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Abstract—We describe a paradigm for designing paral-
lel algorithms via approximation, and illustrate it on the
b-EDGE COVER problem. A b-EDGE COVER of minimum weight
in a graph is a subset C of its edges such that at least a
specified number b(v) of edges in C is incident on each vertex
v, and the sum of the edge weights in C is minimum. The
GREEDY algorithm and a variant, the LSE algorithm, pro-
vide 3/2-approximation guarantees in the worst-case for this
problem, but these algorithms have limited parallelism. Hence
we design two new 2-approximation algorithms with greater
concurrency. The MCE algorithm reduces the computation of a
b-EDGE COVER to that of finding a b′-MATCHING, by exploiting
the relationship between these subgraphs in an approximation
context. The S-LSE is derived from the LSE algorithm using
static edge weights rather than dynamically computing effective
edge weights. This relaxation gives S-LSE a worse approxima-
tion guarantee but makes it more amenable to parallelization.
We prove that both the MCE and S-LSE algorithms compute
the same b-EDGE COVER with at most twice the weight of the
minimum weight edge cover. In practice, the 2-approximation
and 3/2-approximation algorithms compute edge covers of
weight within 10% the optimal. We implement three of the
approximation algorithms, MCE, LSE, and S-LSE, on shared
memory multi-core machines, including an Intel Xeon and an
IBM Power8 machine with 8 TB memory. The MCE algorithm
is the fastest of these by an order of magnitude or more. It
computes an edge cover in a graph with billions of edges in 20
seconds using two hundred threads on the IBM Power8. We
also show that the parallel depth and work can be bounded
for the SUITOR and b-SUITOR algorithms when edge weights
are random.

Keywords-b-EDGE COVER; b-MATCHING; Approximation Al-
gorithms; Parallel Algorithms.

I. INTRODUCTION

We consider a paradigm for designing practical parallel
algorithms for certain graph problems through approxi-
mation algorithms. Algorithms for solving these problems
exactly are impractical for massive graphs, and possess
little concurrency. Often approximation algorithms can solve
such problems faster in serial, but to take advantage of
parallelism, new algorithms that possess high degrees of
concurrency need to be designed.

We illustrate this paradigm by considering the minimum
weight b-EDGE COVER problem, where the objective is to
choose a subset of edges C in the graph such that at least
a specified number b(v) of edges in C is incident on each

vertex v. Subject to this restriction on the subset of edges,
we minimize the sum of the weights of the edges in C.
The closely related maximum weight b-MATCHING problem
chooses a subset of at most b(v) edges incident on each
vertex v to include in the matching, and then we maximize
the sum of the weights of the matched edges. We will
describe the complementary relationship between these two
problems for approximation algorithms.

The paradigm of designing approximation algorithms for
parallelism has been considered in the theoretical computer
science community for vertex and set cover problems by
Khuller, Vishkin and Young [14], and for facility location,
max cut, set cover, and low stretch spanning trees, by
Blelloch, Tangwongsan and coauthors, e.g., [3], [22]. The
idea underlying many of these parallel algorithms is that
a greedy algorithm chooses a most cost-effective element
in each iteration, and by allowing a small slack, a factor of
(1+ε), more elements can be selected at the cost of a slightly
worse approximation ratio. These are algorithms with poly-
logarithmic depth, and although some of them have linear
work requirements, there are no parallel implementations
that we know of.

The approximation paradigm for parallelism has been
previously employed for MATCHING and b-MATCHING
problems. The GREEDY algorithm for MATCHING does
not have much concurrency, and Preis [19] developed the
Locally Dominant edge algorithm, which was implemented
for shared-memory parallel machines by Manne and Bis-
seling [16]. Manne and Halappanavar [17] developed the
SUITOR algorithm, which has even more concurrency at
the expense of annulled proposals, and this algorithm was
extended to the b-SUITOR algorithm for b-MATCHINGS on
both shared-memory and distributed-memory computers by
our group [12], [13]. Azad et al. [1] have applied a 2/3− ε-
approximation algorithm for weighted perfect matchings
in bipartite graphs to compute good orderings for sparse
Gaussian elimination.

The minimum weight b-EDGE COVER problem is rich in
the space of approximation algorithms, and we consider four
such algorithms here. A GREEDY algorithm and a variant,
the LSE (locally subdominant edge) algorithm that we have
designed earlier, have 3/2-approximation ratios. Since these



algorithms do not have much parallelism, we describe new
2-approximation algorithms that are more concurrent. We
implement the new approximation algorithms on a multicore
shared-memory multiprocessor, and compare their perfor-
mance with the earlier 3/2-approximation algorithms for this
problem. Thus we trade off increased parallel performance
for a slightly higher worst-case approximation ratio. We
show that in practice nearly minimum weight edge covers
are obtained. In the next few paragraphs, we add more detail
to these statements.

The GREEDY algorithm for the b-EDGE COVER problem
requires the effective weight of each edge, which is the
weight of the edge divided the number of its endpoints that
do not yet have their b(.) values satisfied by edges included
in the cover. Thus initially this is half the weight of an edge
(u, v); it could then equal the weight of the edge, or become
infinite when the b(v) values of one or both of its endpoints
are satisfied. At each iteration, an edge with the minimum
value of the effective weight is added to the cover, and
the weights of neighboring edges are updated. The order
in which the edges are added to the cover and the dynamic
updates of the edge weights cause the algorithm to be not
amenable to parallelization.

Earlier, we have proposed a 3/2-approximation algorithm
called the LSE algorithm [11], which relaxes the order
in which edges are added to the cover, making it more
concurrent. An edge (u, v) is locally sub-dominant if it
has the minimum weight among all edges incident on its
endpoints u and v. The LSE algorithm adds a locally sub-
dominant edge to the cover, deletes this edge from the
graph, updates the effective weights of neighboring edges,
and updates the b(.) values of its endpoints. The algorithm
iterates until all b(.) values are satisfied. Unfortunately, the
dynamic weight update in the LSE algorithm makes the
parallel implementation inefficient. If we work with the
static edge weights instead of the dynamic effective weights,
we obtain a 2-approximation guarantee, while significantly
improving the run time performance and scalability. We call
this algorithm S-LSE, i.e., LSE with static edge weights and
no effective weight update, and this is a new contribution
in this paper. The S-LSE algorithm iteratively adds a set of
locally sub-dominant edges to the current edge cover.

