ON PROGRAM AURALIZATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Vivek Khandelwal

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 1995

i

ACKNOWLEDGMENTS

[am grateful to my advisor, Professor Aditya Mathur, who provided the motiva-
tion and guidance without which this work would not have been possible. I would
like to thank members of my thesis committee, Professor Vernon Rego and Professor
Chandrajit Bajaj for their assistance and encouragement. Thanks are also due to
Professor Thomas Kuczek and Michelle Mcnabb for their help on statistical analysis.

Members of the Listen group, especially, Nate Nystrom, Howard Chen, and Leo
Rijadi were involved in various stages of software development. Dave Boardman,
Geoff Greene, and Praerit Garg provided several valuable ideas relating to Listen.
My thanks go to all these individuals. I express special thanks to Professor José
Maldonado for his idea of applying Listen to mutation testing which relates closely
to the experimental work described in this thesis.

Dr William Gorman, and Mary Jo Maslin deserve special thanks for guiding me
through the administrative procedures and providing a smile and comforting word
when the chips were down.

Finally, I thank my parents and my family for their love and emotional support

in all my endeavors.

DISCARD THIS PAGE

i1

TABLE OF CONTENTS

Page

LIST OF TABLES e vi

LIST OF FIGURES o s vii

ABSTRACT . . o xii

1. INTRODUCTION e 1
1.1 Problem and Motivation 1
1.2 Organization of this Thesis

2. AN OVERVIEW OF THE USE OF AUDIO IN COMPUTING 4
2.1 Terms and Definitions 4
2.2 Auditory Displayso 5
2.3 Auralization/Sonification Tools 6
2.4 Behavioral Research Related to Use of Audio in Human-Computer

Interface 7

3. LISTEN V2.0: ARCHITECTURE AND IMPLEMENTATION 8

3.1 The Listen Preprocessor (1s1CC) 8
3.1.1 Environment Setup oo 9
3.1.2 Syntaxo 11
3.1.3 Value Dependent Aural Pattern (VDAP) 12
3.1.4 VDAP Implementation 15

3.2 Listen Sound Library 19
3.2.1 Sequence Interrupt Handler 19
3.2.2 Porting Listen to Solaris 21

3.3 The Graphical User Interface 23
3.3.1 Screens. 23

3.3.2 Environment Setupo 24

v

Page
3.3.3 Implementation oL 25
3.4 Run-Time Audio Controller A7
341 Screens. A7
3.4.2 Architectureo oo 48
3.4.3 Implementation L o0 49
3.4.4 Limitations and Future Enhancements 50
3.5 Summary e e 50

4. EFFECTIVENESS OF AURAL, VISUAL, AND AURAL-VISUAL CUES:
AN EXPERIMENT0 56
4.1 Method 57
4.1.1 Subjectso 57
4.1.2 Input Variables o000 57
4.1.3 Response Variables L. 58
4.1.4 Hypotheses Lo 58
4.1.5 Materialso 58
4.1.6 Visual to Aural Output Mappings 59
4.1.7 Procedure 61
4.1.8 Training 61
4.1.9 Measurements Lo 65
4.2 Evolution of the Main Experiment. 65
4.2.1 Aural Output oo 65
4.2.2 Visual Output oo oo 65
4.2.3 Aural-Visual Outputo 66
424 Pilot Studyo 66
4.2.5 Design Decisions Lo 0oL 67
4.3 Results and Analysis o o oL 67
4.4 DISCUSsion e e e e 69
4.4.1 Limitations of Qur Study 69
4.5 Summary ... 70
5. CONCLUSIONS s 73
5.1 Conclusions 73
5.2 Future Worko 73
BIBLIOGRAPHY o 76

APPENDICES

Appendix A: LSL Grammar 80

Appendix B: Run-Time Audio Controller Protocols
Appendix C: Experiment Materials and Results

vi

LIST OF TABLES

Table Page
4.1 Table of means showing effect of cue type on correctness 67
4.2 Table of means showing effect of cue type on time-taken 68
Appendix

Table

A.1 Language Dependent Terminals in LSL Grammar. 93
C.1 Mutants for Cal program Lo oL 136
C.2 Mutants for Look program 0oL 136
C.3 Mutants for Sort program L Lo 137

C.4 Raw Data on correctness by cue type. Fach entry is the value of
correctness for a given subject using a given cue type. 138

C.5 Raw Data on time-taken by cue type. FEach entry is the value of
time-taken for a given subject using a given cue type. 139

LIST OF FIGURES

Figure
3.1 Auralization using Listen. Components in Listen and their interaction. .
3.2 File rockets.1sl. Contains an LSL specification to track dist_remain
and rock_remain using a VDAP in conjunction with a dtrack. VDAP
function contains one LSL command play with several parameters which
depend on the variables being tracked. Fach such command is replaced
by an appropriate function call. Syntax of the C code inside a VDAP
function is not checked for correctness by 1s1CC.
3.3 File rockets.c. Contains the main program which defines two vari-
ables dist _remain and rock_remain whose dynamic relationship is to
be tracked using a VDAP in conjunction with a dtrack.
3.4 VDAP implementation. In this example, two temporary files containing
VDAP code get generated. The total number of temporary C files is
communicated to 1s1CC which constructs the names and includes them
for compilation.
3.5 Sample data structures from filevdap.ho
3.6 Sample VDAP processor routines from file vdap.c
3.7 Some functions from file 1ib.c. This file contains the upper layer routines
for Listen library.
3.8 Workstation and sound-production hardware used in Listen. A MIDI syn-

thesizer module is connected to a workstation via a serial port (/dev/ttya).

A computer serial port to MIDI interface (MIDIATOR) is used. MIDI

output is connected to a wireless speaker system and headphones.

vii

Page

13

14

16

17

18

20

22

Figure

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

Main Screen. The text editor shown here is the main screen of the Listen
Graphical User Interface. The menu bar on top contains standard X
application features such as File and Edit. Buttons along the bottom
provide quick-click options. On the top right, names of the C and LSL
files (Cal.c and Cal.1lsl in this example) are displayed. A special note
icon, located near the top right, is used to create an aural breakpoint
during program execution.o

Compiler Preferences Screen. Default compilation command is 1s1CC.
Options to 1s1CC may be specified. The options are described in Sec-
tion 3.1.2. A make command may be specified.

Add-Sounds Screen. All specification commands present in the current
LSL file are listed. Selective commands may be listed by choosing one or
more of the options Track Data, Track Activity, and Notify Event. .

New Specification Screen. A new specification command may be created
or an existing one may be modified. The type of command must be chosen
from the list near the top right corner. The sound to be used must be
specified using another screen..

Data Track Screen. A new specification command to track data values
may be created or an existing one may be modified. Start and end events
must be specified. Variable name (cp in this figure) whose value is to
be tracked is specified. More than one variable names may be given
by separating them with keyword and. The sound to be used must be
specified using another screen..

Activity Track Screen. A new specification command to track an activity
may be created or an existing one may be modified. Start and end events
must be specified. The sound to be used must be specified using a screen
not shown here.. L oL

Notify Screen. A new specification command to notify the occurrence of
an event may be created or an existing one may be modified. The event
to be notified must be specified. The sound to be used must be specified
using a screen not shown here.o 000

Sound Pattern Screen. This screen displays a list of predefined sounds
loaded from the sound database. A sound can be played by highlighting
it and clicking Play.

viii

Page

32

33

34

35

36

37

38

39

X

Figure Page

3.17 Edit Class Screen. Classes are used to group one or more specification
commands together. Every specification command can be included in one
or more classes. A new class may be added or an existing one may be
modified using this screen.o oo 39

3.18 Event Screen. Listen provides pre-defined special events based on pro-
gramming language constructs. One such category of special events is Pro-
gram which contains Special Syntactic Entities prog_begin and prog_end.
These correspond to the start and end of program execution respectively.
Here prog_end is selected by highlighting it. 40

3.19 Event Screen. Another category of special events is Functions which
contains Special Syntactic Entities function call, function entry and
function return. Here function entry is selected by highlighting it.
There is a subtle difference between function_call and function entry.

