
Knowledge Cubes - A Proposal for Scalable and

Semantically-Guided Management of Big Data

Amgad Madkour

Purdue University

West Lafayette, USA

Email: amgad@cs.purdue.edu

Walid G. Aref

Purdue University

West Lafayette, USA

Email: aref@cs.purdue.edu

Saleh Basalamah

Umm Al-Qura University

Makkah, KSA

Email: smbasalamah@uqu.edu.sa

Abstract—A Knowledge Cube, or cube for short, is an intelli-
gent and adaptive database instance capable of storing, analyzing,
and searching data. Each cube is established based on semantic
aspects, e.g., (1) Topical, (2) Contextual, (3) Spatial, or (4) Tem-
poral. A cube specializes in handling data that is only relevant
to the cube’s semantics. Knowledge cubes are inspired by two
prime architectures: (1) Dataspaces that provides an abstraction
for data management where heterogeneous data sources can
co-exist and it requires no prespecified unifying schema, and
(2) Linked Data that provides best practices for publishing and
interlinking structured data on the web. A knowledge cube uses
Linked Data as its main building block for its data layer and
encompasses some of the data integration abstractions defined
by Dataspaces. In this paper, knowledge cubes are proposed as a
semantically-guided data management architecture, where data
management is influenced by the data semantics rather than by
a predefined scheme. Knowledge cubes support the five pillars
of Big Data also known as the five V’s, namely Volume, Velocity,
Veracity, Variety, and Value. Interesting opportunities can be
leveraged when learning the semantics of the data. This paper
highlights these opportunities and proposes a strawman design
for knowledge cubes along with the research challenges that arise
when realizing them.

Index Terms—big data architecture; semantics; data manage-
ment

I. INTRODUCTION

Today, we are surrounded by a plethora of information

usually coined under the term Big Data. Big data requires

exceptional technologies to efficiently process the large quan-

tities of data within tolerable elapsed times. The types of data

include social media shared content, web pages, blogs, photos,

videos, and transaction records, to name a few. We need

systems that can provide answers to questions that have been

considered beyond our reach in the past, given the amount of

information that is required to be analyzed.

We describe two prime architectures for data management

that inspire our proposal, namely Dataspaces [1] and Linked

Data [2] and illustrate how a hybrid architecture could be cre-

ated around them that tackles the challenges of Big Data [3].

Franklin, Halvey, and Maier coin the term Dataspaces [1],

which is an abstraction for data bases that attempts to avoid

data integration problems. Dataspace systems use a Dataspaces

Support Platform (DSSP) to provide interrelated services over

its components. Dataspaces consist of six logical components:

(1) Catalog for maintaining information about data sources,

(2) Local store and index, (3) Search and query mechanism,

(4) Administration, (5) Discovery for locating new data sources

and maintaining existing ones, and (6) Source extension that

embeds participants with additional capabilities, e.g., schema,

catalog, keyword search, and update monitoring. It is expen-

sive to model an integration schema upfront especially with

large-scale integration scenarios involving Big Data scale. In

order to mitigate this, the data is not integrated by default,

and hence the system can answer only simple queries. If

more data needs to be integrated, then it can follow a pay-

as-you-go model. Dataspaces are best suited for small-scale,

loosely coupled heterogeneous data sources [11]. It relies on

a centralized catalog that is a key component in the success

of the Dataspaces support platform. Given the Big Data scale,

it would not be possible to rely on a central repository for

materializing web data given its dynamic nature [11].

Tim-Berners Lee first coined the term Linked Data [2] in

2006. Linked Data is about using the Web to connect related

data that has not been previously linked. It is a way of expos-

ing, sharing, and connecting loosely coupled pieces of data

and creating new knowledge. Unlike Dataspaces, one of the

main principles of Linked Data lies in its decentralized setting.

that facilitates distributed publishing and maintenance of the

combined data. It uses a rich data model, namely RDF [4], to

express the data through statements of equivalence, subclasses,

and sub-property relations.

Many organizations and governments have adopted Linked

Data as a way to publish their data. This has created a global

data space referred to as the Web of Data [5]. The Web of

Data contains billions of RDF statements from a variety of

sources covering various topics. In fact, the Web of Data can

be considered a Dataspace with the difference that it is now

distributed and spans a more global scale [6].