Our earlier paper [11] discusses the GREEDY and LSE
algorithms in detail. Both algorithms have the effective
weight update step in common, and this weight update step
takes 85%− 90% of total time for the LSE algorithm. The
reason is that in any given iteration, the edges whose weight
need to be updated reside in different parts of the graph,
making the memory accesses for weight updates irregular,
causing loss of performance.

A major contribution of this paper is to describe a
new 2-approximation algorithm, the MCE algorithm for
b-EDGE COVER that first computes a b′-MATCHING, and
then takes the complement of the matched edges. (The value

of b′(v) = deg(v) − b(v), where deg(v) is the degree of
a vertex v.) There is a complementary relationship between
these problems in the context of optimal matchings and edge
covers, and we extend it to approximate solutions, discuss
the condition under which this relationship holds, and use it
to design the MCE algorithm.

We design parallel versions of the LSE, S-LSE and MCE
algorithms, and compare the run time performances of these
algorithms on Intel Xeon and IBM Power8 multiprocessors.
We show that the MCE algorithm is the fastest among these
algorithms both on serial and shared memory multi-threaded
processors, outperforming others by at least an order of
magnitude. The MCE algorithm employs the b-SUITOR al-
gorithm for computing a b′-MATCHING; the latter algorithm
scales to 16K cores of a distributed memory machine [13].
We show here that b-EDGE COVERS in a graph with billions
of edges can be computed in seconds with a Terabyte-scale
shared memory machine using hundreds of threads.

The rest of this paper is organized as follows. We provide
background on the b-EDGE COVER problem and its relation
to matchings in Section II. In Section III, we discuss our
proposed 2-approximation algorithms S-LSE and MCE.
Parallel implementations of these algorithms are described
in Section IV. The worst-case approximation guarantee of 2
for the MCE algorithm, and that the MCE and the LSE
algorithms compute the same edge cover, are proved in
Section V. The parallel depth and work of the SUITOR and
b-SUITOR algorithms on which the MCE algorithm depends,
are included in Section VI. Our experiments and results are
described in Section VII, and we conclude in Section VIII.

II. BACKGROUND

The well-known k-nearest neighbor graph construc-
tion to represent noisy and dense data is related to
the b-EDGE COVER problem. The formulation as a
b-EDGE COVER problem is more general, since instead of
using a uniform value of b, we can choose b(v) to depend on
each vertex v. Furthermore, as the work in this paper shows,
this construction creates redundant edges which may be
removed to obtain a sparser graph while satisfying the b(v)
constraints. Finally, our work shows that this construction
creates a subgraph whose weight can be proved to be at
most twice the minimum weight obtainable. We explore this
relationship in more detail in [20], and focus here on the
MCE and S-LSE algorithms.

The b-EDGE COVER problem arises in communication
or distribution problems where reliability is important, i.e.,
each communication node has to be “covered” several times
to increase reliability in the event of a communication
link failing [15]. We have also used a b-EDGE COVER
to solve the adaptive anonymity problem [6], where we
wish to publish a database, with individuals corresponding
to rows, features corresponding to columns, and we mask
a few elements before publication in order to satisfy the



privacy requirements of individuals. (Although [6] uses
b-MATCHINGS for k-anonymity, we have shown that it is the
b-EDGE COVER problem that should be used for adaptive
anonymity.)

An exact algorithm for the minimum weight
EDGE COVER problem can be obtained by reducing
it to the minimum weight perfect MATCHING problem,
as described in Schrijver [21]. This reduction makes a
second copy of the original graph G, and then connects
corresponding vertices in the two copies by an edge with
weight equal to twice the minimum weight of an edge
incident on the vertex in the original graph. (We call these
edges linking edges). A minimum weight perfect matching
in the latter can be transformed to a minimum weight edge
cover in the original graph by including the matched edges
in the original graph, and replacing every matched linking
edge by a lowest weight edge incident on that vertex.

Let b(V ) =
∑

v∈V b(v), β = maxv∈V b(v), n denote
the number of vertices, and m denote the number of
edges in a graph. An exact algorithm for b-MATCHING has
O(b(V ) m log n) time complexity, but this is impractically
slow for large graphs, and it does not have much concur-
rency. There have been no practical parallel algorithms and
implementations for b-EDGE COVER in earlier work.

A minimum weight b-EDGE COVER can be computed as
the complement of a b′-MATCHING, as described in the
Introduction. In earlier work, we have developed a 1/2-
approximation algorithm for b-MATCHING called b-SUITOR,
which is related to proposal based algorithms for the Stable
Fixtures problem, a variant of stable matchings. The serial
b-SUITOR algorithm has time complexity O(m log β), and
it is currently the fastest practical algorithm on serial, shared
memory, and distributed memory machines, scaling to 16K
cores or more [12], [13]. On serial machines, the b-SUITOR
algorithm is several orders of magnitude faster than earlier
exact algorithms for b-MATCHING; it is about 900 times
faster than an integer linear programming algorithm and 300
times faster than a belief propagation algorithm. We employ
the b-SUITOR algorithm to compute b-EDGE COVERS in this
paper, and hence will discuss it in more detail later.

The b-EDGE COVER problem is a special case of the
Set Multicover problem: Here we are given a collection of
subsets of a set, each with a cost, and we are required to
find a sub-collection of subsets of minimum total cost to
cover each element e in the set a specified number b(e)
times. If each subset has exactly two elements, then we have
the b-EDGE COVER problem. Chvatal [7] obtained an Hn

approximation algorithm for the minimum cost Set Cover
problem, where Hn is the n-th harmonic number. Dobson
[9] proposed an Ha-approximation algorithm using integer
programming for the minimum cost Set Multicover problem,
where a is the maximum number of elements in any subset.

III. NEW 2-APPROXIMATION ALGORITHMS

In this section, we introduce two 2-approximation algo-
rithms: i) S-LSE is the LSE algorithm without the effective
weight update step, and ii) MCE, the matching complement
edge cover algorithm, uses a b′-MATCHING to compute a
b-EDGE COVER.