The event function_call occurs before the call whereas function entry
occurs after control has reached inside the function. 41

3.20 Event Screen. Another category of special events is Selection which con-
tains Special Syntactic Entities related to if and switch statements of
C. Here if_then_part has been selected by highlighting it. 42

3.21 Synchronization Type Screen. An auralization may be synchronized to
a metronome or to the program. In case of metronome, tempo must be
specified. The default tempo is 120 beats per minute (bpm). Heartbeat
can be turned on/off. When turned on, it generates a note using a default
sound after each statement gets executed thus providing a relative sense
of timing during execution. oo 43

3.22 Autosave Screen. The text editor saves the C and LSL files periodically
to disk. User can specify the duration after which buffers should be saved.
Default autosave duration is 15 minutes. 43

3.23 Search Screen. The text editor provides a facility to do simple string
search inside the currently loaded Cfile. 44

3.24 Annotated Main Screen. Each arrow points to a component of the GUI
screen and shows the name of the source file which implements that com-
ponent. For example, menu.c contains the source to implement the menu
bar on top. Lo 45

3.25 Architecture of GUI shown at source file level. 46

Figure

3.26

3.27

3.28

3.29

3.30

4.1

4.2

File Menu available from the main screen. Options in this menu deal with
the executable file, LSL file, and sound database. Names of the executable
file, and LSL file may alternatively be specified on the command-line. . .

Specification commands listed according to their names. Fach item in the
list represents one specification command. There are five specifications in
this figure, namely for_loop, go, stop, tmp, and while loop. The sound
name is displayed in the second column. The button with a + sign on
it indicates that this specification is turned on. A specification can be
turned off by clicking on its button. 0000

Specification commands listed according to the classes they belong to.
Each class may contain one or more specifications. Similarly, a specifica-
tion may belong to one or more classes. In this figure, three classes are
shown, namely, data, endpoint, and loop.

Change Sound screen. This screen is used to change a sound corresponding
to a specification or add new ones.

Edit Existing Sound screen. This screen is used to edit a sound. This
figure shows the parameter settings for a predefined sound flute2_snd.
New sounds so defined can be saved to the sound database by selecting
the option to do the same from File menu. User is prompted in case the
sound database has changed during the current session.

A fragment of the shell script run.sort used by subjects in group G3.
The fragment shown here corresponds to the aural cues stage of the ex-
periment. It executes the program Sort on a predetermined input and
redirects stdout and stderr to /dev/null. This redirection disallows
any visual output to appear on the screen.

LSL specification file for auralizing UNIX cal program. Command syncto
synchronizes the audio output to a metronome clicking 360 beats per
minute. Command dtrack i tracks the value of variable i. The tracking
starts after the function cal is entered and tracking ends just before con-
trol returns from it. Command notify rule = function.entry:"pstr"
and notify rule = function return:"janl" notify the two said events
by generating a simple note in either case using flutel snd and jumpO
respectively. L L

Page

52

33

o4

)

)

60

xi

Figure Page

4.3

LSL specification file for auralizing UNIX look program. Command
syncto synchronizes the audio output to a metronome clicking 360 beats
per minute. Command dtrack cnt tracks the value of variable cnt. The
tracking starts after the function canon is entered and ends just before
control returns from it. Tracking is defined by a Value Dependent Aural

Pattern (VDAP) specified by function trackcnt.. 63
4.4 LSL specification file for auralizing UNIX sort program. Command
syncto synchronizes the audio output to a metronome clicking 240 beats
per minute. Command dtrack cp tracks the value of variable cp. The
tracking starts after the function sort is entered and tracking ends just
before control returns from it. Tracking is defined by a Value Dependent
Aural Pattern (VDAP) specified by function out_str_track.. 64
4.5 Mean values of correctness plotted by group and cue type. 71
4.6 Mean values of time-taken plotted by group and cue type. 72
Appendix
Figure
C.1 Nested Factorial Q-Q Plot for correctness to test if residuals are nor-
mally distributed. A Shapiro-Wilk test confirms the normal distribution. 150
C.2 Nested Factorial Q-Q) Plot for time-taken to test if residuals are normally

distributed. A Shapiro-Wilk test confirms the normal distribution. . . . 151

xii

ABSTRACT

Khandelwal, Vivek. M.S., Purdue University, August 1995. On Program Auraliza-
tion. Major Professor: Aditya P. Mathur.

Listen is a general-purpose tool for program auralization. In the first part of
this thesis, we describe the architecture and implementation of Listen v2.0 (v1.0 is
described elsewhere). Listen provides a preprocessor for auralizing C programs. It
also provides graphical user-interfaces to create auralizations and to control audio
output at run-time. It allows flexible control of sounds by means of Value Dependent
Aural Pattern (VDAP) to track data.

In the second part of this thesis, we describe an experiment to investigate the
fault-detection effectiveness of aural, visual, and aural-visual cues. A randomized
complete block design was used. UNIX utilities cal, look, and sort were selected
as sample programs. Eighteen subjects from Purdue university were given one correct
and several incorrect versions of the above three programs. They were asked to
classify a given program as correct or incorrect on the basis of the output. The
number of correct answers determined their correctness scores. Subjects received
mean correctness scores of 0.978, 0.867, and 0.622 using, respectively, aural-visual,
visual, and aural cues. The time each subject took to complete the exercise was
also recorded. The mean time (in minutes) a subject took in the three cases was,
respectively, 2.78, 3.28, and 4.06. An ANOVA revealed that subjects did significantly

better using aural-visual cues than the remaining two cue types.

1. INTRODUCTION

Use of audio in computer systems has been on the rise for the past few years
[Gav86, Gav89, GS90, LPC90, FJ92, BH92, IEE94, Bla94, Coh94]. Given the ability
of sound to convey information in real world, it is natural to consider it as a medium to
present information in the world of computer systems. One major technical obstacle
to widespread use of sound in computer programs has been the unavailability of
general-purpose tools for adding sounds to programs. The Listen system has been
developed to automate and thus ease the task of auralizing programs. One can use
Listen to map program events and data to sounds, or in other words, to create program

auralizations.

1.1 Problem and Motivation

Listen is based on a language for specifying program auralization named Listen
Specification Language (LSL) [BM93]. Listen v1.0 implemented a minimal working
subset of LSL. Details of this implementation can be found in [Boa94]. Develop-
ment of Listen v1.0 demonstrated that it was possible to build a general-purpose
program auralization tool. However, being a prototype implementation it was far
from complete. In order to make Listen more usable, the following enhancements

were determined.

1. A more powerful and flexible mechanism to specify data-dependent auraliza-
tions. This mechanism should allow a user to specify various parameters related
to sound such as pitch, timbre, volume, duration, velocity, and pan. These pa-

rameters should depend on information generated at run-time.

2. A system for run-time control of audio output. Examples of desired controls
in such a system include pausing and resuming audio output, and modifying

sound-related parameters at run-time.

3. An enhanced graphical user-interface which enables the use of various features

of LSL without having to learn its syntax.

Once a working version of this tool was available, the next step was to evaluate
its usefulness. More specifically, it was important to investigate the applications
where Listen could be used and determine if its use enhanced the applications. The

questions we decided to answer are:

1. How does audio compare with the visual medium to convey the output of a

program !

2. Is audio combined with visual output more effective in conveying the output of

a program !

3. How can we auralize commonly-used application programs to make them usable

by the visually-impaired ?

1.2 Organization of This Thesis

The remainder of this thesis is organized as follows. An overview of the use of
audio in computer systems is presented in Chapter 2. This includes a description
of some program auralization applications where special-purpose tools were used.
Examples of such applications are program debugging tools, simulation tools, and
user-interfaces for the visually-impaired. Most of these tools are only suited to one
specific application or a specific class of applications. The chapter also describes more
recent attempts toward creating general-purpose program auralization tools. The last
section mentions past work relevant to the experiment described in Chapter 4.

Chapter 3 begins with a brief description of the architecture of Listen v2.0. It

identifies the main components in Listen and how they interact. It then provides

implementation details for each of its subsystems. The subsystems are the Listen
preprocessor (1slCC), the MIDI ! sound library, the graphical user interface, and the
run-time controller system. Several screens from the interfaces are shown to describe
their functionality.

Chapter 4 describes an experiment conducted to investigate the effectiveness of
aural, visual, and aural-visual cues in differentiating “correct” and “incorrect” pro-
grams.

A summary of the work, our conclusions, and directions for future research are

presented in Chapter 5.