Another architecture for learning from web-scale data is

NELL [7]. NELL realizes a never-ending learning agent

that starts with an initial knowledge base of predicates and

relations. NELL grows the knowledge base continuously by

reading and learning from the web using various components

that make uncorrelated errors, learning multiple types of inter-

linked knowledge, using coupled semi-supervised learning

methods to leverage constraints among predicates, distinguish-

ing high-confidence beliefs from lower ones, and using a

uniform knowledge base representation to capture facts. NELL

needs human intervention to assert the correctness of identified



entities to avoid aggregating the mistakes further.

We propose Knowledge Cubes, a data management archi-

tecture for the Web of Data that relies on semantics to define

how the data is fetched, organized, stored, optimized, and

queried. Knowledge cubes use RDF to store data. This allows

knowledge cubes to store Linked Data from the Web of Data.

Knowledge cubes are envisioned to break down the centralized

architecture into multiple specialized cubes, each having its

own index and data store. When a user query relies on data

from multiple cubes, these specialized cubes communicate to

satisfy the user’s query. A cube is intelligent in identifying

when to update its data based on query predicates and the

frequency of the requested items.

In the following sections, we introduce knowledge cubes,

and discuss the motivation for each of their architectural

components. Then, we illustrate how knowledge cubes cater to

the needs of the five pillars of Big Data [8]. Finally, we provide

a strawman’s design for the knowledge cubes architecture and

highlight research challenges in its realization.

II. MOTIVATION

Handling Big Data scale is a fundamental challenge for

the Web of Data. Given the growing availability of Linked

Data, we are in need of systems capable of storing RDF’s and

evaluating complex queries over these large silos of interlinked

datasets. To be efficient, these systems should maintain a

reasonable ratio of RAM and database size [9]. They also

need to have one index per database that can be updated as

needed. The system describes its data with a well-defined

representation, e.g., RDF, that contains rich constructs to

interlink Big Data resources. We describe the following three

motivational points that drive our knowledge cubes proposal.

A. Semantically Partitioned Data

We propose to partition and manage data based on semantics

rather than on a predefined partitioning scheme. Linked Data

with its rich semantics provides an excellent foundation for

understanding and linking interrelated data. With semantically

partitioned data, one can forward questions directly to specific

knowledge cubes and get fine-grained answers in contrast

to contacting a heterogeneous data source or multiple data

sources in order to get an answer. An advantage of this

approach is that each specialized knowledge cube stores and

continuously updates data from the web that is related only to

the topic of interest to the knowledge cube, and thus resulting

in a notion of specialization. These specialized knowledge

cubes can inter-communicate to provide in-depth answers to

users’ queries. This approach also allows breaking the large

data silo into meaningful and interrelated sets.

B. Unsupervised Learning from Big Data Sources

To harness the richness of Big Data, knowledge cubes need

to harvest as much information as possible from Big Data

sources to enrich the current Linked Data of the knowledge

cube. This needs to be performed in an unsupervised fashion

due to the immense amount of data that needs to be processed

and hence resulting in some uncertainties. The aim is to

accommodate as much information as possible in the system

instead of creating a high-quality information repository. Simi-

lar to Dataspaces [1], high-quality information can be obtained

using a pay-as-you-go model over the data of interest.

C. Understanding Query Semantics

We need to understand user intent from the queries to

provide the best matching results. This calls for a rich query

language capable of expressing that intent. Semantic Web

query languages, e.g., SPARQL [10], should be tailored to

express important aspects including spatial, temporal, textual,

and relational. While some of these features are supported,

others, e.g., structured, keyword, and meta-data queries, are

not efficiently supported [11]. The system should disambiguate

a query to find its true meaning. Linked Data provides the

necessary constructs that can help understand true user intent.

III. PROPOSAL

Fig. 1. Knowledge Cubes - The Big Picture

Initially, a knowledge cube is created based on one or

more semantic aspect, such as topical, contextual, spatial,

or temporal. For example, a knowledge cube can focus on

a sport (topical), a library in a university (contextual), a

country (spatial), the stone age (temporal), or a combination

of these or other semantic aspects. Then, the knowledge cube

extracts relevant information based on its own semantic aspects

from existing Linked Data datasets. This creates a notion of

specialization based on the rich Linked Data information at

the cube level.

The data extracted should conform to Linked Data principles

and should be stored in the RDF model [12]. The cube fetches

further resources from the Web of Data that matches the

cube’s semantics. Once a query is issued, a cube-aware server

identifies which knowledge cube is suitable to answer the

query. If a knowledge cube needs further information in order

to disambiguate or enhance the query answer, it communicates

with other knowledge cubes. Figure 1 illustrates the big picture

of querying the system.

