N\

SQL: Queries, Programming,
Triggers

Chapter 5

Database Systems, R. i and J. Gehrke

wi|sd bid day
Example Instances |22 1101 10/10/96
N\ 58 1103 11/12/96

» Wewillusethese s7|sid sname rating age
inst f the .
gaarees SL e 22 dustin 7 450

Sailors and
Reserves relations 31 lubber 8 555

in our examples. 58 rusty 10 350
w If the key for the '

Reservesrelation ~ S2 |sid sname rating age
contained only the 28 yuppy 9 35.0

|
|
attributes sid and
bid, how would the 31 lubber 8 55.5 ‘
semantics differ? 44 guppy 5 35.0 ‘
58 rusty 10 350 |
Database Systems, R. i and J. Gehrke

SELECT [DISTINCT] target-list

WHERE qualification

Q‘lsic S QL Query FROM relation-list

w relation-list A list of relation names (possibly with a
range-variable after each name).

w target-list A list of attributes of relations in relation-list

w qualification Comparisons (Attr op const or Attrl op
Attr2, where op isone of <,>,=,<,2, %)
combined using AND, OR and NOT.

w DISTINCT is an optional keyword indicating that the
answer should not contain duplicates. Default is that
duplicates are not eliminated!

Database ystems, R. krishnan and J. Gehrke 3

\Conceptual Evaluation Strategy

w Semantics of an SQL query defined in terms of the
following conceptual evaluation strategy:
- Compute the cross-product of relation-list.
- Discard resulting tuples if they fail qualifications.
- Delete attributes that are not in target-list.
- If DISTINCT is specified, eliminate duplicate rows.
w This strategy is probably the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers.

Database ystems, R. krishnan and J. Gehrke

\Example of Conceptual Evaluation

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

(sid) sname rating age (sid) bid day
22 dustin 7 450 22 101 10/10/96
22 dustin 7 450 58 103 11/12/9%
31 lubber 8 555 22 101 10/10/96
31 lubber 8 555 58 103 11/12/96
58 rusty 10 350 22 101 10/10/96
58 rusty 10 350 58 103 11/12/9

Database ystems, R. i and J. Gehrke

\A Note on Range Variables

w Really needed only if the same relation
appears twice in the FROM clause. The
previous query can also be written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

It is good style,
however, to use
range variables
OR SELECT sname always!
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid
AND bid=103

Database Systems, R. i and J. Gehrke

\Find sailors who’ve reserved at least one boat

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

w Would adding DISTINCT to this query make a
difference?

w What is the effect of replacing S.sid by S.sname in
the SELECT clause? Would adding DISTINCT to
this variant of the query make a difference?

Database Systems, R. i and J. Gehrke 7

\Expressions and Strings

SELECT S.age, agel=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

w Illustrates use of arithmetic expressions and string
pattern matching: Find triples (of ages of sailors and
two fields defined by expressions) for sailors whose names
begin and end with B and contain at least three characters.

w ASand = are two ways to name fields in result.

w LIKE is used for string matching. “_" stands for any
one character and "%’ stands for 0 or more arbitrary
characters.

Database Systems, R. i and J. Gehrke 8

ind sid’s of sailors who've reserved a red or a green boat

o UNION: Can be used to SELECT S.sid

compute the union of any FROM Sailors S, Boats B, Reserves R
two union-compatible sets of WHERE S.sid=R.sid AND R.bid=B.bid

. AND (B.color="red” OR B.color="green’)
tuples (which are

themselves the result of

SQL queries).
. SELECT S.sid
w If we replace OR by AND in FROM Sailors S, Boats B, Reserves R
the first version, what do WHERE S.sid=R.sid AND
we get? Rbid=B.bid
w Also available: EXCEPT UNION AND B.color="red
(What do we get if we SELECT S.sid

replace UNION by EXCEPT?) ~ FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND

wREDEE ,

Database ystems, R. 3 ,

Find sid’s of sailors who've reserved a red and a green boat

\ SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

w INTERSECT: Can be used to Boats B2, Reserves R2
compute the intersection WHERE S.sid=R1.sid AND R1.bid=B1l.bid
of any two union- AND S.sid=R2.sid AND R2.bid=B2.bid
. AND (B1.color="red” AND B2.color="green’)
compatible sets of tuples.

w Included in the SQL /92 o Key field!
standard, but some SELECT S.sid
systems don’t support it. FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND
o Contrast symmetry of the R bideB.bid

UNTQN an.d INTERSECT AND B.color="red’
queries with how much INTERSECT
the other versions differ. SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND
Database ystems, R. krishnan and3, BB bid 10

&

Nested Queries

\ Find names of sailors who ve reserved boat #103:
SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

w A very powerful feature of SQL: a WHERE clause can
itself contain an SQL query! (Actually, so can FROM
and HAVING clauses.)

w To find sailors who've not reserved #103, use NOT IN.

w To understand semantics of nested queries, think of a
nested loops evaluation: For each Sailors tuple, check the
qualification by computing the subquery.