'MIDI (Musical Instrument Digital Interface) is a world-wide standard that provides a way for
electronic musical instruments to communicate. Instruments that have MIDI connectors can be
connected to any other MIDI device, regardless of the manufacturer or model, and exchange musical
data as “MIDI messages”.

2. AN OVERVIEW OF THE USE OF AUDIO IN COMPUTING

Until recently sound has been an under-utilized medium in the computing world.
Even with the explosion of multimedia, the focal point has been graphics, animation,
and video, with sound sometimes added as an afterthought. Yet people in fields
outside of computer science use sounds in many ways to help diagnose problems. A
driver knows when to shift gears by listening to the pitch of a car engine. A mechanic
can diagnose problems with that car engine by the sounds it makes.

Sound has another useful property compared to vision. Sound waves travel around
corners. In other words, sound can be used to draw attention to some event even
without the need for visual focusing.

In recent years, however, this potential has been recognized and the use of sound in
the computing world has been on the increase. This chapter provides a brief overview
of the past research relevant to this work. We first define some of the terms used

throughout this thesis.

2.1 Terms and Definitions

Auwralization is a term first used by Francioni and Jackson [FJ92] to refer to the
use of sound to represent different aspects of the run-time behavior of a program.
Sometimes it is used as an audio counterpart to wvisualization.

Sonification refers to the use of data to control a sound generator for the purpose
of monitoring and analysing data [Kra92a]. It is sometimes used as synonymous with
auralization. Other terms used for more or less the same purpose are audification and

audiation.

2.2 Auditory Displays

Auditory display research applies the ways we use sound in everyday life to the
human-machine interface and extends these uses via technology. The function of an
auditory display [Kra92a] is to help a user monitor and comprehend whatever it is
that the sound output represents. The display medium could be speech or non-speech
sound. If the display medium is non-speech sound, the auditory display will exploit
acquired environmental adaptations, including cognitive and preattentive cues.

Yeung [Yeu80] presented an objective recipe, based on the statistical distribution
of data, for audio display of multivariate analytical data. Each measurement in the
data vector was translated into an independent property of sound. In his words, “Ex-
cellent results were obtained when this method was applied to the pattern recognition
of a test data set.”

Gaver [Gav86, Gav89, Gav93] proposed the use of auditory icons for use as a
part of Apple’s interface on the Macintosh machines. He used the term auditory icon
to describe an icon that depicts an object by mapping it to an “everyday sound”.
The audio-enhanced interface which Gaver called SonicFinder was not empirically
evaluated, however, it was reported that the interface was considered nicer to use.

Sound-graphs [MBJ85] uses pitch to describe the shape of a graph. Edwards
[Edw89] built and evaluated a word processor with an audio interface for use by
visually-handicapped users. Ludwig [KEE90, LPC90] prototyped an audio window
display for workstations to present multiple audio cues simultaneously. In ARKola
[GSO91] bottling plant simulation, subjects used auditory icons to obtain information
about other subjects and events inside the plant.

Kramer describes some organizing principles for representing data with sound
in [Kra92b]. He discusses techniques for auditory data representation, and some
perceptual issues they raise.

Brewster et al. [B192] reported results comparing the effectiveness of earcons

[BSG89] with that of simple tones.

2.3 Auralization/Sonification Tools

Brown and Hershberger [BH92] auralized some of their programs using the Zeus
algorithm animation system. They used different instruments to represent significant
events in sorting algorithms. They found this technique to be effective for signalling
exception conditions, suggesting execution patterns, and reinforcing visual informa-
tion.

Jameson [Jam92] built a sound-enhanced debugger. The tool, Sonnet, provided a
visual programming interface to specify the triggering of sounds during code execu-
tion. The facilities such as tracking trends in the value of a variable, and detecting
read/write access to a variable are similar to the dtrack command in LSL.

Madhyastha and Reed [MR92, MR95] built and used the Porsonify toolkit to
create data sonifications. Porsonify allows a user to define data-to-sound mappings
by means of widget-control files. Each sound device is represented with a panel of
knobs and a list of buttons; the knobs are turned to appropriate settings and the
buttons are pressed to manipulate the sound device. By mapping data to specific
knobs and buttons, the data can be displayed by turning one or more knobs and
pushing one or more buttons. For example, each data value might push a button to
play a note and turn a knob using its magnitude to select the note’s pitch. Listen
provides these metaphors for sound control through the run-time audio controller.

Bock [Boc94] describes a language for auditory domain specification. This lan-
guage lets users define software component sound domains. A domain consists of a
set of program constructs and their associated individual audio cues. This approach
allows one to use sound to isolate program errors.

The LogoMedia programming environment [DBO93] contains facilities similar to
the activity tracking, and data tracking in Listen. Cohen [Coh94] describes a sys-
tem for monitoring background activity using musical sounds. Stevens et al. [ST94]

designed and evaluated an auditory glance at algebra for blind users.

All of the above tools except Zeus algorithm animation system, were developed
for specific applications. They are not suitable for use as general-purpose auralization
tools. In some cases described above, a more general approach as used in Listen could
significantly reduce the amount of effort to create effective auralizations. The auditory
glance, and Cohen’s background monitoring system could use Listen to create their
auralizations. Bock’s prototype system is similar to the run-time controller system in

Listen wherein different classes of auralizations can be created and controlled.

2.4 Behavioral Research Related to Use of Audio in Human-Computer Interface

Mynatt [Myn92, Myn94| describes the development of GUlIs for the visually-
impaired. In his doctoral dissertation, Brewster [Bre93] suggests guidelines in the
design of auditory interfaces for the visually-impaired. Ballas [Bal92, Bal94] con-
ducted experiments comparing accurate identification of everyday sounds. We use
guidelines reported in the above studies to design aural cues for our experiment.

Portigal [Por94] conducted an experiment which compared the effectiveness of
aural, visual, and combinations cues to convey the structure of a hyper-text document.
Subjects in his experiment demonstrated an equivalent level of understanding of the
document structure and its content with either a visual cue or a combination cue.
Subjects required more time to answer questions in the combination condition than
in the visual condition. The aural cues did not appear promising for the particular
task. It was noted, however, that the experiment involved only one possible aural
cue. The results showed there may not generalizable to any type of aural cue. The
observations may reflect more strongly on the design of the cues rather than on the

effectiveness of the cues.

3. LISTEN V2.0: ARCHITECTURE AND IMPLEMENTATION

Listen is a general-purpose tool for program auralization. The current version
(Listen v2.0) can be used to auralize programs written in the C language [KRS88].
The approach taken in Listen requires that an auralization be specified formally
using a language. This is done by creating a specification in LSL (Listen Specification
Language). A specification is written to a file. Both a C file and corresponding LSL
specification file are input to a preprocessor 1s1CC which parses the specification and
creates an auralization database. Using this auralization database, the parse tree for
the C source program is decorated. An instrumented C source file is generated from
the decorated tree by a process called deparsing. The instrumented code is then input
to a standard C compiler and resulting object code is linked with sound-generation
libraries to produce an executable. In v2.0 these libraries contain generic routines
which provide an interface to a MIDI [DS88] device. The graphical user-interface to
Listen can be used to generate an LSL specification file thereby obviating the need
to program in LSL. The run-time audio controller system can be used to control the
run-time state of auralizations. Components and processes described above are shown
in Figure 3.1.

In the following sections, we describe the implementation of enhancements made

in v2.0.

3.1 The Listen Preprocessor (1s1CC)

A preprocessor, named 1s1CC, forms the back-bone of the system. 1s1CC is re-
sponsible for the parsing of C source, parsing of LSL source, creation of auralization
database, deparsing of C source, and creation of instrumented C source. Implemen-

tation details are not described here, see [Boa94] for internals of Listen v1.0. Among

Figure 3.1: Auralization using Listen. Components in Listen and their interaction.

the new features available in v2.0 preprocessor are enhanced data-tracking mechanism
through the use of Value Dependent Aural Pattern (VDAP), and an improved MIDI
library to support run-time control of audio. Suspension and resumption of audio
output, turning on/off classes of auralizations, modifying sound-related parameters
such as timbre (instrument), pitch (note value), volume, duration, pan, and tempo
at run-time are examples of run-time control. Run-time audio controller is described

in Section 3.4.

