\Introduction

0 Data is stored at several sites, each managed
by a DBMS that can run independently.

0 Distributed Data Independence: Users
should not have to know where data is
located (extends Physical and Logical Data
Independence principles).

0 Distributed Transaction Atomicity: Users
should be able to write Xacts accessing
multiple sites just like local Xacts.

Database Management Systems, 2:4 Edition. R. Ramakrishnan and Johannes Gehrke 2

Distributed Databases
Chapter 21, Part B
Database Systems, 2 Edition. R. i and Johannes Gehrke 1
\Recent Trends

0 Users have to be aware of where data is
located, i.e., Distributed Data Independence
and Distributed Transaction Atomicity are
not supported.

[m]

These properties are hard to support
efficiently.

[m]

For globally distributed sites, these properties
may not even be desirable due to
administrative overheads of making location
of data transparent.

Database ystems, 214 Edition. R. ishnan and Johannes Gehrke 3

\T ypes of Distributed Databases

0 Homogeneous: Every site runs same type of
DBMS.

0 Heterogeneous: Different sites run different
DBMSs (different RDBMSs or even non-
relational DBMSs).

o | [o

Database Management Systems, 24 Edition. R. Ramakrishnan and Johannes Gehrke 4

Gateway

Distributed DBMS Architectures

QUERY —
0 Client-Server

Client ships query -

to single site. All query S~
processing at server. Sa
- Set-oriented
communication,

client side caching.

0 Collaborating-Server -
Query can span multiple
sites.

QUERY
Database Systems, 2+ Edition. R. ishnan and Johannes Gehrke

\S toring Data 1,

0 Fragmentation
— Horizontal: Usually disjoint.

- Vertical: Lossless-join; tids.
0 Replication

— Gives increased availability.

SITE A

- Faster query evaluation.
- Synchronous vs. Asynchronous.
0 Vary in how current copies are.

Database Management Systems, 2+ Edition. R. Ramakrishnan and Johannes Gehrke

\Distributed Catalog Management

0 Must keep track of how data is distributed
across sites.
0 Must be able to name each replica of each
fragment. To preserve local autonomy:
— <local-name, birth-site>
0 Site Catalog: Describes all objects (fragments,
replicas) at a site + Keeps track of replicas of
relations created at this site.
— To find a relation, look up its birth-site catalog.
— Birth-site never changes, even if relation is moved.

Database Systems, 2 Edition. R. i and Johannes Gehrke 7

SELECT AVG(S.age)
g : H FROM Sailors S
\Dzstrzbuted QuUeries | \pRe s rating > 3

AND S.rating <7

0 Horizontally Fragmented: Tuples with rating
<5 at Shanghai, >= 5 at Tokyo.
— Must compute SUM(age), COUNT(age) at both sites.
— If WHERE contained just S.rating>6, just one site.
0 Vertically Fragmented: sid and rating at
Shanghai, sname and age at Tokyo, tid at both.
— Must reconstruct relation by join on tid, then
evaluate the query.
0 Replicated: Sailors copies at both sites.
— Choice of site based on local costs, shipping costs.

Database Management Systems, 24 Edition. R. Ramakrishnan and Johannes Gehrke

LONDON PARIS

Distributed Joins
\ 500 pages 1000 pages
0 Fetch as Needed, Page NL, Sailors as outer:

— Cost: 500 D + 500 * 1000 (D+S)

— D is cost to read /write page; S is cost to ship page.

— If query was not submitted at London, must add
cost of shipping result to query site.