A. S-LSE: LSE with no weight update

The S-LSE algorithm iteratively computes a set of locally
sub-dominant edges to add to the edge cover. Ties are broken
by prioritizing an edge with lower numbered endpoints.
In each iteration locally sub-dominant edges are uniquely
defined, and are independent of each other, i.e., they do not
share an endpoint. The algorithm iteratively finds a set of
locally sub-dominant edges, adds them to the edge cover and
updates b(v) values. These edges are marked as deleted from
the graph, and new locally dominant edges are identified. If
both endpoints of an edge have their b(v) values satisfied,
then it is marked as deleted from the graph. The algorithm
is described in Algorithm 1.

At each iteration, we calculate the set of locally sub-
dominant edges S as follows. Each vertex u sets a pointer
to the edge of least weight incident on it. If the end-
points of an edge point to each other, then the edge is
locally sub-dominant. We pick each such edge, add it to the
cover, remove it from further consideration, and decrement
the b(v) values of the end points. When the b(.) values
are satisfied for all vertices, we break the loop and then
do a post-processing step called the Redundant Edge Re-
moval step, which is described in the following subsection.
After the post-processing, the algorithm terminates with a
b-EDGE COVER, EC. The time complexity of the (serial)
algorithm is O(m log ∆), where ∆ is the maximum degree
of a vertex.

Algorithm 1 S-LSE(G(V,E,w), b)
1: EC = ∅
2: while b(.) constraints are not satisfied do
3: Compute locally sub-dominant edges S of G
4: for each (u, v) ∈ S do
5: EC = EC ∪ (u, v)
6: E = E \ (u, v)
7: for x ∈ {u, v} do
8: if b(x) > 0 then
9: b(x) = b(x)− 1

10: EC =Remove Redundant Edge(EC)
11: return b-EDGE COVER EC

1) Redundant Edges: We define a vertex u to be sat-
urated if u is covered by exactly b(u) edges, and super-
saturated if u is covered by more than b(u) edges in a
b-EDGE COVER C. An edge u, v ∈ C is redundant if both u
and v are super-saturated. The GREEDY, LSE and S-LSE



algorithms may have redundant edges. We can remove a
redundant edge (u, v) without violating the constraints on
b(.) and reduce the weight of the edge cover.

We illustrate redundant edges by an example shown in
Figure 1(a). We show a b-EDGE COVER computed using
S-LSE algorithm before the post-processing step on a graph
G, with b(u) = b(v) = b(w) = b(x) = b(y) = 1, and all
other vertices have b(.) = 2. It shows that all the edges will
be selected to be part of the edge cover. Figure 1(b) shows
the subgraph induced by the super-saturated vertices with
the redundant edges. If we remove (a, b) first, we can either
remove (c, d) or (d, e) without violating the constraints and
the resulting two possible solutions with their respective
cover weights are shown in Figure 1(c). This illustrates
that the order in which the algorithm removes redundant
edges could determine the edge cover and its weight. This
is not desirable in a parallel context because each vertex
will be processed by different threads, and the scheduling
of the threads depends on the underlying operating system.
Therefore, the solution may be different from one run to
another. We also want to remove heavier edges to obtain a
solution with the lowest possible weight.

We achieve both of these goals by removing locally
dominant edges in the subgraph induced by the redundant
edges. An edge u, v is a locally dominant edge if its weight
is maximum relative to the weights of all neighboring edges.
Similar to locally sub-dominant edges, with a consistent tie-
breaking scheme, the set of locally dominant edges is also
uniquely defined, i.e., it does not depend on the order in
which one processes a vertex. We consider the subgraph
induced by the redundant edges [Figure 1(b)], and iteratively
remove locally dominant edges. In the example described in
Figure 1(b), (b, c) and (d, e) are locally dominant edges. The
removal of these edges results in the b-EDGE COVER shown
in Figure 1(d); it has lower weight than the other two edge
covers shown in Figure 1(c), and is independent of the order
in which vertices are processed.

B. Relationship between b′-MATCHING and
b-EDGE COVER

We refer to b′-MATCHING instead of b-MATCHING to
avoid ambiguity in this subsection. Given a graph G =
(V,E, b), a minimum weight b-EDGE COVER can be ob-
tained from a maximum weight b′-MATCHING [21] as
follows:

1) For each vertex v, compute b′(v) = deg(v)− b(v).
2) Compute Mopt, a maximum weight b′-MATCHING.
3) Compute a b-EDGE COVER as the complement of the

matching: Copt = E \Mopt.
In this construction, steps 1 and 3 ensure that the com-

puted b-EDGE COVER is a valid cover, and the optimal-
ity of the cover depends on step 2. If we compute an
approximate b′-MATCHING, keeping steps 1 and 3 fixed,
then the solution to the b-EDGE COVER may not necessarily

(a) (b)

(c)

(d)

Figure 1. Removing redundant edges in a b-EDGE COVER. Subfigure
(b) shows the subgraph induced by the potential redundant edges, and
Subfigures (c) and (d) show different choices for edges to remove.

be an approximate solution for b-EDGE COVER. However,
we show that if the b′-MATCHING is computed using the
GREEDY algorithm (or an algorithm that matches locally
dominant edges), then the corresponding b-EDGE COVER
will satisfy 2-approximation bounds. We use b-SUITOR in
step 2 and propose a new 2-approximation algorithm for
b-EDGE COVER, and we call it the MCE algorithm.

Since b-SUITOR is an essential part of the MCE al-
gorithm, we briefly describe a serial version of it in Al-
gorithm 2. For more details, we refer the reader to our
papers [12], [13]. This algorithm extends the SUITOR al-
gorithm of Manne and Halappanavar [17] to b′-MATCHING.
We describe a recursive version of the algorithm since it
is easier to explain, although the versions we have imple-
mented use iteration rather than recursion. Here N(u) is
the adjacency list of u, S(u) is a priority queue of suitors
of a vertex u, and T (u) is an array of vertices that u has
extended proposals to. The algorithm processes all of the
vertices, and for each vertex u, it seeks to match up to b′(u)
neighbors. In each iteration a vertex u proposes to a heaviest
neighbor v it has not proposed to yet, if the weight W (u, v)



is heavier than the weight offered by the last (b′(v)-th) suitor
of v. If it fails to find a partner, then we break out of the
loop. If it succeeds in finding a partner x, then the algorithm
calls the function MakeSuitor to make u the Suitor of x.
This function updates the priority queue S(u) and the array
T (u). If when u proposes and becomes the Suitor of x, it
annuls the proposal of the previous Suitor of x, the vertex y,
then the algorithm looks for an eligible partner z for y, and
calls MakeSuitor recursively to make y a Suitor of z. The
vertex S(v).last has the lowest weight of the b′(v) suitors
of v; it is zero is there are fewer than b′(u) suitors. The time
complexity of the algorithm is O(m log β′).