3.1.1 Environment Setup

To use Listen, environment variables named MIDI _DEVICE and LSL_HOME must be

set to appropriate values.

10

Below is an example from a .tcshrc file which defines these variables.

#

Listen environment

#

setenv MIDI_DEVICE PROTEUS

setenv LSL_HOME /homes/vk/ul5/1lslpub/sparc

Environment variable MIDI DEVICE should be set to the name of the MIDI device
(synthesizer module) that will be used. Listen v2.0 handles two makes of MIDI
devices namely PROTEUS/3 WORLD and ROLAND Sound Canvas-55. The values
of MIDI DEVICE corresponding to these are, respectively, PROTEUS and ROLAND. A
sound database file must exist for the MIDI device being used. This file lists default
sounds that are loaded at run-time. Each record in this file contains fields to specify
channel number, patch or instrument number, and a value to specify the note to be
played. The first three fields are not used. Below is a set of records from the file
1sl.proteus.snds. For example, the first record in this file defines a sound named
piano_snd to be the note produced by using channel 5, patch 76, and note 52. The

fields containing zeros are currently unused.

piano_snd 0O 0 O 5 76 52
shaker_snd 0O 0 O 6 89 80
flutel_snd 0O 0 0 7 15 90
flute2_snd 0O 0 O 7 15 78
fnc_snd 0O 0 O 8 24 80
fne_snd 0 0 0 14 2250
fnr_snd 0 0 0 15 22 40
pb_snd 0O 0 0 4 8 52
pe_snd 0O 0 O 4 8 50
speech 0O 0 O 4 8 60

A user may add more entries to the sound database file. Run-time controller
provides a facility to add, delete, or modify a sound in a sound database through a
graphical interface.

Environment variable LSL_HOME must be set to the complete path name of the di-
rectory containing the executables and Listen libraries. 1s1CC searches this directory

to include the required libraries at compile time.

11

Appendix A contains a complete grammar for LSL (a modified version of the orig-
inal grammar as given in [BM93]). It also contains the grammar rules alphabetically
sorted on the non-terminal on left side of each production rule. The last section in

the appendix lists the subset of the grammar used in v2.0.

3.1.2 Syntax

Described below is the command-line syntax of 1s1CC with all the options:

1s1CC [-nodelete] [-runtime] [-syncaudio]

[-compiler <compiler>] <c_file> <1lsl_file>

-nodelete: To save instrumented source files. The intermediate files are saved in a
directory within /usr/tmp. The name of this directory is generated by appending a
random string to /usr/tmp/1s1CC. When invoked with this option, 1s1CC displays
the name of the temporary directory. This option is useful for viewing the decorated
source code. By default, 1s1CC deletes any intermediate files created after compilation
is over.

-runtime: Allows the use of run-time audio controller to control audio output. This
is described in detail in Section 3.4.

-syncaudio: To synchronize visual output with audio. By default, audio output is
generated and buffered to a MIDI sequencer which plays notes at a tempo specified
by the user. However, this may cause visual and audio output to go out of sync. Use
of this option causes audio output to be sent directly to the MIDI device. This blocks
program execution until audio output is finished thus synchronizing the two modes
of output.

-compiler <compiler>: To specify a compiler to compile the instrumented C file(s).
By default, 1s1CC uses GNU gcc.

<c_file>: Name of the C source file.

<1sl.file>: Name of the corresponding LSL file. The name must end in .1sl.

12

Any other options are simply passed to the compiler as in the first example given

below.

1s1CC -nodelete Cal.c Cal.lsl -o Cal

1s1CC -syncaudio -compiler /usr/ucb/cc Sort.c Sort.lsl

3.1.3 Value Dependent Aural Pattern (VDAP)

A sound pattern whose characteristics depend on program generated data is re-
ferred to as a Value Dependent Aural Pattern (VDAP) [BM93]. To obtain data
auralization, LSL provides the dtrack command. The syntax of dtrack appears

below.

dtrack <track-id-list> <sound-specifier>

{<mode-specifier>} {<start-event>} {<term-event>}

The using clause of <sound—specifier> specifies the name of a function, say f,
that emits a VDAP based on variables being tracked. fis a language dependent
function containing LSL commands for auralization. Thus, in LSL/C, fis a valid C
function interspersed with LSL commands inside comments. fis executed after each
assignment to the variable(s) being tracked because values of those variables may
change as a result of the assignment.

The following example illustrates the use of dtrack with VDAP to track arbi-
trary functions of program variables. Suppose it is desired to track the dynamic
relationship between two variables named dist_remain and rock_remain. We define a
C function named crit_dist_track() which is passed the variables dist_remain and
rock_remain. This function checks that the variables to be tracked are in a specific
range and if so, it issues a play command whose parameters depend on values of the
variables being tracked. As shown in Figure 3.2 any integer value may be specified
for parameters chan, volume, and note. However, these parameters must be either
an integer constant, or a variable name. Arbitrary expressions are not supported.

Figure 3.3 shows the C file for this example.

13

begin auralspec
VDAP begin

crit_dist_track (int *distval, int *rockval)

{
int crit_distance=55;
int crit_rock=100;
int noteval = *distval-15;
if ((*distval > crit_distance)&&(*rockval < crit_rock))
{ /*LSL: begin
play flutel_snd
with inst = flute,
mode = continuous,
chan = 4,
volume = 70,
note = noteval;
end */
}
}
VDAP end;

specmodule vdap_illustration
begin vdap_illustration
dtrack dist_remain and rock_remain
when rule = pb
until rule = pe
using crit_dist_track(&dist_remain, &rock_remain);
end vdap_illustration;

end auralspec.

Figure 3.2: File rockets.1sl. Contains an LSL specification to track dist_remain
and rock._remain using a VDAP in conjunction with a dtrack. VDAP function
contains one LSL command play with several parameters which depend on the vari-
ables being tracked. Each such command is replaced by an appropriate function call.

Syntax of the C code inside a VDAP function is not checked for correctness by 1s1CC.

14

#include <stdio.h>

main()
{
int i = 0;
int dist_remain = 50;
int rock_remain = 60;
while (i<70) {
it+;
dist_remain+t+;
printf("dist_remain = %d\n", dist_remain);
if (i % 10 == 0) {
rock_remain = rock_remain-2;
}
}
}

Figure 3.3: File rockets.c. Contains the main program which defines two variables
dist_remain and rock remain whose dynamic relationship is to be tracked using a

VDAP in conjunction with a dtrack.

15

3.1.4 VDAP Implementation

As shown in Figure 3.4, the VDAP specification is parsed and the C source code
inside the function extracted. Its syntax is not checked for correctness. The v2.0
implementation imposes a limit of a maximum of MAX_VDAP on the number of total
VDAP functions in one LSL file. This parameter is set in a configuration file vdap.h.
Each comment of the form shown in the example in Figure 3.2 is parsed to extract
LSL commands. The v2.0 implementation recognizes only the play commands. Once
the command is parsed and all parameters are found valid, a call to _1s1 _play 4()
replaces it. In case -syncaudio option was given, a call to _direct 1sl play 4() is
placed instead. The newly generated C function is written to a temporary file which
is compiled and linked with the main source file. VDAP processor communicates with
1s1CC via a temporary file total VDAP files. This file contains the number of files
containing C code extracted from VDAPs. 1s1CC generates the names of these files
and compiles each of them.

Shown in Figure 3.5 are some of the data structures. Default values shown in
the figure correspond to the parameters to a play command. Figure 3.6 shows the

prototypes of some of the routines from file vdap.c.

Figure 3.4: VDAP implementation. In this example, two temporary files containing
VDAP code get generated. The total number of temporary C files is communicated

to 1s81CC which constructs the names and includes them for compilation.

/* information required to process one VDAP */

struct VDAP_info {

int from; /* index at which comment starts */
int to; /* index at which comment ends */
char *newcode; /* replace old code by */

};

VAL

ok structure used in extracting LSL commands from

*kk the comments appearing inside a VDAP

*%/

struct pstatus {

char * command; /* command string */
int x; /* start position within VDAP code */
};
/* VDAP play command defaults */
#define DEFAULT_INST "flute"
#define DEFAULT_CHAN "4
#define DEFAULT_MODE MODE_DISCRETE
#define DEFAULT_VOLUME 27
#define DEFAULT_NOTE "'80"

Figure 3.5: Sample data structures from file vdap.h

/*

* process_one_VDAP: Takes the VDAP code and a filename (absolute
* pathname) and writes the C code corresponding to
* the VDAP into this file.

