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Introduction to Database Systems 
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What Is a DBMS? 

v A very large, integrated collection of data. 

v Models real-world enterprise. 

–  Entities (e.g., students, courses) 

–  Relationships (e.g., Madonna is taking CS564) 

v A Database Management System (DBMS) is a 
software package designed to store and 
manage databases. 
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Why Use a DBMS? 

v Data independence and efficient access. 

v Reduced application development time. 

v Data integrity and security. 

v Uniform data administration. 

v Concurrent access, recovery from crashes. 
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Why Study Databases?? 

v Shift from computation to information 

– at the “low end”: scramble to webspace (a mess!) 

– at the “high end”: scientific applications 

v Datasets increasing in diversity and volume.   

– Digital libraries, interactive video, Human 
Genome project, EOS project   

– ...  need for DBMS exploding 

v DBMS encompasses most of CS 

– OS, languages, theory, “A”I,  multimedia, logic 

? 
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Data Models 

v A data model  is a collection of concepts for 
describing data. 

v A schema is a description of a particular 
collection of data, using the given data model. 

v The relational model of data is the most widely 
used model today. 

– Main concept:  relation, basically a table with rows 
and columns. 

– Every relation has a schema, which describes the 
columns, or fields. 
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Levels of Abstraction 

v Many views, single 
conceptual (logical) schema 
and physical schema. 

– Views describe how users 
see the data.                                         

– Conceptual schema defines 
logical structure 

– Physical schema describes 
the files and indexes used. 

* Schemas are defined using DDL; data is modified/queried using DML. 

Physical Schema 

Conceptual Schema 

View 1 View 2 View 3 
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Example: University Database 

v Conceptual schema:                   

–  Students(sid: string, name: string, login: string,  

     age: integer, gpa:real) 

–  Courses(cid: string, cname:string, credits:integer)  

–  Enrolled(sid:string, cid:string, grade:string) 

v Physical schema: 

– Relations stored as unordered files.  

– Index on first column of Students. 

v External Schema (View):  

– Course_info(cid:string,enrollment:integer) 
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Data Independence 

v Applications insulated from how data is 
structured and stored. 

v Logical data independence:  Protection from 
changes in logical structure of data. 

v Physical data independence:   Protection from 
changes in physical structure of data. 

* One of the most important benefits of using a DBMS! 
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Concurrency Control 

v Concurrent execution of user programs             
is essential for good DBMS performance. 
– Because disk accesses are frequent, and relatively 

slow, it is important to keep the CPU humming by 
working on several user programs concurrently. 

v Interleaving actions of different user programs 
can lead to inconsistency: e.g., check is cleared 
while account balance is being computed. 

v DBMS ensures such problems don’t arise:  users 
can pretend they are using a single-user system. 
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Transaction: An Execution of a DB Program 

v Key concept is transaction, which is an atomic 
sequence of database actions (reads/writes). 

v Each transaction, executed completely, must 
leave the DB in a consistent state if DB is 
consistent when the transaction begins. 

– Users can specify some simple integrity constraints on 
the data, and the DBMS will enforce these constraints. 

– Beyond this, the DBMS does not really understand the 
semantics of the data.  (e.g., it does not understand 
how the interest on a bank account is computed). 

– Thus, ensuring that a transaction (run alone) preserves 
consistency is ultimately the user’s responsibility! 



Database Management Systems, R. Ramakrishnan and J. Gehrke 11 

Scheduling Concurrent Transactions 

v DBMS ensures that execution of {T1, ... , Tn} is 
equivalent to some serial execution T1’ ... Tn’. 

– Before reading/writing an object, a transaction requests 
a lock on the object, and waits till the DBMS gives it the 
lock.  All locks are released at the end of the transaction.  
(Strict 2PL locking protocol.) 

– Idea: If an action of Ti (say, writing X) affects Tj (which 
perhaps reads X), one of them, say Ti, will obtain the 
lock on X first and Tj is forced to wait until Ti completes; 
this effectively orders the transactions. 

– What if Tj already has a lock on Y and Ti later requests a 
lock on Y? (Deadlock!) Ti or Tj is aborted and restarted!  
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Ensuring Atomicity 

v DBMS ensures atomicity (all-or-nothing property) 
even if system crashes in the middle of a Xact. 

v Idea: Keep a log (history) of all actions carried out 
by the DBMS while executing a set of Xacts: 

– Before a change is made to the database, the 
corresponding log entry is forced to a safe location.  
(WAL protocol; OS support for this is often inadequate.) 

– After a crash, the effects of partially executed 
transactions are undone using the log. (Thanks to WAL, if 
log entry wasn’t saved before the crash, corresponding 
change was not applied to database!) 
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The Log 

v The following actions are recorded in the log: 

– Ti writes an object:  the old value and the new value. 
u Log record must go to disk before the changed page! 

– Ti commits/aborts:  a log record indicating this action. 

v Log records chained together by Xact id, so it’s easy to 
undo a specific Xact (e.g., to resolve a deadlock). 

v Log is often duplexed and archived on “stable” storage. 

v All log related activities (and in fact, all CC related 
activities such as lock/unlock, dealing with deadlocks 
etc.) are handled transparently by the DBMS. 
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Databases make these folks happy ... 

v End users and DBMS vendors 

v DB application programmers 

– E.g. smart webmasters 

v Database administrator (DBA) 

– Designs logical /physical schemas 

– Handles security and authorization 

– Data availability, crash recovery  

– Database tuning as needs evolve 

Must understand how a DBMS works! 
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Structure of a DBMS 

v A typical DBMS has a 
layered architecture. 

v The figure does not 
show the concurrency 
control and recovery 
components. 

v This is one of several 
possible architectures; 
each system has its own 
variations. 

Query Optimization 

and Execution 

Relational Operators 

Files and Access Methods 

Buffer Management 

Disk Space Management 

DB 

These layers 

must consider 

concurrency 

control and 

recovery 
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Summary 

v DBMS used to maintain, query large datasets. 

v Benefits include recovery from system crashes, 
concurrent access, quick application 
development, data integrity and security. 

v Levels of abstraction give data independence. 

v A DBMS typically has a layered architecture. 

v DBAs hold responsible jobs                                
and are well-paid! 

v DBMS R&D is one of the broadest,                                              
most exciting areas in CS. 