Algorithm 2 b-SUITOR(G, b)
1: Create a min-priority heap S(v) of size b(v) for each v
2: for u ∈ V do
3: for i = 1 to b(u) do
4: x = arg max

v∈N(u)\T (u)

{W (u, v) : W (u, v)

> W (v, S(v).last)}
5: if x = NULL then
6: break
7: else
8: MakeSuitor(u, x)

return S

Algorithm 3 MakeSuitor(u, x)
1: y = S(x).last
2: S(x).insert(u)
3: T (u).insert(x)
4: if y 6= NULL then
5: T (y).remove(x)
6: z = arg max

v∈N(y)\T (y)

{W (y, v) : W (y, v)

> W (v, S(v).last)}
7: if z 6= NULL then
8: MakeSuitor(y, z)

IV. PARALLEL b-EDGE COVER ALGORITHMS

In this section, we describe the parallel multi-threaded
implementation of the MCE algorithm, using OpenMP for
parallelization. Both the MCE and S-LSE algorithms com-
pute identical edge covers, whether in serial or in parallel
(irrespective of the number of threads). The LSE algorithm
computes a different edge cover, but it also computes the
same cover on both serial and parallel machines. This is
a robust property of the parallel LSE, S-LSE, and MCE
algorithms considered here that the edge covers computed
are the same on serial and parallel machines. Tie-breaking
in edge weights might change the edge cover computed,
but it will not change the weight of the edge cover. Hence
repeating the experiment does not change cover weights.

All the algorithms use locks for synchronizing multiple
threads to ensure sequential consistency. We do not describe
multi-threaded shared memory versions of the S-LSE and
LSE algorithms here due to space limitations. The parallel
MCE algorithm is described in Algorithm 4. First, we
compute the b′ values for each vertex in parallel; next we call
the Parallel b-SUITOR algorithm with input b′; and finally,
we complement the matching by choosing the unmatched
edges incident on each vertex.

Algorithm 4 MCE(G(V,E,w), b)
1: EC = ∅
2: for v ∈ V in parallel do
3: b′(v) = max{0, δ(v)− b(v)}
4: M=Parallel b-SUITOR(G, b′)
5: for v ∈ V in parallel do
6: EC = EC ∪ {N(v) \M(v)}
7: return b-EDGE COVER EC

The parallel b-SUITOR algorithm is described in Algo-
rithm 5. It is the ”Delayed Partial” variant of the b-SUITOR
algorithm described in [13]. The algorithm maintains a
queue of unsaturated vertices Q for which it tries to find
partners during the current iteration of the while loop, and
also a queue of vertices Q′ whose proposals are annulled
in this iteration, and will be processed again in the next
iteration. (This is what “delayed” means; annulled vertices
are not processed in the same iteration. “Partial” means that
the adjacency lists are partially sorted to find a subset of
heaviest neighbors.) The algorithm then seeks a partner for
each vertex u in Q in parallel. It tries to find b(u) proposals
for u to make while the adjacency list N(u) has not been
exhaustively searched thus far in the course of the algorithm.

Consider the situation when a vertex u has i− 1 < b(u)
outstanding proposals. The vertex u can propose to a vertex
p in N(u) if it is a heaviest neighbor in the set N(u) \
Ti−1(u) (the array T (u) from the previous step), and if the
weight of the edge (u, p) is greater than the lowest offer that
p has. In this case, p would accept the proposal of u rather
than its current lowest offer.

If the algorithm finds a partner p for u, then the thread
processing the vertex u attempts to acquire the lock for the
priority queue S(p) so that other vertices do not concurrently
become Suitors of p. This attempt might take some time to
succeed since another thread might have the lock for S(p).
Once the thread processing u succeeds in acquiring the lock,
then it needs to check again if p continues to be an eligible
partner, since by this time another thread might have found
another Suitor for p, and its lowest offer might have changed.
If p is still an eligible partner for u, then we increment the
count of the number of proposals made by u, and make u
a Suitor of p. If in this process, we dislodge the last Suitor
x of p, then we add x to the queue of vertices Q′ to be



Algorithm 5 Parallel b-SUITOR(G, b)

Q = V ; Q′ = ∅;
S(v) = ∅, min-priority heap ∀v
while Q 6= ∅ do

for vertices u ∈ Q in parallel do
i = 1;
while i <= b(u) and N(u) 6= exhausted do

Let p ∈ N(u) be an eligible partner of u;
if p 6= NULL then

Lock S(p);
if p is still eligible then

i = i+ 1;
Add u to S(p);
if u annuls the proposal of v then

Add v to Q′; Update db(v);
Remove v from S(p);

Unlock S(p);
else

N(u) = exhausted;
Update Q using Q′; Update b using db;

return S

processed in the next iteration. Finally the thread unlocks
the queue S(p).

We fail to find an eligible partner p for a vertex u when
we have exhaustively searched all neighbors of u in N(u),
and none offers a weight greater than the lowest offer u
has, S(u).last. In this case u has fewer than b(u) matched
neighbors. After we have considered every vertex u ∈ Q
to be processed, we can update data structures for the next
iteration. We update Q to be the set of vertices in Q′; and
the vector b to reflect the number of additional partners we
need to find for each vertex u using db(u), the number of
times u’s proposal was annulled by a neighbor.

V. APPROXIMATION BOUNDS

In this section, we show that MCE is a 2-approximation
algorithm for b-EDGE COVER, and that both MCE and
S-LSE algorithms compute the same b-EDGE COVER. We
will need a Lemma from [13]. The GREEDY algorithm for
b-MATCHING matches edges in increasing order of (static)
edge weights.

Lemma 5.1: When the GREEDY algorithm for
b-MATCHING matches an edge, it is a locally dominant
edge in the residual graph (the graph induced by the
currently unmatched edges).