* returns:

* nothing

*/

void process_one_VDAP(char *s, char *filename)

/*

* find_LSL_comments: Detects all LSL comments from a given VDAP
* and records their start and end positions in
* VDAP_info

* returns:

* nothing

*/

void find_LSL_comments(char *s)

/*

* replace_VDAP_code: Replace LSL commands with appropriate calls to
* Listen library functions

* returns:

* modified command

*/

char *replace_VDAP_code(char *s)

/*

* init_snd_pars_table:

* Entries are filled from info given in play
* Fill table with sound-parameters defaults
* returns:

* nothing

*/

void init_snd_pars_table()

Figure 3.6: Sample VDAP processor routines from file vdap.c

18

19

3.2 Listen Sound Library

As mentioned earlier, the instrumentation of source code consists of calls to li-
brary routines to send sound generation information to a MIDI device. This li-
brary provides two layers to provide a complete interface to MIDI. At the lower layer
are routines which send a single command to MIDI. Examples of these routines are
midiInit(), midiExit(), noteOn(), note0ff(), and playNote(). At the up-
per layer are routines to which calls are made from the instrumented code. Examples
of these routines are _1sl play 1(), _direct 1sl play 1(), _1sl play 2(), and
_direct 1sl play 2().

To provide a synchronized mode where audio output is synchronized with visual
output, new routines were added which bypass the MIDI sequencer. These routines
communicate directly with the MIDI device via the serial port of the workstation.
Figure 3.7 shows the prototypes for these routines.

To support suspension and resumption of audio output from the run-time con-

troller, the following routines were added.

1. void midiPause(void) is called to suspend audio output. If audio is already
suspended, this function returns without changing the state of audio. Other-

wise, it records current time in a time variable and sets ispaused to TRUE.

2. void midiResume(void) is called to resume suspended audio output. If
audio was not in suspended state, this function returns without changing the
state of audio. Otherwise, it computes the time for which audio was suspended
by using the time when suspension began and the current time. It sets ispaused

to FALSE.

3.2.1 Sequence Interrupt Handler

The task of Sequence Interrupt Handler is to wake up every 1000 micro seconds
and send all those commands to MIDI which should have been sent by current time.

It checks if there are any items in the MIDI queue. If none, it returns, else it compares

/*

* _1sl_say_3 : Speech Generation for dtrack
* (using "say")

*/

_1sl_say_3(value, line, col)

/*

* _1sl_play_4 : Play a note with all parameters
* specified

*/

_1sl_play_4(sndindex, instr, chan, mode, volume, note, line, col)

/*

* _direct_1lsl_play_1 : Play a note directly (without going

* through the sequence interrupt handler
*/

_direct_lsl_play_1(sound,line,col)

20

Figure 3.7: Some functions from file 1ib.c. This file contains the upper layer routines

for Listen library.

21

the time-stamp for the item at the head of queue with current time. It accounts for
the time program may have been paused by adding pause_sec and pausemicrosec
to the time-stamp. If the time-stamp is less than or equal to the current time it
checks if this specification command is turned on. This is done by checking the
status fields in the midibox data structure. There are two separate status values for
the specification, and the class it belongs to (spec->status and class->status). If
status is ON it writes the command to MIDI device else it removes the item without
writing it to MIDI device. The process is repeated for subsequent items in the queue.

Sequence Interrupt Handler is not used when -syncaudio option is used; instead

library routines communicate directly with the MIDI device.

3.2.2 Porting Listen to Solaris

MIDI sequencer uses software signal handling which required rewriting in order
to port Listen from SunOS to Solaris. The code fragment from midi.c shown below

illustrates a difference in the software signal handler interface on Solaris and SunOS.

#ifdef sparcbsolaris_TARGET_MACHINE
static void handler(signum)
int signum;
#else
static void handler(sig,code, scp, addr)
int sig;
int code;
struct sigcontext *scp;
char *addr;

#tendif

Several other modules required minor changes. All of those changes can be identified by
searching for the pattern #ifdef sparcbsolaris TARGET MACHINE.
Figure 3.8 shows a typical arrangement of workstation and other sound-production

hardware used in Listen.

Figure 3.8: Workstation and sound-production hardware used in Listen. A MIDI
synthesizer module is connected to a workstation via a serial port (/dev/ttya). A
computer serial port to MIDI interface (MIDIATOR) is used. MIDI output is con-

nected to a wireless speaker system and headphones.

23

3.3 The Graphical User Interface

To auralize a program using Listen one needs to create an LSL file which specifies
the auralization. A graphical user interface (GUI) has been developed to ease the
task of creating an LSL specification. The GUI provides an easy interface to LSL.

This section describes the functionality provided by the GUI and some implemen-
tation details. Figure 3.1 is an architecture diagram showing the interaction among

the GUI, the Listen Preprocessor, and other parts of Listen.

3.3.1 Screens

Figure 3.9 shows the main screen. The menu-bar at the top contains File, Edit,
Preferences, Sound, MIDI, and Help menus. File menu is similar to many other X
applications with such options as, open a C file, create a new file, and save a file. In
case a new file is to be created, it is given a default name 1s1 noname.c. The names
of the current C file and LSL file are displayed at the top right corner. From the
Preferences menu, one can specify the command to use for compilation as well as the
command to execute. This is shown in Figure 3.10.

The buttons at the bottom of the screen are provided as quick-clicks. Add Sounds
button is to specity an LSL command such as notify, atrack, dtrack, syncto.
Figure 3.11 comes up when user clicks on this button. This lists all the existing speci-
fication commands, if any. Each specification is identified by its name. A specification
can be deleted by highlighting its name and then clicking on the Delete button. On
choosing New the screen to provide the details of a command pops up. This screen
in shown in Figure 3.12. As shown, each new specification is given a default name,
for example, specO. User may specify a different name. One may choose to track
data, or track an activity, or notify an event. Figures 3.13, 3.14, and 3.15 illustrate
the structure of the screen for each of the three options. In case of data tracking
and activity tracking two events must be specified. These are the events to signal

the start and end of tracking respectively. In case of notify only one event is to be

24

specified. The sound associated with a specification can be modified through the
Sound Pattern dialog box shown in Figure 3.16.

Figure 3.17 shows the screen from which new classes may be defined or existing
ones may be edited. Once a class is added, it can be referred to by its name. Different
auditory domains may be created by grouping specifications into different classes.
For example, when auralizing a compiler, one may create classes of specification
commands for lexical analysis, symbol table creation, parsing, and error recovery.

Figure 3.18 shows the screen to select an event. An event can be one of several
types such as a General Syntactic Entity, Special Syntactic Entity, Assertion, and
Relative Timed Event. In Listen v2.0 Special Syntactic Entity and Assertion are
implemented. For a new user Special Syntactic Entity is the easiest to use. In Fig-
ure 3.18 Program is chosen from the first column Choose Category and prog_begin
is chosen from the second column Choose Event Specifier. Similarly there are pre-
defined specific events under each category. Figure 3.19 shows the pre-defined events
for Functions category. One or more function names (occurring in the current C file)
can be chosen. The third column shows the names of all C functions defined. This
list is extracted from the currently loaded C file. Figure 3.20 shows the pre-defined
events for Selection. An exhaustive list of special syntactic entities defined in LSL
appears in [BM93].

Figures 3.21 and 3.22 illustrate the Preference menu options. Figure 3.21 shows
the screen from which the tempo of auralizations can be set. In case a program is
to be synchronized with a metronome, a value for beats per minute (bpm) may be
specified. As a result, a syncto mm command is generated. Figure 3.22 shows the
screen from which the duration for the automatic saving of C and LSL files can be
specified. The time is specified in minutes (default is 15 minutes).

Figure 3.23 shows the searching facility provided by the text editor of the GUI.

3.3.2 Environment Setup

The following commands may be placed inside .Xdefaults file to set up default
resources:

25

Listen*buttoncolor: grey
Listen*textwindowcolor: white
Listen*keyboardFocusPolicy: pointer

The buttoncolor and textwindowcolor resources may be set to any valid Xwindow
color ! The resource keyboardFocusPolicy determines how a widget will be activated
when running an X application. If it is set to pointer, then one need only point to
a text widget in order to activate it. If this is not set, then one must click on the
widget.