— Can also do INL at London, fetching matching

Reserves tuples to London as needed.
0 Ship to One Site: Ship Reserves to London.
— Cost: 1000 S + 4500 D (SM Join; cost = 3*(500+1000))

— If result size is very large, may be better to ship both
relations to result site and then join them!
Database jystems, 2 Edition. R. krishnan and Johannes Gehrke

Semijoin
0 AtLondon, project Sailors onto join columns and
ship this to Paris.
0 At Paris, join Sailors projection with Reserves.
— Result is called reduction of Reserves wrt Sailors.
0 Ship reduction of Reserves to London.
0 At London, join Sailors with reduction of Reserves.
0 Idea: Tradeoff the cost of computing and shipping
projection and computing and shipping projection
for cost of shipping full Reserves relation.
0 Especially useful if there is a selection on Sailors,

and answer desired at London.
Database Management Systems, 2°¢ Edition. R. Ramakrishnan and Johannes Gehrke

Bloomjoin

0 At London, compute a bit-vector of some size k:

- Hash join column values into range 0 to k-1.

— If some tuple hashes to I, set bit I to 1 (I from 0 to k-1).

— Ship bit-vector to Paris.
0 At Paris, hash each tuple of Reserves similarly, and

discard tuples that hash to 0 in Sailors bit-vector.

— Result is called reduction of Reserves wrt Sailors.
0 Ship bit-vector reduced Reserves to London.
0 At London, join Sailors with reduced Reserves.
0 Bit-vector cheaper to ship, almost as effective.

Database ystems, 214 Edition. R. ishnan and Johannes Gehrke

Distributed Query Optimization

0 Cost-based approach; consider all plans, pick
cheapest; similar to centralized optimization.
- Difference 1: Communication costs must be
considered.
— Difference 2: Local site autonomy must be
respected.
- Difference 3: New distributed join methods.

local plans describing processing at each site.

Database Management Systems, 2+ Edition. R. Ramakrishnan and Johannes Gehrke

0 Query site constructs global plan, with suggested

— If a site can improve suggested local plan, free to do so.

12

Updating Distributed Data

0 Synchronous Replication: All copies of a
modified relation (fragment) must be
updated before the modifying Xact commits.

— Data distribution is made transparent to users.

0 Asynchronous Replication: Copies of a
modified relation are only periodically
updated; different copies may get out of
synch in the meantime.

— Users must be aware of data distribution.
— Current products follow this approach.

Database Systems, 2 Edition. R. and Johannes Gehrke 13

\Cost of Synchronous Replication

0 Before an update Xact can commit, it must
obtain locks on all modified copies.

— Sends lock requests to remote sites, and while
waiting for the response, holds on to other locks!

— If sites or links fail, Xact cannot commit until they
are back up.
— Even if there is no failure, committing must follow
an expensive commit protocol with many msgs.
0 So the alternative of asynchronous replication is
becoming widely used.

Database ystems, 27 Edition. R.

and Johannes Gehrke 15

Synchronous Replication

0 Voting: Xact must write a majority of copies to
modify an object; must read enough copies to be
sure of seeing at least one most recent copy.

- E.g., 10 copies; 7 written for update; 4 copies read.
— Each copy has version number.
— Not attractive usually because reads are common.

0 Read-any Write-all: Writes are slower and reads
are faster, relative to Voting.

— Most common approach to synchronous replication.

0 Choice of technique determines which locks to set.

14

Database Management Systems, 24 Edition. R. Ramakrishnan and Johannes Gehrke

\Asynchronous Replication

0 Allows modifying Xact to commit before all
copies have been changed (and readers
nonetheless look at just one copy).

— Users must be aware of which copy they are
reading, and that copies may be out-of-sync for
short periods of time.

0 Two approaches: Primary Site and Peer-to-
Peer replication.

— Difference lies in how many copies are
“updatable” or ““master copies”.

Database Management Systems, 2°¢ Edition. R. Ramakrishnan and Johannes Gehrke

Peer-to-Peer Replication

0 More than one of the copies of an object can be a
master in this approach.

0 Changes to a master copy must be propagated
to other copies somehow.

0 If two master copies are changed in a conflicting
manner, this must be resolved. (e.g., Site 1: Joe’s
age changed to 35; Site 2: to 36)

0 Best used when conflicts do not arise:

— E.g., Each master site owns a disjoint fragment.
- E.g., Updating rights owned by one master at a time.