Theorem 5.2: MCE is a 2-approximation algorithm for
b-EDGE COVER.

Proof: Let the optimal minimum weight
b-EDGE COVER be denoted by Copt, the complement
of an optimal maximum weight b′-MATCHING, Mopt. Also,
let the b-EDGE COVER computed by MCE be denoted by

C, which takes the complement of the 1/2-approximate
matching M , obtained by b-SUITOR.

Consider an edge e(u, v) ∈ Copt \ C, which belongs to
the optimal edge cover but not the approximate edge cover.
This implies that e(u, v) ∈ M \Mopt since the covers are
obtained by complementing the matched edges. The worst
case scenario for b′-MATCHING is when b-SUITOR matches
the edge e(u, v), and thus cannot match two other edges that
belong to Mopt, say e(x, u) ∈ Mopt and e(v, y) ∈ Mopt.
Hence e(x, u) 6∈ M and e(v, y) 6∈ M . Since the b-SUITOR
algorithm computes the same matching as the GREEDY
algorithm, e(u, v) must be a locally dominating edge when
it is matched, by Lemma 5.1. Thus

w(u, v) ≥ w(x, u); w(u, v) ≥ w(v, y); hence
2w(u, v) ≥ w(x, u) + w(v, y).

(1)

Since e(x, u) 6∈ M and e(v, y) 6∈ M , both of these edges
belong to the approximate cover C. Therefore, the weight
of C can be bounded as follows.

w(C) = w(Copt)− w(u, v) + w(x, u) + w(v, y)

≤ w(Copt)− w(u, v) + 2w(u, v) (from Eqn 1)
= w(Copt) + w(u, v).

(2)

By summing over all edges in the optimal cover that are
not included in the approximate cover, Copt \C, we obtain

w(C) ≤ w(Copt) +
∑

(u,v)∈Copt

w(u, v)

= w(Copt) + w(Copt) = 2 w(Copt).

(3)

Thus MCE is a 2-approximation algorithm for
b-EDGE COVER.

Lemma 5.3: A b-EDGE COVER computed by the MCE
algorithm does not have redundant edges.

Proof: An approximate maximum weight
b′-MATCHING M of a graph computed by the b-SUITOR
algorithm cannot have two neighboring vertices u and v,
with u having fewer than b′(u) and v having fewer than
b′(v) incident edges belonging to M . For, then we can add
the edge e(u, v) to the b′-MATCHING without violating
the matching constraints and increase the weight of the
approximate matching. But this contradicts the fact that the
b-SUITOR algorithm computes a maximal matching. By
considering the complement, a b-EDGE COVER obtained
by the MCE algorithm cannot have two super-saturated
neighboring vertices in C. Hence a cover computed by the
MCE algorithm does not have redundant edges.

Let us denote the edge cover obtained from the MCE
algorithm by Cm, and the edge cover obtained from the
S-LSE algorithm by Cl. We proceed to prove that these
edge covers are identical. Consider the graph G′ = Cm⊕Cl,
obtained by taking the symmetric difference of the two edge
covers.



Lemma 5.4: If a vertex v in the symmetric difference
graph G′ has an equal number of edges from the covers
Cm and Cl incident on it, then the vertex v is either super-
saturated or saturated with respect to both edge covers Cm

and Cl.
Proof: Suppose that v has t ≥ 1 edges from Cm and

t ≥ 1 edges from Cl incident on it in the graph G′. Also
suppose that a set of k ≥ 0 edges incident on v in the original
graph G are included in both edge covers Cm and Cl. These
latter edges do not belong to the symmetric difference graph
G′. Then the vertex v has k+ t edges incident on it in both
Cm and Cl. If b(v) = k + t then v is saturated in both
Cm and Cl, and otherwise it is super-saturated in both edge
covers.

Lemma 5.5: If a vertex v ∈ G′ has more edges from the
edge cover Cm incident on it than from the edge cover Cl,
then v is a super-saturated vertex in Cm. Similarly if the
vertex v has more edges from the cover Cl incident on it
than from the edge cover Cm, then v is a super-saturated
vertex in Cl.

Proof: Consider the first of the two statements. Since
Cl is a b-EDGE COVER, there are at least b(v) edges in the
graph G belonging to Cl incident on v. By the condition
of the lemma, there are more than b(v) edges in the graph
G belonging to Cm incident on v, and hence it is super-
saturated with respect to the edge cover Cm. The proof of
the second statement is similar.

We proceed to show that the symmetric difference graph
G′ consists of isolated vertices, i.e., it does not have any
edges, implying that the two edge covers Cm and Cl are
identical.

Lemma 5.6: The symmetric difference graph G′ does not
have a vertex u with more Cm edges incident on it than Cl

edges.
Proof: Let Cm(u) denote the edges in Cm that are

incident on u, and consider an edge (u, v) ∈ Cm(u). If
vertex u has more Cm edges incident on it than Cl, it
must be super-saturated in Cm. Now v must be saturated
in Cm, by Lemma 5.5. (The vertex v could be saturated
or super-saturated in Cl.) The edge (u, v) incident on v
belongs to Cm, and since v is at least saturated in Cl, there
is an edge (v, x) that belongs to Cl \ Cm. Now since the
S-LSE algorithm includes locally sub-dominant edges in
the cover Cl, we have the inequality w(v, x) < w(u, v).
Now consider the approximate matching M from which the
MCE algorithm computed the edge cover Cm. Since u is
supersaturated in Cm, it has fewer than b′(u) matched edges
in M incident on it. Hence v could have proposed to its
neighbor u, but did not, since (u, v) ∈ Cm, and not to its
complement M . But the edge (v, x) ∈M , since it does not
belong to Cm. This implies that w(v, x) > w(u, v). The two
inequalities contradict each other, completing the proof.

Lemma 5.7: The symmetric difference graph G′ does not
have a vertex u that has an equal number of Cm and Cl

edges incident on it.
Proof: Consider a vertex u in the graph G′, and an edge

(u, v) that belongs to Cm \ Cl. There are four subcases to
consider with respect to the edge cover Cm.

The first case is when u and v are both super-saturated
with respect to CM , but this will make the edge (u, v)
redundant, and such edges are deleted from Cm.

