expiration). To efficiently handle large number
of continuous queries, we employ an incremental evaluation paradigm that contains: (1) Defining
the concept of positive and negative updates, (2) Encapsulating the algorithms for incremental
processing into pipelined spatio-temporal operators, and (3) Modifying traditional query operators
(e.g., distinct and join) to deal with the negative updates that comes from the spatio-temporal op-
erators. Shared-execution is employed by the continuous query processor as a means of achieving
scalability in terms of the number of concurrently continuous queries. Experimental results show

the promising performance of the PLACE continuous query processor.
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