IV. FOUNDING PRINCIPLES

In this section, we present the founding principles that guide

the knowledge cubes architecture.



A. Structural Evolution

As in Figure 1, a knowledge cube captures the notion of

specialization, be it spatial, temporal, topical, contextual, or

otherwise. Its granularity level adapts to represent finer grained

knowledge cubes. For example, the “Sports” knowledge cube

can be broken into multiple cubes, e.g., “Basketball” and

“Baseball”. These two sub-cubes would still be inter-linked

together. This inter-linking is important as it can provide more

insightful information. For example, an interesting relation-

ship would be that “Michael Jordan” who is a Basketball

player (and hence, belonging to the Basketball cube) has a

“played” relationship with the Baseball cube. This means that

the decoupling of information does not mean breaking some

relationships, but instead decouples the main information into

partitions. This structural evolution creates space to accumu-

late further information relevant to the semantics of the cube

on both sides that in turn provides scalability to the whole

system.It also allows minimizing the communication overhead

between knowledge cubes. We refer to this behavior as the

structural evolution of a knowledge cube.

A knowledge cube may evolve based on its newly attained

size or semantic aspect by re-partitioning dynamically in

an unsupervised fashion. The evolution of knowledge cubes

involves a number of aspects (1) Merging and Splitting,

where a cube merges or splits based on the semantic as-

pects (e.g., sports into basketball and football, or vice versa)

(2) Arbitration and Prioritization, where a knowledge cube

gives precedence to certain structural changes based on the

overall status of the system. The structural evolution leads to

the creation of further specialized cubes that are capable of

learning more insightful information relating to their semantic

aspects. The semantics of user queries also dictates if there is

a need for a structural evolution in case it forces the system

to contact more than one knowledge cube.

B. Temporal Evolution

A knowledge cube organizes it own data temporally using a

time-roadmap. The time-roadmap can be identified by (1) the

entities involved in the data units, (2) the timestamps of the

data units, and (3) the relationships of the entities involved

and their respective time-span. For example, a user may be

interested in a query related to the activities of the U.S.

president who held office during a specific time-span. The

time-roadmap will display entries for all the U.S presidents

that held office in that time period in addition to any activities

that they performed that overlap with the requested time-span.

Knowledge cubes operate on Linked Data that originate from

well-structured data that progressively evolve over time using

other structured or unstructured data. Each data unit or entity

has a belief value (degree of truthfulness) associated with it.

C. Analytic Distribution

An important principle is the distribution of the analytic

load across multiple knowledge cubes and then communicating

the results back according to relevance. The analytic load

is composed of extracting the data, determining its level of

uncertainty, and linking it with the existing Linked Data in

the cube. The advantage of distributing the analytic load is to

allow for the simplification in development and maintenance.

The knowledge cube approach is orthogonal to the data cube

approach in [13] as knowledge cubes focus on one specific

dimension only. Also, the knowledge cube’s RDF data model

allows it to support graph-based analytics, e.g., random walks,

regular expression and reachability queries, distance oracles,

and community searches.

V. STRAWMAN DESIGN

In this section, we present a strawman design of the com-

ponents needed for the realization of knowledge cubes.

A. Cube-awareness

This component is responsible for making a knowledge cube

aware of all the other cubes relevant to it. Cube-awareness

provides structural or data-level updates to the hosting cube.

This component guarantees to the hosting instance the most

updated information that other cubes possess. The cube-

awareness component appears in two states, (1) the stand-

alone state, where it resides on a cube-aware server so that

when it receives a user’s query, it forwards the query to the ap-

propriate knowledge cube, and (2) the Embedded state, where

the cube-aware component provides each knowledge cube with

the necessary information regarding other relevant knowledge

cubes. Relevance among knowledge cubes is defined by the

set of common relations they share. These relations are defined

based on the Linked Data of each cube.

B. Catalog

The catalog maintains all the information related to the

data sources it fetches [1]. It maintains a list of the data

elements that each source captures. For example, each catalog

maintains a list of all named entities, e.g., countries, people,

buildings, etc., for each source. In contrast to Dataspaces [1],

the catalog maintains information about the other knowledge

cubes’ catalogs. Knowledge cubes coordinate with each other

the content acquired in order to maximize partitioning, and

hence increase their specialization. A cube-aware server acts

as a dispatcher for data sources, where it indicates to each

knowledge cube what data source to handle.