X1s1CC script requires that two environment variables LSL_HOME and DISPLAY be
set. The script uses the value of LSL_HOME to find the executable X1sl and to set
appropriate fonts. Fonts used in the interface can be changed ? by editing the file
X1s1CC.

Invocation syntax is:
X1slCC [<C_filename>] [<lsl file name>]
File name arguments are optional. They can be specified from the File menu. If only
the C file name is specified, X1s1CC finds its base name by stripping off the trailing .c
extension. It then loads the corresponding LSL file if present in the same directory
as the C file, otherwise it starts with an empty LSL file. Only one C file may be
specified, however, one can switch to a different file from within the interface. This

allows for handling multiple C files in conjunction with one or more LSL files.

3.3.3 Implementation

The GUI is expected to be used in the X-Windows [You94, ON92| graphical en-
vironment for a C program which compiles without errors on a standard C compiler.
The C program is then loaded into the GUI where the user specifies positions in the

program at which sounds are to be added, choosing different sounds to “auralize”

!For more information on Xwindow colors, see file rgb.txt on your local system. On Purdue CS
departmental machines this file is /usr/local/X11/src/mit/rghb.

ZA particular font is required in order to display the special symbol for a note. The command
used to install this font is xset fp+ $LSL_HOME/font.

26

these positions. When the user is done specifying different program “events” to au-
ralize, the GUI creates a complete LSL specification for the program. The C program
and the LSL specification file are then ready to be compiled by 1s1CC.

The LSL GUI can be used for two major tasks: editing C programs and creating
LSL specifications. The editor includes word wrap and indentation, and is more useful
to fix simple errors in a C program than to write one. The LSL specification editor

provides all of the commands in LSL with the exception of VDAP.

Terms and Definitions

Callback is the name for a link between a widget and a function. After a callback
is set, activating the widget calls the corresponding function. For instance, clicking
on a button calls a function set by the callback. Multiple callbacks may be defined
for the same widget.

Trip is an event which can be notified using a notify command of LSL. This
allows a user to add a sound to the program by adding trips to a specific place the
user wants hear sound. The name “trip” comes from the idea that the program
“trips” across that location in the source code setting off a sound.

Widget is the name for an object in the X-windows environment. Buttons, scroll
lists, text boxes, entire windows, and menus are examples of widgets. Widgets are
configured through a number of functions but do not appear on the screen until they
are realized by the window manager. Widget are generally placed on top of other

widgets.

Items on the Main Window

The main window has two ways to access different tools in the GUI, from the
menu at the top of the main window, and from the buttons at the bottom of the main
window. The menu and the buttons are all widgets that have callbacks to various
functions in the program. Pressing a button or selecting a menu option executes the

function written on the button. The only exceptions are the rightmost buttons on

27

the interface (Word Wrap and Midi Through) which toggle global flags to be true or
false. A miniature button is placed inside these buttons so that when the flag is set
to true, the mini-button appears depressed inside the larger button. When the flag
is toggled to false, the mini-button appears to pop out to the same level as the larger
button.

The button with a musical note on it in the upper right corner of the main window
is used to place trip events in the main text window. Left-clicking on the note button
changes the cursor to a note icon; middle-clicking on an area in the text window
places a trip in the program at the place in the program that the cursor points to,
and a note icon is placed in text window. The note that appears in the text is a
modified text character that is added to the text.

The text window is used to edit a C program. It is implemented using a standard
Motif widget. Every time a character is deleted in the text window, a callback calls a
function to check if that character is a trip character. If it is, then the corresponding
trip data structure is removed from the specification database.

The Add Sounds button and New Specification menuitem both call the auralize
list window. This window presents a list of all existing specifications and allows
the user to organize them alphabetically, by class, and by type (dtrack, atrack,
notify). Although only one of these lists is shown to the user at any time, a class
list and an alphabetical specification list exist in memory. Both these lists must be
updated when specifications are changed.

When the New button of the auralize list window is clicked, three functions are
called; the first creats a window which gives the user a list of default sounds to add
to their program, the second creates the specification creation window, and the third
closes the auralize list window. When the OK button is clicked from the sound window,
it uses specification database functions to change the current specification’s sound to
the one selected. Control then passes to the specification creation window and the

sound window is closed.

28

The specification creation window gives a way for the user to specify the type
of a specification (atrack, dtrack, notify) and the events that it should monitor.
Clicking any of the specification type buttons changes the form widget in the center
of the creation window. When a new type button is pressed, the old set of options is
removed and a new set is placed in the window. The specification window also allows
for creation, deletion, and editing of events. When an event is created or edited, an
empty template of an event is created. The template information is changed to old
values if an event is being edited and the old event is deleted. Deletion of events
involves removing it from the database and the event list window.

The event creation window consists of three lists that user can choose from. The
first list contains types of events (loops, functions, etc.). The second list contains
specific events (for_loop_enter, function return, while body begin etc.). The
third list contains a list of functions. A button above the window labeled Press
for Functions must be pressed before a function list is made. Extracting the list
of functions involves parsing the source code which may take a significant amount of
time, so the list is only computed when required. When a selection is made in the
first window, all the entries are taken out of the second window and the appropri-
ate set of events is popped up based on the selection made from the first window.
Therefore, selecting functions in the first window would pop up function begin,
function_entry, and function return in the second window. When the OK button
is pressed, the event is stored using specification database functions.

Figure 3.24 points out the major components in the GUI and what they implement
on the main screen. Figure 3.25 shows an architecture diagram of the GUI at source

file level. Not all files are shown in this figure.

Data Structures

The data structures used to create the GUI are often used to pass and return

X-windows related variables. As the GUI also parses LSL files, it uses the data

29

structures created by the LSL preprocessor. The following is a brief description of
each of the data structures used by various components of the GUI.

f_info indicates if the current C file needs to be recompiled. Text editor uses this
structure to keep track of the save status of each C file that is loaded in a session.
event_info_type is used when event lists are displayed. When it is passed to the
event editing function, if edit is set to true, the create event window sets up the
editing of the current event instead of creating a new event.

event_info_type

Widget list: all the created events

Widget text: text box to enter event name

Widget sourcelist: list of events

int edit: non-zero 1f the event should be edited

aur_info_type is used to pool together information about a specific specification until
the specification is created.

aur_info_type

Widget relationship: event information for a motif

Widget start_relationship: event information for an atrack/dtrack

Widget end_relationship: event information for an atrack/dtrack
Widget atrack: whether this specification is an atrack
Widget dtrack: whether this specification is an atrack
Widget notify: whether this specification is an atrack
Widget name: name of the auralization

Widget var_list: list of variables to track for a dtrack
Widget discrete: dtrack in discrete mode

Widget continuous: continuous mode

Widget sustain: sustain mode

Widget selective: notify selective

Widget all: notify all

30

Widget first: is 1t the first occurrence?

Widget class_list: list of possible member classes

Widget label_list: list of labels

char *init_value: initial value of the dtrack

int edit: is the an edited event or a new event?

list by_typeis used to pass information about how the ListAuralizations function
should display the existing specifications to the user.

list_by_type

Widget by_alph_toggle: button to toggle to show specs
in alphabetical order

Widget by_alph_list: list in alphabetical order

Widget by_class_list: button to toggle to show specs

grouped by classes

Widget class_list: list according to classes
Widget notifies: notify toggle button
Widget dtracks: dtracks toggle button
Widget atracks: atracks toggle button

three widget_type is used generically to pass three widgets through function calls
and returns. However, the only usage of it in v2.0 is for passing events associated
with dtrack, atrack, and notify.

three widget_type

Widget first: event information for a notify
Widget second: event information for an atrack/dtrack
Widget third: event information for an atrack/dtrack

file data_type is used to pass additional data about files.

file data_type

Widget proj:

Widget list:

Widget 1sl_file:

31

file box_info_type is passed to the file window function to specify default path and

title for a window.

file box_info type

char *filter:
char *path:
char *title:

void (xfunc) ():

file_data_type *data:

sure_info

char *title:

void *func():

char *button_name:

void *data:

Algorithms

default file selection filter

default path

title of the save box

function to call upon pressing OK on the
file selection window

extra file data

string that will be typed in the dialog
string, "Are you sure you want to XXX7"
function the box calls upon pressing of
OK button

string to name the OK button to

extra data to pass through to dialog box

Events are stored by name in a binary search tree. Each event is stored only once

even though it may be referred to in several specification commands. The events in

the tree are stored alphabetically without regard to tree balance. Retrieval is done

using binary search.

