
Database Management Systems, R. Ramakrishnan and J. Gehrke 1

Introduction to Database Systems

Chapter 1

Instructor: Walid G. Aref
aref@cs.Purdue.edu

Database Management Systems, R. Ramakrishnan and J. Gehrke 2

What Is a DBMS?

v A very large, integrated collection of data.

v Models real-world enterprise.

– Entities (e.g., students, courses)

– Relationships (e.g., Madonna is taking CS564)

v A Database Management System (DBMS) is a
software package designed to store and
manage databases.

Database Management Systems, R. Ramakrishnan and J. Gehrke 3

Why Use a DBMS?

v Data independence and efficient access.

v Reduced application development time.

v Data integrity and security.

v Uniform data administration.

v Concurrent access, recovery from crashes.

Database Management Systems, R. Ramakrishnan and J. Gehrke 4

Why Study Databases??

v Shift from computation to information

– at the “low end”: scramble to webspace (a mess!)

– at the “high end”: scientific applications

v Datasets increasing in diversity and volume.

– Digital libraries, interactive video, Human
Genome project, EOS project

– ... need for DBMS exploding

v DBMS encompasses most of CS

– OS, languages, theory, “A”I, multimedia, logic

?

Database Management Systems, R. Ramakrishnan and J. Gehrke 5

Data Models

v A data model is a collection of concepts for
describing data.

v A schema is a description of a particular
collection of data, using the given data model.

v The relational model of data is the most widely
used model today.

– Main concept: relation, basically a table with rows
and columns.

– Every relation has a schema, which describes the
columns, or fields.

Database Management Systems, R. Ramakrishnan and J. Gehrke 6

Levels of Abstraction

v Many views, single
conceptual (logical) schema
and physical schema.

– Views describe how users
see the data.

– Conceptual schema defines
logical structure

– Physical schema describes
the files and indexes used.

* Schemas are defined using DDL; data is modified/queried using DML.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Database Management Systems, R. Ramakrishnan and J. Gehrke 7

Example: University Database

v Conceptual schema:

– Students(sid: string, name: string, login: string,

 age: integer, gpa:real)

– Courses(cid: string, cname:string, credits:integer)

– Enrolled(sid:string, cid:string, grade:string)

v Physical schema:

– Relations stored as unordered files.

– Index on first column of Students.

v External Schema (View):

– Course_info(cid:string,enrollment:integer)

Database Management Systems, R. Ramakrishnan and J. Gehrke 8

Data Independence

v Applications insulated from how data is
structured and stored.

v Logical data independence: Protection from
changes in logical structure of data.

v Physical data independence: Protection from
changes in physical structure of data.

* One of the most important benefits of using a DBMS!

Database Management Systems, R. Ramakrishnan and J. Gehrke 9

Concurrency Control

v Concurrent execution of user programs
is essential for good DBMS performance.
– Because disk accesses are frequent, and relatively

slow, it is important to keep the CPU humming by
working on several user programs concurrently.

v Interleaving actions of different user programs
can lead to inconsistency: e.g., check is cleared
while account balance is being computed.

v DBMS ensures such problems don’t arise: users
can pretend they are using a single-user system.

Database Management Systems, R. Ramakrishnan and J. Gehrke 10

Transaction: An Execution of a DB Program

v Key concept is transaction, which is an atomic
sequence of database actions (reads/writes).

v Each transaction, executed completely, must
leave the DB in a consistent state if DB is
consistent when the transaction begins.

– Users can specify some simple integrity constraints on
the data, and the DBMS will enforce these constraints.

– Beyond this, the DBMS does not really understand the
semantics of the data. (e.g., it does not understand
how the interest on a bank account is computed).

– Thus, ensuring that a transaction (run alone) preserves
consistency is ultimately the user’s responsibility!

Database Management Systems, R. Ramakrishnan and J. Gehrke 11

Scheduling Concurrent Transactions

v DBMS ensures that execution of {T1, ... , Tn} is
equivalent to some serial execution T1’ ... Tn’.

– Before reading/writing an object, a transaction requests
a lock on the object, and waits till the DBMS gives it the
lock. All locks are released at the end of the transaction.
(Strict 2PL locking protocol.)

– Idea: If an action of Ti (say, writing X) affects Tj (which
perhaps reads X), one of them, say Ti, will obtain the
lock on X first and Tj is forced to wait until Ti completes;
this effectively orders the transactions.

– What if Tj already has a lock on Y and Ti later requests a
lock on Y? (Deadlock!) Ti or Tj is aborted and restarted!

Database Management Systems, R. Ramakrishnan and J. Gehrke 12

Ensuring Atomicity

v DBMS ensures atomicity (all-or-nothing property)
even if system crashes in the middle of a Xact.

v Idea: Keep a log (history) of all actions carried out
by the DBMS while executing a set of Xacts:

– Before a change is made to the database, the
corresponding log entry is forced to a safe location.
(WAL protocol; OS support for this is often inadequate.)

– After a crash, the effects of partially executed
transactions are undone using the log. (Thanks to WAL, if
log entry wasn’t saved before the crash, corresponding
change was not applied to database!)

Database Management Systems, R. Ramakrishnan and J. Gehrke 13

The Log

v The following actions are recorded in the log:

– Ti writes an object: the old value and the new value.
u Log record must go to disk before the changed page!

– Ti commits/aborts: a log record indicating this action.

v Log records chained together by Xact id, so it’s easy to
undo a specific Xact (e.g., to resolve a deadlock).

v Log is often duplexed and archived on “stable” storage.

v All log related activities (and in fact, all CC related
activities such as lock/unlock, dealing with deadlocks
etc.) are handled transparently by the DBMS.

Database Management Systems, R. Ramakrishnan and J. Gehrke 14

Databases make these folks happy ...

v End users and DBMS vendors

v DB application programmers

– E.g. smart webmasters

v Database administrator (DBA)

– Designs logical /physical schemas

– Handles security and authorization

– Data availability, crash recovery

– Database tuning as needs evolve

Must understand how a DBMS works!

Database Management Systems, R. Ramakrishnan and J. Gehrke 15

Structure of a DBMS

v A typical DBMS has a
layered architecture.

v The figure does not
show the concurrency
control and recovery
components.

v This is one of several
possible architectures;
each system has its own
variations.

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers

must consider

concurrency

control and

recovery

Database Management Systems, R. Ramakrishnan and J. Gehrke 16

Summary

v DBMS used to maintain, query large datasets.

v Benefits include recovery from system crashes,
concurrent access, quick application
development, data integrity and security.

v Levels of abstraction give data independence.

v A DBMS typically has a layered architecture.

v DBAs hold responsible jobs
and are well-paid!

v DBMS R&D is one of the broadest,
most exciting areas in CS.