The second case is when u is super-saturated and v is
saturated with respect to Cm. Since v is at least saturated in
Cl, there is an edge (v, x) ∈ Cl \Cm in G′. This edge also
belongs to the matching M from the MCE algorithm. Since
the edge (v, x) ∈ Cl and (u, v) 6∈ Cl, it must be a locally
sub-dominant edge, and hence w(v, x) < w(u, v). However,
since u is super-saturated in Cm, it has fewer than b′(u)
matched edges from M incident on it. Thus v could have
proposed to u, but instead it proposed to x, implying that
w(v, x) > w(u, v). Again, the two inequalities contradict
each other.

The third case is when u is saturated in Cm and v is
super-saturated in Cm. But this case reduces to the second
case with u and v interchanged.

Finally, we have the case when u and v are both sat-
urated in Cm. Choose an edge (u, v) ∈ Cm \ Cl in G′.
Since u and v are at least saturated in Cl, we have the
edges (t, u) inCl \ Cm, and (v, x) inCl \ Cm. Now from
the S-LSE algorithm, we have w(t, u) < w(u, v) and
w(v, x) < w(u, v), which implies that the edge (u, v) is
a locally dominant edge. Thus this edge should be chosen
by the approximation algorithm for matching to include in
M , which contradicts the assumption that it belongs to the
edge cover Cm. This completes the proof.

Lemma 5.8: The symmetric difference graph G′ does not
have a vertex u with fewer Cm edges incident on it than Cl.

Proof: Let (u, v) be an edge that belongs to Cl, and let
u have fewer Cm edges incident on it than Cl. Thus u is
super-saturated with respect to Cl, and v must be saturated
in Cl, by Lemma 5.5. We consider two cases.

The first case is when v is super-saturated in Cm. Now
v is saturated in Cl implies that there are more Cm edges
incident on v than Cl edges, and this reduces to Lemma 5.6.

The second case is when v is saturated in Cl. Since v is
also saturated in Cm, an equal number of Cm and Cl edges
are incident on v, and this reduces to Lemma 5.7.

This completes the proof of the Lemma.
Theorem 5.9: The S-LSE algorithm computes the same

b-EDGE COVER as the MCE algorithm, and hence it is a
2-approximation algorithm for b-EDGE COVER.

Proof: From Lemmas 5.6, 5.7, and 5.8, the symmetric
difference graph G′ has only vertices of zero degree. There-
fore, the two edge covers are the same, i.e., Cm = Cl.

VI. PARALLEL DEPTH AND WORK

In this section we show that the SUITOR [17] and the
b-SUITOR algorithms have provably low parallel depth and



work. The depth is the number of time steps needed by
the parallel algorithm, and the work is the total number of
operations performed by the algorithm. These are the first
results on the depth of the SUITOR and b-SUITOR algorithms
that we know of.

Theorem 6.1: The expected parallel depth of the SUITOR
algorithm that computes a 1/2-approximate 1-matching in
a graph is O(log(∆) logm), when the weights of the edges
are chosen uniformly at random.

Proof: We begin by analyzing an algorithm related
to the SUITOR algorithm, the LOCALLY DOMINANT EDGE
algorithm. This algorithm adds an edge to the approxi-
mate matching when there are no neighboring edges of
higher weight (it becomes locally dominant), and then
deletes all of the neighboring edges. An algorithm of
Blelloch, Fineman and Shun [2] for computing an un-
weighted maximal matching in parallel uses random pri-
orities on the edges to compute the matching. Hence it
is equivalent to the LOCALLY DOMINANT EDGE algorithm
for weighted matching with random edge weights, and an
analysis of the maximal matching algorithm shows that
the LOCALLY DOMINANT EDGE algorithm has the stated
parallel depth.

Now we turn to the SUITOR algorithm and consider its
relationship to the LOCALLY DOMINANT EDGE algorithm.
Specifically we consider the “delayed” version of the al-
gorithm in which a vertex with a proposal annulled is
queued for further processing in the next iteration. In the
LOCALLY DOMINANT EDGE algorithm, an edge is matched
when it becomes locally dominant, detected by its two
endpoints pointing to each other. In the SUITOR algorithm,
each vertex u keeps track of the highest weight of the
proposal it has received so far. A neighbor of u could use
this information, if it is already available, to propose to
its next heaviest eligible neighbor without first proposing
to u. Hence if we view the computations of these algo-
rithms in rounds, in the SUITOR algorithm, a vertex gets
matched in the same or an earlier round relative to the
LOCALLY DOMINANT EDGE algorithm. Hence the SUITOR
algorithm also has O(log(∆) logm) depth.

Theorem 6.2: The expected work in the SUITOR algo-
rithm is O(m) when the edge weights are chosen uniformly
at random.

Proof: The adjacency lists can be sorted in expected
linear time using bucket sort when the weights are chosen
randomly [8]. The SUITOR algorithm needs to go through
the sorted adjacency list of each vertex at most once.

Obtaining linear work for the maximal matching algo-
rithm of Blelloch et al. [2] is more complicated, and is
accomplished by working on a prefix of the graph whose
size is carefully chosen, which increases the depth to
O(log4m/ log logm).

We now show that these results can be extended to the
b-SUITOR algorithm by reducing the b-MATCHING problem

to the MATCHING problem in a modified graph. We only
sketch the reduction here due to space considerations. We
replace each vertex u with b(u) vertices in the modified
graph; each edge (u, v) is replaced by a complete bipartite
graph of b(u) b(v) edges, with weights equal to the original
weight of the edge (u, v). We restrict only one of the edges
in the bipartite subgraph to be matched, but other vertices in
this subgraph could be matched to edges in other subgraphs.
We show an example of the reduction in Figure 2. The value
of b is 2. We see each edge is replaced by a complete bipar-
tite graph with the same weight. In the example graph, if we
choose (A1, B1) as a matched edge then we can not match
the edge (A2, B2). With this restriction, a 1/2-approximate
matching in the transformed graph would correspond to a
1/2- approximate b-MATCHING in the original graph.

Thus the parallel depth of b-SUITOR algorithm when
the edge weights are uniformly random becomes
O(log(∆) log b(V )). Similarly the work becomes
O(β b(V )). (Recall that β = maxv b(v), and
b(V ) =

∑
v b(v).) For the MCE algorithm for the

b-EDGE COVER, the depth is O(log(∆) log b′(V )); and the
work is O(β′ b′(V )).