Function names are found by a simple parse of the program. A scanner either

returns strings of alphanumeric characters or a non-alphanumeric symbol. Based

on this return value, the parser identifies which of the scanned strings are function

names.

32

Fifndef lint
static char sccsid[] = "@(#cal.c 4,4 (Berkeley) 8T/05/28";
Rendif

#include <sus/tupes.h>
#include <time,h:
#include <stdio,h>

dagu[] = |
"5 MTu WTh F 5"

¥smon[]= §
"February”, "March”, "April”,

June®™, TJuly®, "August”,
"Septenber™, "October™, "Movember”, "December™,

ztring[432];
nainiargs, argy)
char *argv[];

register u, 1, J:
int m;

iflargs == 2
goto =long;
JE
* print out just month
%

iflarge < 20 1 F#* current month */
time t t;

Autosaving /brahmaju ISNkftmp,-’dumpstal.d

Figure 3.9: Main Screen. The text editor shown here is the main screen of the Listen
Graphical User Interface. The menu bar on top contains standard X application
features such as File and Edit. Buttons along the bottom provide quick-click options.
On the top right, names of the C and LSL files (Cal.c and Cal.1lsl in this example)
are displayed. A special note icon, located near the top right, is used to create an

aural breakpoint during program execution.

33

Is1CC —nodelete —o Cal E

Cal < input2 I

Figure 3.10: Compiler Preferences Screen. Default compilation command is 1s1CC.
Options to 1s1CC may be specified. The options are described in Section 3.1.2. A

make command may be specified.

34

[@][=] Add Sounds_popup

Figure 3.11: Add-Sounds Screen. All specification commands present in the current

LSL file are listed. Selective commands may be listed by choosing one or more of the

options Track Data, Track Activity, and Notify Event.

35

|E|Spec1f1cat10n_popup

Figure 3.12: New Specification Screen. A new specification command may be created
or an existing one may be modified. The type of command must be chosen from the
list near the top right corner. The sound to be used must be specified using another

screemn.

36

Figure 3.13: Data Track Screen. A new specification command to track data values
may be created or an existing one may be modified. Start and end events must be
specified. Variable name (cp in this figure) whose value is to be tracked is specified.
More than one variable names may be given by separating them with keyword and.

The sound to be used must be specified using another screen.

37

Figure 3.14: Activity Track Screen. A new specification command to track an activity
may be created or an existing one may be modified. Start and end events must be

specified. The sound to be used must be specified using a screen not shown here.

38

|E|Spec1f1cat10n_popup

Figure 3.15: Notify Screen. A new specification command to notify the occurrence of
an event may be created or an existing one may be modified. The event to be notified
must be specified. The sound to be used must be specified using a screen not shown

here.

39

fbe snd

flute2 snd
| fnc_snd
|fne snd

Snneed

Figure 3.16: Sound Pattern Screen. This screen displays a list of predefined sounds
loaded from the sound database. A sound can be played by highlighting it and clicking
Play.

symbol_table creatior]

Figure 3.17: Edit Class Screen. Classes are used to group one or more specification
commands together. Every specification command can be included in one or more
classes. A new class may be added or an existing one may be modified using this

screemn.

40

prog, end

| Functions

Figure 3.18: Event Screen. Listen provides pre-defined special events based on pro-
gramming language constructs. One such category of special events is Program which
contains Special Syntactic Entities prog_begin and prog_end. These correspond to

the start and end of program execution respectively. Here prog_end is selected by

highlighting it.

41

Event_popup

function call

function entr

function_return

Figure 3.19: Event Screen. Another category of special events is Functions
which contains Special Syntactic Entities function call, function_entry and
function return. Here function entry is selected by highlighting it. There
is a subtle difference between function call and function entry. The event
function call occurs before the call whereas function_entry occurs after control

has reached inside the function.

42

Program
| Expression

selection statement
if statement

 Iteration if then part
| Jump
switch_statement
- Functions switch_body begin
switch_body end

Figure 3.20: Event Screen. Another category of special events is Selection which
contains Special Syntactic Entities related to if and switch statements of C. Here

if then part has been selected by highlighting it.

43

Figure 3.21: Synchronization Type Screen. An auralization may be synchronized to

a metronome or to the program. In case of metronome, tempo must be specified.
The default tempo is 120 beats per minute (bpm). Heartbeat can be turned on/off.
When turned on, it generates a note using a default sound after each statement gets

executed thus providing a relative sense of timing during execution.

Figure 3.22: Autosave Screen. The text editor saves the C and LSL files periodically

to disk. User can specify the duration after which buffers should be saved. Default

autosave duration is 15 minutes.

44

Figure 3.23: Search Screen. The text editor provides a facility to do simple string
search inside the currently loaded C file.

45

menu.c trip.c

Hifndef lint
static char scczid[] = "@(#)cal.c 4,4 {(Berkeley) 87/00/287;
#endif

#include <sus/tupes.h>
#include <time.h:
#include <stdio.h>

cagn[] = {
"5 MTu WHTh F 5°
*smon[]= {
" January”, “February”, "March®, "April”,
e P dune”. TJuly’. "Augusts,
text.c " Septenber”, "October”, "Hovember”, "December”,

string[432] ;
mainfargc, argy)
char *argv[];

register y, 1, J;:
int ms

if{args == 2)
goto =long;
J*

* print out just month
*

iflarec < 20 { S current month ¥/
time_t t;

Autosaving /.brahma/u 15{katmpfdumpstal.d

foousds| See Tioy Notes Lindate Svmbol Table) || Mid Thraug

message_window.c buttons.c

Figure 3.24: Annotated Main Screen. Fach arrow points to a component of the GUI
screen and shows the name of the source file which implements that component. For

example, menu.c contains the source to implement the menu bar on top.

Figure 3.25: Architecture of GUI shown at source file level.

47

3.4 Run-Time Audio Controller

The Listen run-time system allows a user to control the execution of auralized
programs. It allows a user to change the attributes related to the audio output
generated by a program. Such attributes include the name of the instrument, pitch,
duration, velocity, and pan. It allows for turning on/off sounds for a specification
command or classes of such commands. It allows for suspension and resumption of

the audio output.

3.4.1 Screens

This section contains figures showing screens to illustrate the functionality of the
run-time audio controller. Figure 3.26 shows the main screen with its File menu.
Figure 3.27 shows the main screen after an executable and an LSL file have been
loaded. A list of specifications sorted alphabetically on the name of the specification
is displayed in the middle portion of the screen. Sound name corresponding to a
specification is displayed in the second column. Buttons at the bottom, are used to
control the execution.

Figure 3.28 shows the main screen after an executable and an LSL file have been
loaded. A list of specifications is displayed in the middle portion of the screen.
This list also shows the class to which a specification belongs. The list is sorted
alphabetically on the class name, and within a class it is sorted on specification
name.

Figure 3.29 shows the screen used to change the sound corresponding to a specifi-
cation. A specification must be selected in order to get to this screen. One can turn
on/off sound corresponding to a particular specification from this screen. Choosing
Edit Existing Sound, or Add New Sound pops-up the screen shown in Figure 3.30.
This screen allows one to specify the channel, note value, velocity, pan and duration

by means of slider bars. Slider bars ensure that the input values are in valid ranges.

48

3.4.2 Architecture

The run-time system is comprised of three major components.

1. A sound server to maintain a map between each LSL specification and the
sound associated with the specification. It also stores information on whether
the specification is on or off. The server interacts with the MIDI device to play
sounds when requested to do so. The sound server can handle specifications

from only one LSL file.

2. The auralized program sends commands to the sound server to play the sound(s)

associated with a given specification. This program is a client.

3. xlisten is an X-based graphical user-interface that provides the means for
controlling the auralized program. Through it, the sound server can be sent
commands to turn specifications or classes of specifications on/off, to re-map
sound attributes, to play sounds for testing purposes, and to create new sounds

to add to the sound database.