The catalog addresses the variety aspect of Big Data. Each

cube fetches heterogeneous data sources related to the cube’s

semantic focus. For example, a news source publishes an

article that can also be discussed over social media channels,

e.g., twitter or facebook. Exhibiting this behavior over multiple

specialized cubes, each with its separate view of heterogeneity,

allows introducing variety into the knowledge cube.

C. Information Extraction

This component employs text analysis techniques in order

to extract and learn from structured and unstructured sources.

Systems, e.g., NELL [7], contain a free-text extractor termed

Coupled Pattern Learner (CPL) [14] that couples the semi-

supervised training of extractors of different categories and



relations. NELL is capable of extracting patterns in the form

of “X playsIn Y” and “president of X”. Given the architecture

of knowledge cubes, we suggest that such extractors could

be trained with the initial Linked Data of the cube since the

training patterns are similar to the RDF model of Linked Data.

We believe that having an extractor per cube with an initial

limited set of fine-tuned labeled data that evolves over time

should lead to a better extraction accuracy for the cube rather

than a globally trained extractor [15]. Unlike NELL [7], our

proposed extraction patterns rely on the structural evolution of

the cube and not on the initial seed only.

The Information Extraction component tackles the veracity

aspect of Big Data. The use of Linked Data creates a rich

platform for understanding the query and thus creating added

value out of the underlying data. The veracity of the identified

entities has to be verified before it can be used for generating

valuable results or linked to existing data.

D. Search and Querying

This component provides a rich set of constructs that

understand the semantics of the query terms specified by the

user. A knowledge cube uses its underlying Linked Data in

order to disambiguate and discover interesting relations that

in turn provides more insight to the results. The search and

querying component supports search-based methods that in-

clude keyword, textual, spatial, temporal, and semantic-based

methods that rely on similarity functions and database-level

methods. For example, we need to understand the semantics

of queries like “Seafood restaurant by the ocean” or “Cafe

with a view on the Eiffel tower”. The query is converted into

a triple that is matched against the knowledge cubes data that

is also formatted as triples.

The search and querying component is responsible for

determining the best possible way to communicate with other

cubes to satisfy the user query. This requires understanding

the communication topology and determining the best routing

technique to minimize query time.

The search and querying component tackles the value aspect

of Big Data. The use of Linked Data creates a rich platform

for understanding the query and thus creating added value out

of the underlying data.

E. Data Store and Indexing

An integral component that defines the feasibility of the

knowledge cubes architecture is the storage and indexing

mechanisms over the Linked Data. We need highly efficient

and scalable storage and indexing mechanisms that can operate

over billions of RDF triples that are available over the Web

of Data. Various data stores have been proposed that include

native, relational, or hybrid data stores. Using the semantic

aspects can aid in creating efficient storage schemes given the

RDF data model. Existing proposals need to be modified to

consider this aspect.

Another integral factor in the knowledge cubes architecture

is its ability to answer queries without accessing the actual

data sources. This requires having a descriptive and up-to-date

index in order to satisfy the user’s query. Given that each cube

indexes its own data, the index needs to maintain information

about what other cubes are capable of providing and what can

aid in satisfying the user query. Another aspect is the ability

of the index to create efficient associations among data objects

of different sources for the same cube [1].

Query Optimization provide facilities, e.g., query simpli-

fication, indexing, and operator implementations. Interesting

operators include spatio-temporal top results. SPARQL 1.1

provides rich facilities [16] that allow further optimization by

having no centralized coordinating unit for query evaluation

between sources.

Similar to Dataspaces, in knowledge cubes, there will be

support for high availability and recovery, the ability to trace

back to the origin of a token (e.g., from a text file, an

XML file, etc.), caching by building additional indexes to

support efficient access, caching for generalization of join

index (token appears in multiple data sources), caching to

reduce the query load on participants that cannot allow ad-

hoc external queries [1].

The data store and indexing components tackle the volume

and velocity aspects of Big Data, respectively. The proposed

architecture for knowledge cubes suggests that learning se-

mantics should allow the storage and indexing to scale better

than a centralized or distributed mechanism that do not

consider the semantics of the data. Neglecting the scalability

factor incurs a higher overhead on the index and incurs a rise

in the communication overhead within the distributed system.