Database ystems, R. i and J. Gehrke 1

Nested Queries with Correlation

Find names of sailors who ve reserved boat #103:
SELECT S.sname

FROM Sailors S
WHERE EXISTS m
FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

w EXISTS is another set comparison operator, like IN.

w If UNIQUE is used, and * is replaced by R.bid, finds
sailors with at most one reservation for boat #103.
(UNIQUE checks for duplicate tuples; * denotes all
attributes. Why do we have to replace * by R.bid?)

w Illustrates why, in general, subquery must be re-

computed for each Sailors turple.
Database Systems, R. i and J. Gehrke

\More on Set-Comparison Operators

w We've already seen IN, EXISTS and UNIQUE. Can also
use NOT IN, NOT EXISTS and NOT UNIQUE.
w Also available: op ANY, op ALL, op IN >,<,=,2,5,%
w Find sailors whose rating is greater than that of some
sailor called Horatio:
SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname="Horatio”)

Database Systems, R. i and J. Gehrke 13

Rewriting INTERSECT Queries Using IN
ind sid’s of sailors who've reserved both a red and a green boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color="red”
AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid
AND B2.color="green’)

w Similarly, EXCEPT queries re-written using NOT IN.

w To find names (not sid’s) of Sailors who've reserved
both red and green boats, just replace S.sid by S.sname
in SELECT clause. (What about INTERSECT query?)

Database Systems, R. i and J. Gehrke 14

(1

—

SELECT S.sname
FROM Sailors S
‘WHERE NOT EXISTS
((SELECT B.bid
FROM Boats B)
EXCEPT
(SELECT R.bid
FROM Reserves R
WHERE R.sid=S.sid))

Division in SQL

Find sailors who've reserved all boats
w Let’s do it the hard

way, without EXCEPT:

(2) SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS (SELECT B.bid
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid
FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...
there is no boat B without ...

a Reserves tuple showing S reserved B

COUNT (*)

COUNT ([DISTINCT] A)
Aggregate Operators — |sum([pistiNeT] A)
AVG ([DISTINCT] A)
MAX (A)

w Significant extension of
MIN (A)

relational algebra.

Ksz'n le column
8!

SELECT COUNT (*)

FROM Sailors S SELECT S.sname

FROM Sailors S
SELECT AVG (S.age) ~WHERE S.rating= (SELECT MAX(S2.rating)
FROM Sailors S FROM Sailors S2)
WHERE S.rating=10

SELECT COUNT (DISTINCT S.rating) sgrgpcT AVG (DISTINCT S.age)
FROM Sailors S FROM Sailors S
WHERE S.sname="Bob’ WHERE S.rating=10

Database ystems, R. krishnan and J. Gehrke 15

Database ystems, R. krishnan and J. Gehrke 16

Find name and age of the oldest sailor(s)

SELECT S.sname, MAX (S.age)

w The first query is illegal! FROM Sailors S
(We'll look into the
reason a bit later, when SELECT S.sname, S.age

FROM Sailors S

WHERE S.age =
(SELECT MAX (S2.age)
FROM Sailors S2)

we discuss GROUP BY.)

w The third query is
equivalent to the second
query, and is allowed in
the SQL /92 standard,
but is not supported in
some systems.

SELECT S.sname, S.age

FROM Sailors S

WHERE (SELECT MAX (S2.age)
FROM Sailors S2)
=S.age

Database ystems, R. i and J. Gehrke 17

GROUP BY and HAVING

w So far, we've applied aggregate operators to all
(qualifying) tuples. Sometimes, we want to apply
them to each of several groups of tuples.

w Consider: Find the age of the youngest sailor for each
rating level.
- In general, we don’t know how many rating levels
exist, and what the rating values for these levels are!
- Suppose we know that rating values go from 1 to 10;
we can write 10 queries that look like this (!):

SELECT MIN (S.age)

Fori=1,2,..,10: FROM Sailors S

and]. «YYHERE S.rating =i 18

Database Systems, R.

Queries With GROUP BY and HAVING
\ SELECT [DISTINCT] target-list

FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

w The target-list contains (i) attribute names (ii) terms
with aggregate operations (e.g., MIN (S.age)).
~ The attribute list (i) must be a subset of grouping-list.
Intuitively, each answer tuple corresponds to a group, and
these attributes must have a single value per group. (A
group is a set of tuples that have the same value for all
attributes in grouping-list.)