Database ystems, 214 Edition. R. and Johannes Gehrke

Primary Site Replication

0 Exactly one copy of a relation is designated the
primary or master copy. Replicas at other sites
cannot be directly updated.

— The primary copy is published.
— Other sites subscribe to (fragments of) this
relation; these are secondary copies.

0 Main issue: How are changes to the primary copy
propagated to the secondary copies?

— Done in two steps. First, capture changes made
by committed Xacts; then apply these changes.

Database Management Systems, 2+ Edition. R. Ramakrishnan and Johannes Gehrke

Implementing the Capture Step

0 Log-Based Capture: The log (kept for recovery)
is used to generate a Change Data Table (CDT).
— If this is done when the log tail is written to disk,
must somehow remove changes due to subsequently
aborted Xacts.

0 Procedural Capture: A procedure that is
automatically invoked (trigger; more later!)
does the capture; typically, just takes a
snapshot.

0 Log-Based Capture is better (cheaper, faster)
but relies on proprietary log details.

Database Systems, 2 Edition. R. i and Johannes Gehrke 19

\{mplementing the Apply Step

0 The Apply process at the secondary site periodically
obtains (a snapshot or) changes to the CDT table
from the primary site, and updates the copy.

— Period can be timer-based or user/application defined.

0 Replica can be a view over the modified relation!

— If so, the replication consists of incrementally updating
the materialized view as the relation changes.

0 Log-Based Capture plus continuous Apply
minimizes delay in propagating changes.

0 Procedural Capture plus application-driven Apply
is the most flexible way to process changes.

Database Management Systems, 2:4 Edition. R. Ramakrishnan and Johannes Gehrke 20

\I?ata Warehousing and Replication
u]

hot trend: Building giant “warehouses” of
data from many sites.

— Enables complex decision support queries
over data from across an organization.

0 Warehouses can be seen as an instance of
asynchronous replication.

— Source data typically controlled by different DBMSs;
emphasis on “cleaning” data and removing
mismatches ($ vs. rupees) while creating replicas.

0 Procedural capture and application Apply best
for this environment.

Database ystems, 214 Edition. R. krishnan and Johannes Gehrke 21

\{Distributed Locking
O

ow do we manage locks for objects across
many sites?
— Centralized: One site does all locking.
0 Vulnerable to single site failure.
— Primary Copy: All locking for an object
done at the primary copy site for this object.
0 Reading requires access to locking site as well as
site where the object is stored.
— Fully Distributed: Locking for a copy done
at site where the copy is stored.

0 Locks at all sites while writing an object.
Database Management Systems, 2°¢ Edition. R. Ramakrishnan and Johannes Gehrke 22

\DEistributed Deadlock Detection

0 ‘Each site maintains a local waits-for graph.

0 A global deadlock might exist even if the
local graphs contain no cycles:

-0 00909

SITEA SITEB GLOBAL

0 Three solutions: Centralized (send all local graphs
to one site); Hierarchical (organize sites into a
hierarchy and send local graphs to parent in the
hierarchy); Timeout (abort Xact if it waits too long).

Database ystems, 214 Edition. R. ishnan and Johannes Gehrke 23

\Distributed Recovery

0 Two new issues:

— New kinds of failure, e.g., links and remote
sites.

— If “sub-transactions” of an Xact execute at
different sites, all or none must commit.
Need a commit protocol to achieve this.

0 A log is maintained at each site, as in a
centralized DBMS, and commit protocol
actions are additionally logged.

Database Management Systems, 224 Edition. R. Ramakrishnan and Johannes Gehrke 24

gwo—Phase Commit (2PC)
0

e at which Xact originates is coordinator; other
sites at which it executes are subordinates.

0 When an Xact wants to commit:

O Coordinator sends prepare msg to each subordinate.