F. Discovery of Data Sources

Each knowledge cube can have its own discovery mecha-

nism for the list of Big Data sources relevant to its semantic

aspects. One source that indexes Linked Data is Sindice [17],

where it provides relevancy over its indexed Linked Data

sources based on the Universal Resource Identifier (URI) or

the keyword-based query. Sindice only indexes sources that

conform with Linked Data formats. Knowledge cubes can use

a web search engine to search for relevant web sources that

match the semantic aspects of a cube. This is done by issuing a

keyword-based search query with keywords that best describe

a cube. One method of determining these keywords can be

by using the most frequent ones that appear in the data that

the cube holds. The knowledge cube uses the interlinking

of relevant documents to retrieve further information that is

relevant to that document and to the cube.

The Data Sources Discovery component is responsible for

maintaining and creating relationships among data sources and

locating new Big Data sources in a semi-supervised fashion. It

is also capable of proposing new relationships. Data Sources

and Discovery will also monitor the contents of the cube and

propose additional relationships over time [1].

G. Data Sources Update and Extension

Given an initial seed of RDF’s, the time-roadmap is respon-

sible for maintaining the updates for the data in the cube. If

new information is identified and it relates to existing RDF



entries, a time-oriented snapshot is taken and amended to

the current RDF. The time-roadmap guarantees “freshness”

of the results by providing or linking information with the

latest updates found from sources. The newly acquired data is

integrated in an unsupervised manner based on the character-

istics of the current RDF data. This data includes the subjects

that can help guide the acquisition process. For example, in the

news domain, we may have a cube representing the Presidents

of the United States. In this case, the RDF entities can be the

names of Presidents and can further be used to harvest all

information from Big Data sources related to US presidents.

We can integrate newly discovered information and entities

that relate to the initial set of identified Presidents based on

how much this information is coupled. This will require that

the cube perform text analysis on the data to determine the

entities involved and then determine whether the identified

information relates to the Linked Data of the cube or not.

This information can also be shared with other knowledge

cubes that may find this analyzed information of relevance.

Similar to Dataspaces, this component can amend data

sources that have limited capabilities with additional ones

such as schema, catalog, keyword, search, and update monitor-

ing [1]. This allows the heterogeneous sources to share similar

services thus allowing the system to harness their information.

VI. CHALLENGES

This section presents common challenges that knowledge

cubes share with the Web of Data. Also, we indicate a set

of new challenges that are spawned from the knowledge

cubes architecture. We demonstrate how the knowledge cubes

architecture can be used to address these challenges.

A. Challenge 1: Semantic Interpretation

A key issue in learning on Big Data scale lies in under-

standing the true meaning of the data. This is known as

semantic interpretation [15]. It deals with the interpretation

of ambiguous or imprecise data. Web-scale data is believed

to be part of the solution [15]. Given the amount of available

structured data, it can resolve semantic heterogeneity. We share

the same view as the one in [15] that the challenge lies in

choosing a representation that can use unsupervised learning

over plenty of unlabeled data rather than relying on limited

labeled data.

The semantic interpretation challenge is also apparent in

the spatial dimension. One study proposes a set of semantic

features derived from web contextual information to create a

location disambiguation system for identified locations [18].

Although the study illustrates that the system achieves better

results than the state-of-the-art industrial systems, it still does

not operate well over heterogeneous data sources. Knowledge

cubes can provide a rich platform for semantic aspects that

can enhance information extraction systems with features to

efficiently disambiguate locations.

The proposed knowledge cubes architecture deals primarily

with a heterogeneous set of Big Data sources that may not

include any structure or labeled annotations to start with.

Knowledge cubes need to rely on aspects beyond the labeled

data in order to correctly interpret the data. We believe that

endorsing semantic aspects in the architecture of the knowl-

edge cubes can provide an interesting platform for tackling

this challenge. For example, using the spatial aspect, we can

disambiguate identified organizations or people in a document

or query based on other entities identified in the same context

and we can use the relations of the cube to disambiguate the

identified entities further.

B. Challenge 2: Uncertainty

Even with highly accurate named-entity extraction and

disambiguation systems, there is a need to attach a truth value

to the extracted data. This allows the system to select the most

reliable information to present in response to a user query. This

issue is vital when new data is “linked” to existing data in the

cube. We need to attach data with a specific uncertainty value.