Database Systems, R. i and J. Gehrke 19

Conceptual Evaluation

w The cross-product of relation-list is computed, tuples
that fail qualification are discarded, ‘unnecessary’ fields
are deleted, and the remaining tuples are partitioned
into groups by the value of attributes in grouping-list.

w The group-qualification is then applied to eliminate
some groups. Expressions in group-qualification must
have a single value per group!

- In effect, an attribute in group-qualification that is not an

argument of an aggregate op also appears in grouping-list.
(SQL does not exploit primary key semantics here!)

w One answer tuple is generated per qualifying group.

Database Systems, R. i and J. Gehrke 20

Find the age of the youngest sailor with age 18,
r each rating with at least 2 such sailors

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

71 | zorba 10 16.0

64 horatio 7 350

29 brutus 1 330

w Only S.rating and S.age are 58 rusty 10 350
mentioned in the SELECT,
GROUP BY or HAVING clauses; 1 R0
other attributes “unnecessary’. 7 450 [rating

w 2nd column of result is 7 30 | 7 380
unnamed. (Use AS to name it.) 8 55

10 350| Answer relation21

SELECT S.rating, MIN (S.age)
FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

Database ystems, R. Ramakrishnan and J. Gehrke

Foreach red boat, find the number of
\eservations for this boat

SELECT B.bid, COUNT (*) AS scount

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid AND B.color="red”
GROUP BY B.bid

w Grouping over a join of three relations.
w What do we get if we remove B.color="red’
from the WHERE clause and add a HAVING
clause with this condition?
w What if we drop Sailors and the condition
involving S.sid?
Database ystems, R. krishnan and J. Gehrke 2

Find the age of the youngest sailor with age > 18,

or each rating with at least 2 sailors (of any age)
SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
FROM Sailors S2
WHERE S.rating=S2.rating)
w Shows HAVING clause can also contain a subquery.

w Compare this with the query where we considered
only ratings with 2 sailors over 18!

w What if HAVING clause is replaced by:
- HAVING COUNT(¥) >1

Database ystems, R. i and J. Gehrke 23

Find those ratings for which the average
\Qge is the minimum over all ratings

w Aggregate operations cannot be nested! WRONG:

SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

w Correct solution (in SQL/92):

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
GROUP BY S.rating) AS Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
FROM Temp)
Database Systems, R. i and J. Gehrke 24

Null Values
@ m values in a tuple are sometimes unknown (e.g., a

rating has not been assigned) or inapplicable (e.g., no
spouse’s name).
- SQL provides a special value null for such situations.
w The presence of null complicates many issues. E.g.:
- Special operators needed to check if value is/is not null.

- Is rating>8 true or false when rating is equal to null? What
about AND, OR and NOT connectives?

- Weneed a 3-valued logic (true, false and unknown).

- Meaning of constructs must be defined carefully. (e.g.,
WHERE clause eliminates rows that don’t evaluate to true.)

- New operators (in particular, outer joins) possible /needed.
Database Systems, R. i and J. Gehrke 25

Embedded SQL

o SQL commands can be called from within a
host language (e.g., C or COBOL) program.

- SQL statements can refer to host variables
(including special variables used to return status).

- Must include a statement to connect to the right
database.
w SQL relations are (multi-) sets of records, with
no a priori bound on the number of records.
No such data structure in C.

- SQL supports a mechanism called a cursor to
handle this.

Database Systems, R. i and J. Gehrke 26

Cursors

w Can declare a cursor on a relation or query
statement (which generates a relation).

w Can open a cursor, and repeatedly fetch a tuple then
move the cursor, until all tuples have been retrieved.
- Can use a special clause, called ORDER BY, in queries that
are accessed through a cursor, to control the order in
which tuples are returned.
v Fields in ORDER BY clause must also appear in SELECT clause.
- The ORDER BY clause, which orders answer tuples, is only
allowed in the context of a cursor.
w Can also modify/delete tuple pointed to by a cursor.

Database ystems, R. krishnan and J. Gehrke 27

Cursor that gets names of sailors who’ve
\eserved a red boat, in alphabetical order

EXEC SQL DECLARE sinfo CURSOR FOR
SELECT S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color="red”
ORDER BY S.sname

w Note that it is illegal to replace S.sname by, say,
S.sid in the ORDER BY clause! (Why?)

w Can we add S.sid to the SELECT clause and
replace S.sname by S.sid in the ORDER BY clause?