0 Subordinate force-writes an abort or prepare log record
and then sends a no or yes msg to coordinator.

0 If coordinator gets unanimous yes votes, force-writes a
commit log record and sends commit msg to all subs.
Else, force-writes abort log rec, and sends abort msg.

0 Subordinates force-write abort/commit log rec based
on msg they get, then send ack msg to coordinator.

0O Coordinator writes end log rec after getting all acks.

Database Systems, 2 Edition. R. i and Johannes Gehrke 25

\Comments on 2PC

0 Two rounds of communication: first, voting; then,
termination. Both initiated by coordinator.

0 Any site can decide to abort an Xact.

0 Every msg reflects a decision by the sender; to
ensure that this decision survives failures, it is
first recorded in the local log.

0 All commit protocol log recs for an Xact contain
Xactid and Coordinatorid. The coordinator’s
abort/commit record also includes ids of all
subordinates.

Database Management Systems, 2°¢ Edition. R. Ramakrishnan and Johannes Gehrke 26

Restart After a Failure at a Site
BV

If'we have a commit or abort log rec for Xact T, but
not an end rec, must redo/undo T.

— If this site is the coordinator for T, keep sending
commit/abort msgs to subs until acks received.

0 If we have a prepare log rec for Xact T, but not
commit/abort, this site is a subordinate for T.

— Repeatedly contact the coordinator to find status of T,
then write commit/abort log rec; redo/undo T; and write
end log rec.

0 If we don’t have even a prepare log rec for T,
unilaterally abort and undo T.

— This site may be coordinator! If so, subs may send msgs.
Database ystems, 27 Edition. R. krishnan and Johannes Gehrke 27

\Blocking

0 If coordinator for Xact T fails, subordinates
who have voted yes cannot decide whether to
commit or abort T until coordinator recovers.

— T is blocked.

— Even if all subordinates know each other
(extra overhead in prepare msg) they are
blocked unless one of them voted no.

Database Management Systems, 2°¢ Edition. R. Ramakrishnan and Johannes Gehrke 28

Link and Remote Site Failures

0 If a remote site does not respond during the
commit protocol for Xact T, either because the
site failed or the link failed:

— If the current site is the coordinator for T,
should abort T.

— If the current site is a subordinate, and has
not yet voted yes, it should abort T.

— If the current site is a subordinate and has
voted yes, it is blocked until the
coordinator responds.

Database ystems, 214 Edition. R. ishnan and Johannes Gehrke 29

\Obserwtions on 2PC

0 Ack msgs used to let coordinator know when
it can “forget” an Xact; until it receives all
acks, it must keep T in the Xact Table.

0 If coordinator fails after sending prepare
msgs but before writing commit/abort log
recs, when it comes back up it aborts the Xact.

0 If a subtransaction does no updates, its
commit or abort status is irrelevant.

Database Management Systems, 2°¢ Edition. R. Ramakrishnan and Johannes Gehrke 30

2PC with Presumed Abort

0 When coordinator aborts T, it undoes T and
removes it from the Xact Table immediately.

— Doesn’t wait for acks; “presumes abort” if Xact not in
Xact Table. Names of subs not recorded in abort log
rec.

0 Subordinates do not send acks on abort.

0 If subxact does not do updates, it responds to
prepare msg with reader instead of yes/no.

0 Coordinator subsequently ignores readers.
0 If all subxacts are readers, 2nd phase not needed.

Database Systems, 2 Edition. R. and Johannes Gehrke

31

\Gummary

0 Parallel DBMSs designed for scalable
performance. Relational operators very well-
suited for parallel execution.

— Pipeline and partitioned parallelism.

0 Distributed DBMSs offer site autonomy and
distributed administration. Must revisit
storage and catalog techniques, concurrency
control, and recovery issues.

Database Management Systems, 24 Edition. R. Ramakrishnan and Johannes Gehrke

32