Reynolds [19] presents several aspects to the uncertainty

challenge. One aspect is the ambiguity resulting from Linking

date where the same identified entities occurring in different

datasets do not have the same universal resource identifier

(URI). Datasets use an imperfect mechanism, namely the

“owl:sameAs” relation to co-reference similar entities with

heuristic weighting. The same challenge exists in knowledge

cubes, specifically, when an entity is identified and needs to

be linked to existing identifiers. Knowledge cubes extend this

challenge further with regards to entities that map into multiple

cubes. The question becomes: Which cube should the entity

belong to? The “owl:sameAs” relation is one mean of having

the entity mentioned in two cubes. In this case, the relation

can act as a connector for both. This raises a bigger concern

of duplication of entities across cubes.

The precision of certain values for entities is another im-

portant aspect [19]. For example, one entity may have an

attribute (e.g., population) captured at different time-spans that

is derived from various readings. This raises the concern that

when entities are merged, there can be a conflict in values, and

hence affecting the merging process. One way is to use the

time-roadmap of a knowledge cube to track the attribute value

changes over time. A challenge that this suggestion raises

is: what is the best way to represent a time-roadmap? and

which attributes are to be maintained? We need techniques

to identify time-related events upon which the time-roadmap

can be built that also may need to consider other factors,

e.g., the spatial aspect. We need to maintain an uncertainty

value for the attribute in case the event does not include an

explicitly specified date and should be implied from the event,

e.g., World War 2.

There is also uncertainty associated with the data source.

This issue is apparent in the Linked Data settings, especially

given the cross linking and the absence of provisioning.

In turn, this raises the concern of veracity of the included

data source. We suggest that knowledge cubes include well-

established provisioning mechanisms in the catalog component

in order to tackle this issue.



In [19], Reynolds suggests that the data source selection

process should be selective in terms of the data needed.

Given the scale of the data handled by the knowledge cubes

architecture, the proposed suggestion by Reynolds aligns with

knowledge cubes. Reynolds suggests two types of vocabularies

to express the data (1) Link vocabulary to provide a common

representation for links and (2) Imprecise value vocabulary

to provide a common representation for common vocabu-

lary. Given the knowledge cubes architecture, the vocabulary

proposal by Reynolds can be a viable solution where each

cube includes its own vocabulary. However, we need to allow

for cross-talk, e.g., by maintaining relations among existing

vocabulary terms from the various vocabularies and providing

enough provisioning in order for the relations to still hold. The

spatial and temporal dimensions of the knowledge cube data

form a rich facility in solving some uncertainty challenges.

For example, we can disambiguate two named entities if both

belong to the same spatial location or time slot.

C. Challenge 3: Data Partitioning Scheme

Defining an efficient scheme for partitioning depends on the

semantics of the data. For example, specific snapshots of the

data may mandate that the data be partitioned according to the

named entities contained in the data. Another scheme might

see that partitioning based on people who are politicians or

soccer players might generate a good scheme. More sophisti-

cated schemes might involve both entities and relations or a

combination of both. An important aspect to consider is how

big the data is given each scheme and whether there is a form

of overlapping among the generated partitions.

We believe that the data is the main driver of the partitioning

scheme. Employing some form of data analysis over the

acquired data may reveal interesting properties that can aid in

defining efficient partitioning schemes. For example, semantic

relationships can be learned in an unsupervised fashion from

the search queries and their results [20]. This means that the

statistics gathered based on user queries can be an asset that

aids in identifying an efficient partitioning scheme. In turn,

this requires that the system starts with an initial scheme that

can evolve over time based on gathered statistics.

D. Challenge 4: Storage and Indexing

The database and semantic web communities have a number

of solutions for storing and querying Linked Data ranging

from centralized to distributed data stores [3]. We describe four

main categories that have been adopted by both communities

and discuss the challenges associated with each of them.

The first category, called Triplestores, stores RDF triples in a

single relational table. The attributes specified are either triples

(subject, predicate, object) or quadruples (subject, predicate,

object, context). Even though disk space for Triplestores is

not a major concern in terms of size, a real concern is in

maintaining a reasonable RAM and database ratio [9], which

is exemplified in the case of Big Data scale.

The second category is vertically-partitioned tables [21]

where systems maintain a table per property as many triple

patterns have fixed properties. One variation is to use a column

store that captures the column entries of the same type. The

objective is to avoid reading an entire row into memory in

the event that only a few attributes are accessed per query.