VII. EXPERIMENTS AND RESULTS

We used an Intel Xeon E5-2697 processor based system
called Endeavor, and an IBM Power8 E880 system to
perform our experiments. The Intel machine configuration
consists of two processors, each with 18 cores running at
2.4 GHz, thus 36 cores in total, with 45 MB unified L3
cache and 128 GB of memory. The operating system is Red
Hat Enterprise Linux 6, and our code was written in C++ and
compiled using the Intel C++ Composer XE 2013 compiler
(version: 1.1.163) using the -O3 flag. The IBM E880 (9119-
MHE) computer is a large memory machine with 8 TB
memory, divided into 4 Central Processor Complexes (CPCs,
also called CECs). Each CPC has 4 sockets, each socket
has 12 cores, and each core can run up to 8 threads using
simultaneous multi-threading (SMT). The CPU clock rate is
4.262 GHz, and the cache sizes are 64K for L1, 512K for
L2 and 8MB for L3.

Our testbed consists of both real-world and synthetic
graphs. For the experiments on the Intel system, we gen-
erated two classes of RMAT graphs: (a) G500 representing
graphs with skewed degree distribution from the Graph
500 benchmark [18], and (b) SSCA from HPCS Scalable
Synthetic Compact Applications graph analysis (SSCA#2)
benchmark. We used the following parameter settings: (a)
a = 0.57, b = c = 0.19, and d = 0.05 for G500, and (b)
a = 0.6, and b = c = d = 0.4/3 for SSCA. Additionally
we consider seven datasets taken from the University of
Florida Matrix collection covering application areas such
as medical science, structural engineering, and sensor data.
We also have a large web-crawl graph [4] and a movie-
interaction network [5]. For the IBM system, we solved a



Figure 2. Reduction from a b-MATCHING to a MATCHING. (Left) Original graph, (Right) Reduced graph for b = 2.

larger synthetic problem (SSCA) with 268 million vertices
and over 2 billion edges.

Table I shows the sizes of our testbed. There are three
groups of problems in terms of sizes: six smaller problems
with fewer than 90 million edges, five problems with 90
million edges or more, and one problem with over two
billion edges. The real-world problems have edge weights;
for the synthetic test problems, we generated three sets of
weights uniformly at random in the range 0 to intmax for
4-byte integers. We run the MCE algorithm with these sets
of weights and report results for the weight that gives the
median edge cover weight. We repeat each experiment three
times and report the average of the runtimes. The coefficient
of variation is less than 4% for all the problems. For each
triple (graph, weights, 3/2- or 2-approximation algorithm),
the edge cover computed is the same, so there is no variation
in the weight.

We run experiments with different b(v) = min{δ(v), b}
values, where δ(v) is the degree of a vertex v, and b =
{1, 2, 3, . . . , .., 10} in order to observe the impact of b(.)
values on the algorithms. For ease of notation, we write
b(v) = b rather than the minimum value mentioned earlier.
We report results for b = 5 here.

A. Results on the Intel Xeon System

1) Quality Comparison: We compare the performance
of the following algorithms: GREEDY, LSE, S-LSE and
MCE. First, we evaluate the impact of the redundant edge
removal step on the algorithms. We remind the reader that
the GREEDY and LSE algorithms compute identical edge
covers satisfying a 3/2-approximation guarantee; the S-LSE
and MCE algorithms also compute identical edge covers
that satisfy a 2-approximation guarantee. Hence we show
the percent reduction in the weight of the LSE (GREEDY)
and S-LSE algorithms after redundant edge removal relative
to their initial weight in Table II. For the smaller problems
the reduction in weight is not significant, i.e., 1.21% and

Problems |V | |E| Avg. Deg.
Fault 639 638,802 13,987,881 44
mouse gene 45,101 14,461,095 641
Serena 1,391,349 31,570,176 45
bone010 986,703 35,339,811 72
dielFilterV3real 1,102,824 44,101,598 80
Flan 1565 1,564,794 57,920,625 74
kron g500-logn21 2,097,152 91,040,932 87
hollywood-2011 2,180,759 114,492,816 105
G500 21 2,097,150 118,595,868 113
SSA21 2,097,152 123,579,331 118
eu-2015 11,264,052 264,535,097 47
SSCA28 268,435,456 2, 136,323,325 16

Table I
THE STRUCTURAL PROPERTIES OF OUR TESTBED FOR b-EDGE COVER,

SORTED IN ASCENDING ORDER OF EDGES.
Problems LSE S-LSE
Fault 639 0.68% 1.33%
mouse gene 0.95% 1.26%
Serena 0.97% 1.31%
bone010 1.97% 0.96%
dielFilterV3real 1.88% 4.11%
Flan 1565 1.33% 5.43%
Geo. Mean: 1.21% 1.90%
kron g500-logn21 8.41% 17.02%
hollywood-2011 15.52% 19.74%
G500 21 11.65% 10.16%
SSA21 12.30% 14.90%
eu-2015 9.47% 19.31%
Geo. Mean 11.21% 15.79%

Table II
REDUCTION IN WEIGHT DUE TO REDUNDANT EDGE REMOVAL.

1.90% on average for the LSE and S-LSE algorithms,
respectively. But for larger problems, the weight reduction
is significant, 11% and 16% for the LSE and S-LSE
algorithms, respectively. Note that the S-LSE algorithm
benefits more from this post-processing.