Database ystems, R. krishnan and J. Gehrke 28

Embedding SQL in C: An Example

\ char SQLSTATE[6] ;

EXEC SQL BEG N DECLARE SECTI ON
char c_snane[20]; short c_minrating; float c_age;
EXEC SQL END DECLARE SECTI ON
c_minrating = randon();
EXEC SQL DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age FROM Sailors S
WHERE S.rating > :c_minrating
ORDER BY S. snane;
do {
EXEC SQL FETCH sinfo INTO :c_snane, :c_age;
printf(“% is %l years old\n”, c_snanme, c_age);

} while (SQLSTATE != ‘02000');
EXEC SQ. CLOSE sinfo;
Database ystems, R. i and J. Gehrke 29

Database APIs: Alternative to
\3mbedding

Rather than modify compiler, add library with database
calls (APT)

w special standardized interface: procedures/objects

w passes SQL strings from language, presents result
sets in a language-friendly way

w Microsoft’s ODBC becoming C/C++ standard on
Windows

w Sun’s [DBC a Java equivalent

w Supposedly DBMS-neutral

- a “driver” traps the calls and translates them into DBMS-
specific code

- database can be across a network

Database Systems, R. i and J. Gehrke 30

SQL API in Java (JDBC)

thion con = // connect
DriverManager.getConnection(url, "login", "pass");

Statement stmt = con.createStatement(); // set up stmt
string query = "SELECT name, rating FROM Sailors";
ResultSet rs = stmt.executeQuery(query);
try { // handle exceptions
// 1oop through result tuples
while (rs.next()) {
Sstring s = rs.getstring(“name");
Int n = rs.getFloat(“rating");
system.out.printin(s + " " +n);
}
} catch(sQLException ex) {
System.out.println(ex.getMessage ()
+ ex.getsqQLstate () + ex.getErrorcCode ());
}

Database Systems, R. i and J. Gehrke 31

Integrity Constraints (Review)

w An IC describes conditions that every legal instance
of a relation must satisfy.
- Inserts/deletes /updates that violate IC’s are disallowed.
- Can be used to ensure application semantics (e.g., sid is a
key), or prevent inconsistencies (e.g., sname has to be a
string, age must be < 200)
w Types of IC’s: Domain constraints, primary key
constraints, foreign key constraints, general
constraints.

- Domain constraints: Field values must be of right type.
Always enforced.

Database Systems, R. i and J. Gehrke 32

CREATE TABLE Sailors
. ('sid INTEGER,
General Constraints — sname crar(o),

\ rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >=1
AND rating <=10)

w Useful when
more general
ICs than keys

are involved. CREATE TABLE Reserves

(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT nolnterlakeRes
be named. CHECK (‘Interlake” <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))

Database ystems, R. krishnan and J. Gehrke 33

w Can use queries
to express
constraint.

w Constraints can

Constraints Over Multiple Relations

CREATE TABLE Sailors
('sid INTEGER,
sname CHAR(10),
rating INTEGER,

Number of boats
plus number of

w Awkward and sailors is < 100

wrong!

o age REAL,
w If Sailors is PRIMARY KEY (sid)
empty, the CHECK
number of Boats . .
tuples can be ((SELECT COUNT (S.sid) FROM Sailors S)
anything! + (SELECT COUNT (B.bid) FROM Boats B) < 100

@ ASSERTION is the
right solution; ~ CREATE ASSERTION smallClub

not associated CHECK
with either table. ((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100

Database ystems, R. krishnan and J. Gehrke 34

\T riggers

w Trigger: procedure that starts automatically if
specified changes occur to the DBMS

w Three parts:
- Event (activates the trigger)
- Condition (tests whether the triggers should run)
- Action (what happens if the trigger runs)

Database ystems, R. i and J. Gehrke 35

\T riggers: Example (SQL:1999)

CREATE TRIGGER youngSailorUpdate
AFTER INSERT ON SAILORS
REFERENCING NEW TABLE NewSailors
FOR EACH STATEMENT
INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18

Database Systems, R. i and J. Gehrke 36

Summary
mh‘ was an important factor in the early acceptance

of the relational model; more natural than earlier,
procedural query languages.

w Relationally complete; in fact, significantly more
expressive power than relational algebra.

w Even queries that can be expressed in RA can often
be expressed more naturally in SQL.

w Many alternative ways to write a query; optimizer
should look for most efficient evaluation plan.

- In practice, users need to be aware of how queries are
optimized and evaluated for best results.

and J. Gehrke

Database Systems, R.

37

\Sjummary (Contd.)

© LL for unknown field values brings many
complications

w Embedded SQL allows execution within a host
language; cursor mechanism allows retrieval of
one record at a time

w APIs such as ODBC and ODBC introduce a layer
of abstraction between application and DBMS

w SQL allows specification of rich integrity
constraints

w Triggers respond to changes in the database

Database Systems, R. and J. Gehrke 38