This approach has scalability problems when the number of

properties in an RDF is high [22], [23]. The study in [22], [23]

suggests that Triplestores outperform the vertically-partitioned

approach when having a larger number of properties.

The third category is schema-specific systems that capture

subjects with overlapping properties. These systems have a

query processing advantage as the subjects may be accessed

together. In [24], Levandoski and Mokbel claim that property

tables can outperform Triplestores and vertically-partitioned

tables for RDF data. One concern is the storage overhead

because subjects may contain multiple objects. The second

and third categories also raise an important concern regarding

the increased cost of integration quality.

An open question is: Which of the three categories is best

suited for embodying the semantic aspects proposed by the

knowledge cubes architecture? One proposed direction is to

adopt all three categories and apply the most optimum based

on the current semantics of the data. This step occurs as the

knowledge cube evolves over time.

Defining a suitable index over the data is also a crucial

challenge. An index may need to include spatial, temporal,

relational, or textual aspects. An advantage of knowledge

cubes is that the index would be defined over well-structured

information with rich semantics. In turn, this aids in defining a

more meaningful indexing structure. The structural integrity of

the index would also affect the query processing performance.

E. Challenge 5: Communication among Cubes

There are many forms of communication in knowledge

cubes. One is when a cube needs to know further information

about a query that it is processing. Another is when a cube

needs to be updated about what other cubes have. Defining an

efficient communication protocol that considers the overhead

of contacting and retrieving content from other knowledge

cubes is vital. Knowledge cubes may co-exist on the same ma-

chine (i.e., embedded communication) or on separate machines

(i.e., stand-alone). A knowledge cube should be intelligent

enough to decide when to cache content that it usually retrieves

from other knowledge cubes. In turn, this should significantly

decrease the communication overhead. Adaptive Replacement

Cache (ARC) [25] is one candidate algorithm that can be

used to keep track of frequently used and recently used data.

It can also be used to maintain historical data regarding

eviction for both scenarios. A challenge would be to see if

the algorithm will adapt to both data and structural evolution

of the knowledge cube.

F. Challenge 6: Spatial and Temporal Extraction

Published articles or web pages will need to be segmented

into individual units of information, termed statements. For

each statement, we need to identify the topic of the statement,



the subject, the person, the event, the time interval, or the lo-

cation that this statement is about, who authored the sentence,

where, and when this statement is made, and whether that

statement is extracted from some other internet source, etc.

For example, in the time dimension, we need to capture two

notions of time for a given statement; (1) when that statement

is published or written (i.e., its transaction time), and (2) when

the facts in the statement took place (i.e., its valid time). The

same applies for the space dimension. Two space dimensions

need to be extracted: (1) the physical location of the person

who published the statement (i.e., the statement’s transaction

location), and (2) the location where the facts in the statement

took place (i.e., its valid location). The same is true for the

“person” who wrote the statement and the person that the

statement states facts about, etc.

G. Challenge 7: Data Change Frequency

It is important to identify when a knowledge cube updates

its Linked Data. Linked Data is very dynamic in nature where

its resources are added, removed, or updated very frequently

especially in the Web of Data. Therefore, it is important to

investigate measures of “freshness” for the content and inter-

linked resources. For example, the Linked Data of the cube

may indicate certain properties for triples that might conflict

with others that are later retrieved as new data. Identifying

these conflicts and creating policies of how to handle them

is a crucial issue. Adding provenance can be one solution to

this issue. However, it raises another question of what version

of the data to present as an answer to the query. A study

by Umbrich et. al identifies the characteristics of change over

Linked Data and compares the change frequency in the Web

of Data versus the traditional Web (HTML documents) [26] .

VII. CONCLUSION

We present a vision for the knowledge cube architecture

that motivates understanding the semantics of the data as

a means for solving some of the research challenges we

face today, specifically in Big Data. We motivate the use of

Linked Data as a mean for achieving this target given the rich

semantics that Linked Data provides. We present a strawman

design that sketches the possible components of a knowledge

cubes system. Each presented component conveys a high-level

overview about its potential usage scenarios. We illustrate

some of the challenges and potential solutions associated with

the knowledge cubes proposal. Finally, we demonstrate how

the proposed architectural components can be used to tackle

the five pillars of Big Data.

ACKNOWLEDGMENT

This research was partially supported by the National Sci-

ence Foundation under Grants III-1117766, and IIS-0964639,

and IIS-0916614.