We obtain lower bounds on the weights of
b-EDGE COVERS for a subset of the problems, using
the relaxation of an integer linear program, solved with a
Lagrangian optimization method [10]. This computation



Problems Lagrange Cover wt %Gap %Increase
bound LSE 3/2 (LSE) 2 (MCE)

Fault 639 9.53E+15 9.77E+15 2.55% 1.13%
mouse gene 2672.19 2898.04 8.45% 6.55%
Serena 6.93E+15 7.09E+15 2.36% 1.51%
bone010 8.21E+08 8.34E+08 1.63% 0.96%
dielFilterV3real 252.055 259.049 2.77% 0.11%
Flan 1565 5.38E+09 5.49E+09 2.02% 4.41%
SSA21 1.67E+12 1.69E+12 1.20% 4.89%
hollywood-2011 891355 922225 3.46% 1.74%
kron g500-logn21 1.33E+06 1.35E+06 1.22% 13.53%
G500 21 1.35E+06 1.33E+06 1.54% 3.26%
eu-2015 9.67E+06 1.11E+07 14.62% 2.33%
Geo. Mean 2.14%

Table III
LOWER BOUND ON THE WEIGHT OF EDGE COVERS, AND THE INCREASE

IN WEIGHT COMPUTED BY THE 2-APPROXIMATION ALGORITHMS
RELATIVE TO THE 3/2-APPROXIMATION ALGORITHMS (b = 5).

also uses a shared memory multi-threaded algorithm
on 20 cores of an Intel Xeon. All the reported bounds
are computed within an hour. The maximum number of
iterations is set to 10, 000 and the maximum run time is set
to 2 hours. If there is no improvement in the solution in
1, 000 consecutive iterations, the program is terminated.

In Table III, the second column shows the lower bound,
the third column shows weight of the cover from the LSE
algorithm, the fourth column shows the gap between the
third and second columns, and the fifth column shows the
weight difference between the LSE and MCE algorithms.
The results show that the weights computed are close to the
minimum values, and that the two approximations are close
to each other in practice. The gap is relatively large for the
mouse_gene and eu-2015 problems; unfortunately we
cannot tell if the Lagrange bound is lower than the optimal
edge cover weight, or if the LSE algorithm computes an
edge cover with weight greater than the optimal. One of
these is a relatively dense graph, and the other is one of
the largest graphs in the test set, and the Lagrange bound
computation might obtain higher values if run longer.

Generally we can conclude that if an application does
not require the optimal b-EDGE COVER, we may use any of
these approximation algorithms, and the faster and scalable
algorithms are to be preferred. We identify these in the next
set of experiments.

2) Serial Performance: We compare the serial run time
performance of the four algorithms in Figure 3. Note that
the times are plotted on a logarithmic scale; we cut off the
run times after one hour. For large instances, we observe
that usually the LSE algorithm is 2 − 5× faster than the
GREEDY algorithm, the S-LSE algorithm is 2 − 4× faster
than the LSE algorithm, and the MCE algorithm is roughly
one order of magnitude faster than the S-LSE algorithm.
The difference increases with increasing values of b(v).
It is clear from the results in Figure 3 that the MCE
algorithm is the fastest serial approximation algorithm for
the b-EDGE COVER problem, and so we use its performance
to evaluate the parallel shared memory performance next.

Number of Threads
1 CPC 1 12 24 36 48 96 192 384
Runtime 3107 303 205 91 71 35 24 22

Number of Threads
4 CPC 1 12 24 48 96 191 382 764
Runtime 3107 303 205 71 38 20 19 23

Table IV
PARALLEL RUN-TIMES FOR SSA28 ON TWO CONFIGURATIONS OF THE
IBM POWER8 USING THE MCE ALGORITHM. THE FIRST SET USED 1
CPC AND ONE THREAD PER CORE UP TO 48 THREADS; AFTER THAT,
SMT WAS EMPLOYED TO INCREASE THE NUMBER OF THREADS. ON
THE SECOND SET, WE USED 4 CPCS, 191 CORES, ONE THREAD PER

CORE INITIALLY; AFTER 191 THREADS, SMT WAS EMPLOYED.

3) Parallel Performance: We have evaluated the perfor-
mance of MCE, S-LSE, and LSE algorithms using 36 cores
of the Xeon ES-2697 multiprocessor. Each core is hyper-
threading enabled with two threads per core, i.e., we have a
total of 72 threads. Unfortunately, for these problems, hyper-
threading does not help, and we use 36 threads to compute
the run time performance of the LSE and S-LSE algorithms
relative to the MCE algorithm, and report this in Figure 4. A
runtime value greater than 1 implies that the MCE algorithm
is faster. We observed only one case, SSA21 with b(.) = 1,
where the S-LSE algorithm beats the MCE algorithm. But
with higher b(.) values the MCE algorithm becomes the
fastest for all problems, by a factor of 10 relative to the
LSE and S-LSE algorithms.

We present strong scaling results for the MCE algorithm
in Figure 5. We observe that for smaller problems, the MCE
algorithm does not scale beyond 18 threads, but for most of
the larger problems, the algorithm shows a speedup of 35×
with 36 threads.

B. Results on the IBM System

Now we experiment with a 2 billion edge graph on a TB-
scale shared memory machine using the MCE algorithm.
The IBM Power8 E880 system is organized into 4 Central
Processor Complexes (CPCs); each CPC has four sockets,
each socket has 12 cores, and each core can run a maximum
of 8 threads using hyperthreading. We computed a 5-edge
cover in the SSCA28 graph, with weights chosen randomly
as for the Intel test, and obtained an edge weight of 4.79e15
for all experiments since they compute the same edge cover.
We conducted two experiments: The first runs one thread on
each core of a single CPC, and then uses SMT on every core
to obtain more threads. For SSCA28, a speedup of 131 is
obtained on 192 threads, showing that four-way SMT on
a CPC is quite effective for this problem. In the second
experiment, we ran one thread each on the 191 cores of
the 4 CPCs (one core is reserved for system use), and
after that used SMT. In this case, the best speedup of 153
was obtained for one thread on 191 cores for this problem.
The incremental increase in speedup for larger numbers of
threads was small, and performance seems to be limited by
memory latency since the code does not exceed the memory
bandwidth available.



Figure 3. Serial run times of four approximation algorithms for b-EDGE COVER on the Intel Xeon.

Figure 4. Relative runtimes of LSE and S-LSE algorithms w.r.t. MCE algorithm on 36 cores of an Intel Xeon.

VIII. CONCLUSIONS

We have shown how parallel algorithms for
b-EDGE COVERS can be designed using the approximation
paradigm. The MCE algorithm is faster than other
approximation algorithms for this problem by an order of
magnitude or more; it also scales to compute edge covers
in a graph with billions of edges using hundreds of threads
on a Terabyte-scale shared-memory multiprocessor. By
computing lower bounds, the edge covers are seen to have
weights within a few percent of the minimum values.
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