REFERENCES

[1] M. J. Franklin, A. Y. Halevy, and D. Maier, “From databases to
dataspaces: a new abstraction for information management,” SIGMOD

Record, vol. 34, no. 4, pp. 27–33, 2005.

[2] T. Berners-Lee, “Linked data - design issues,” http://www.w3.org/
DesignIssues/LinkedData.html, 2006.

[3] A. Harth, K. Hose, and R. Schenkel, “Database techniques for linked
data management,” in SIGMOD Conference, 2012, pp. 597–600.

[4] O. Lassila and R. Swick, “Resource description framework (RDF)
model and syntax specification,” http://www.w3.org/TR/1999/
REC-rdf-syntax-19990222/, 1999.

[5] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so far,”
Int. J. Semantic Web Inf. Syst., vol. 5, no. 3, pp. 1–22, 2009.

[6] T. Heath and C. Bizer, Linked Data: Evolving the Web into a Global

Data Space, ser. Synthesis Lectures on the Semantic Web. Morgan &
Claypool Publishers, 2011.

[7] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. H. Jr., and T. Mitchell,
“Toward an architecture for never-ending language learning,” in AAAI,
2010.

[8] K. Thirunarayan and A. Sheth, “Semantics-empowered approaches to
big data processing for physical-cyber-social applications,” Kno.e.sis

Technical Report, pp. 29–53, May 1997.
[9] O. Erling, “Directions and challenges of semdata,” in VLDB Industry

position paper, 2010.
[10] E. Prud’hommeaux and A. Seaborne, “Sparql query language for rdf,”

http://www.w3.org/TR/rdf-sparql-query/, Tech. Rep., 2008.
[11] J. Umbrich, M. Karnstedt, J. X. Parreira, A. Polleres, and M. Hauswirth,

“Linked data and live querying for enabling support platforms for web
dataspaces,” in ICDE Workshops, 2012, pp. 23–28.

[12] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so far,”
Int. J. Semantic Web Information Systems, vol. 5, no. 3, pp. 1–22, 2009.

[13] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh, “Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals,” Data Mining
and Knowledge Discovery, vol. 1, no. 1, pp. 29–53, Jan. 1997.

[14] A. Carlson, J. Betteridge, R. Wang, E. H. Jr., and T. Mitchell, “Coupled
semi-supervised learning for information extraction,” in WSDM, 2010,
pp. 101–110.

[15] A. Y. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness
of data,” IEEE Intelligent Systems, vol. 24, no. 2, pp. 8–12, 2009.

[16] C. B. Aranda, M. Arenas, and Ó. Corcho, “Semantics and optimization
of the sparql 1.1 federation extension,” in ESWC (2), 2011, pp. 1–15.

[17] E. Oren, R. Delbru, M. Catasta, R. Cyganiak, H. Stenzhorn, and
G. Tummarello, “Sindice.com: a document-oriented lookup index for
open linked data,” IJMSO, vol. 3, no. 1, pp. 37–52, 2008.

[18] T. Qin, R. Xiao, L. Fang, X. Xie, and L. Zhang, “An efficient location
extraction algorithm by leveraging web contextual information,” in GIS,
2010, pp. 53–60.

[19] D. Reynolds, “Uncertainty reasoning for linked data,” in URSW, 2009,
pp. 85–88.

[20] D. Scott and H. Uszkoreit, Eds., 22nd International Conference on

Computational Linguistics, Proceedings of the Conference, 2008.
[21] D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach, “Sw-store: a

vertically partitioned dbms for semantic web data management,” VLDB

J., vol. 18, no. 2, pp. 385–406, 2009.
[22] L. Sidirourgos, R. Goncalves, M. L. Kersten, N. Nes, and S. Manegold,

“Column-store support for rdf data management: not all swans are
white,” PVLDB, vol. 1, no. 2, pp. 1553–1563, 2008.

[23] D. C. Faye, O. Cure, and G. Blin, “A survey of RDF storage approaches,”
ARIMA J., vol. 15, pp. 11–35, 2012.

[24] J. Levandoski and M. Mokbel, “Rdf data-centric storage,” in ICWS,
2009, pp. 911–918.

[25] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead
replacement cache,” in Second USENIX Conference on File and Storage

Technologies, ser. FAST ’03, 2003, pp. 115–130.
[26] J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres, and S. Decker,

“Towards dataset dynamics: Change frequency of linked open data
sources,” in LDOW, 2010.