When a program is auralized using the -runtime option of 1s1CC, the program
can be executed through xlisten or as a stand-alone application. If run without the
GUI, the auralized program starts the sound server, load the default sound database
and LSL specification file and have the server play sounds as appropriate. If run
with the GUI, the GUI starts the sound server and load the appropriate files. When
the GUI executes the auralized program, the program (client) will connect to the
server and play sounds as appropriate. As the server currently supports only one
LSL specification file at a time, each GUI and auralized program interacts with a
single invocation of the server.

The auralized program and the GUI communicate with the sound server through
a UNIX socket. This socket, sndserver, is created in a temporary directory when
the server starts and is destroyed when the server exits. The auralized program and

the GUI receive responses from the server through their own sockets, aoutpid and

49

xlisten, respectively. The process which starts the server creates the temporary
directory, the sndserver socket, and its own socket.

The protocol used between a client and the sound server is the following. Client
writes null-terminated character strings to the socket and waits for a response. The

string sent to the server is of the form
command [arguments]
A typical command might look like
pp3 specO 70,

which plays the sound for the dtrack spec0O with pitch 70.

When the server receives a request from a client, the command string is passed to
a dispatcher, which determines the command-type, extracts the arguments from the
string and calls the appropriate function.

The response returned to the client is a string containing the status of the com-
mand (‘17 if successful, ‘0’ if not) and some auxiliary data. For example, if the client

requests the definition of a dtrack specO, the server might return
13 1 specO flute2_snd 2 advance current

which translates to: status 1 (success), type 3 (dtrack), spec status 1 (on), name

specO, sound flute2_snd, and 2 classes: advance and current.

3.4.3 Implementation

The sound server communicates with a client program according to a protocol
described in Appendix B. The protocol includes commands to turn on or off output
to a particular channel, turn on or off a specification or a class of specifications.
It also includes commands to obtain information about specifications or classes of
specifications, load or unload sound databases, and suspend or resume audio output.

xlisten and user executable file share the code for interacting with the sound

server. This code exists in the client library, libclient. a.

30

3.4.4 Limitations and Future Enhancements

The sound server communicates with only one client at a time. With each invoca-
tion of x1isten a copy of the sound server is started. Thus the sound server does not
behave as a typical server. The protocol for communication between client and server
is general enough for use in communicating with multiple clients simultaneously. In
future versions, this extension may be done. The server will talk TCP/IP so that it
can run on the machine connected with the MIDI device and clients can connect to it
from across a network. Users can use wireless speakers to listen to this output even
when they are not logged on at the console.

Using pause and resume causes the remaining audio output to deviate from its pre-
specified tempo. This happens because interrupt sequence handler does not update
the time-stamps in the MIDI queue correctly.

Edit/Add Sound dialog’s Change Instrument button is stubbed out as there is
currently no support for specifying instruments. This can be done by providing a file
with generic instrument names which are available from any MIDI synthesizer. This
file will also contain the mappings from a generic name to a specific name for each
synthesizer that is supported. Changing the pan in the Edit/Add Sound dialog is not

implemented. Saving LSL files and the sound database is not implemented.

3.5 Summary

Section 3.1 described the Listen preprocessor environment setup required to use
v2.0, the sound database structure, invocation syntax and options, and VDAP im-
plementation.

Section 3.2 described the enhancements to Listen sound library. In particular,
support for a run-time audio controller, a primitive speech generation facility for use
with dtrack command, sequence interrupt handler, and synchronization of audio with

visual output were detailed.

51

Section 3.3 illustrates the functionality provided by the graphical user-interface
through several figures. Implementation is described in terms of the data structures
and algorithms used.

Section 3.4 described the run-time controller system, its architecture, and imple-
mentation details. The run-time system is comprised of three major components. A
sound server maintains a map between each LSL specification and the sound associ-
ated with the specification. The server also interacts with the MIDI device to play
sounds when requested to do so. Currently, the sound server can handle specifications
from only one LSL file. A client embedded in the auralized program sends commands
to the sound server to play the sound associated with a given specification. A graph-
ical user-interface xlisten provides the means for controlling the auralized program.
Through it, the sound server can be sent commands to turn specifications or classes of
specifications on/off, to re-map sound attributes, to play sounds for testing purposes,

and to create new sounds to add to the sound database.

52

[@®][=] xlisten

File Run Preferences

Open Executable... a.out
Open LSL Specification... insert.Isl
Open Sound Database... (default)
Open Default Sound Database...
Import Sound Database... ty Tracks
Save LSL Specification... el
Save Sound Database...

= Tracks

TR [0 Pae 0 Gontinue

Figure 3.26: File Menu available from the main screen. Options in this menu deal
with the executable file, LSL file, and sound database. Names of the executable file,

and LSL file may alternatively be specified on the command-line.

33

Executable: a.out
LSL Database: insert.lsl
ound Database: {default)

Display:
<~ By Class _| Activity Tracks
~ B¥ Specification || _| Data Tracks

_| Event Tracks

F fbb_snd

pb_snd

pe _shd

flute2 snd

H while loop whb_snd

“Passe | Coninue|

Figure 3.27: Specification commands listed according to their names. Each item in the
list represents one specification command. There are five specifications in this figure,
namely for_loop, go, stop, tmp, and while loop. The sound name is displayed in
the second column. The button with a + sign on it indicates that this specification

is turned on. A specification can be turned off by clicking on its button.

o4

File Run Preferences

Executable: a.out
LSL Database: insert.lsl
Sound Database: {default)

Sort: Display:
~ By Class _| Activity Tracks
~ By Specification || _| Data Tracks

_| Event Tracks

flute2 snd

H endpoint
' H go pb_snd
H stop pe_snd

H loop

H for loop fbb_snd

H while loop whb_snd

TR [0 Pae 0 Gontinue

Figure 3.28: Specification commands listed according to the classes they belong to.
Each class may contain one or more specifications. Similarly, a specification may
belong to one or more classes. In this figure, three classes are shown, namely, data,

endpoint, and loop.

)

Name: go Mapped To: m*' Play Sound
Type: Notify

pe snd —
Classes: endpoint M speech Edit Existing Sound

goodbyel Add New Sound

comment]

Figure 3.29: Change Sound screen. This screen is used to change a sound correspon-

ding to a specification or add new ones.

Sound Name:

Instrument: flute

Change Instrument

Channel: 7
JR sl

Note: 0 78
JRR e

13

Velocity:

O_EI

Pan:

Duration: I Quarter Note —

Figure 3.30: Edit Existing Sound screen. This screen is used to edit a sound. This
figure shows the parameter settings for a predefined sound flute2_snd. New sounds
so defined can be saved to the sound database by selecting the option to do the same
from File menu. User is prompted in case the sound database has changed during

the current session.

56

4. EFFECTIVENESS OF AURAL, VISUAL, AND AURAL-VISUAL CUES: AN
EXPERIMENT

Researchers have been involved in issues such as program and data auralization
and their use in software testing and debugging [Jam92, DBO93]. In both these
cases, special-purpose tools have been built which incorporate audio output during
the testing and debugging process. In many instances, audio output has been felt
to be useful. However, most of these experiences are anecdotal. There have been
few scientific studies to obtain quantitative measures of the usefulness of audio. The
purpose of this study is to investigate the effectiveness of audio output with that of the
more common visual (text/graphics) output in tasks related to software development
process.

In this chapter we discuss an experiment to compare the effectiveness of three dif-
ferent modes of output, namely aural, visual, and aural-visual to differentiate between
“correct” and “incorrect” programs.

One question we wanted to answer is: Does aural output (with or without visual
output) make it easier for users to understand the output of a program? In a study
with a similar objective, Portigal [Por94] used abstract sounds as aural cues to display
the structure of a hypertext document. He also used visual cues and a combination
of aural and visual cues to convey the structure of the same document. His research
showed that aural cues did not provide significant help to users to understand the
document structure. These results give rise to another interesting question: Does the
usefulness of aural output depend on the nature of the application ?

Chapter 3 described Listen as a tool for program auralization. This experiment
serves as an example of an application of Listen and demonstrates how this tool can

ease the task of creating effective auralizations.

57

The remainder of this chapter is organized as follows.! The experimental setup
is described in Section 4.1. Evolution of the aural, visual, and aural-visual cues, and
a pilot study are described in Section 4.2. Our results and statistical analysis are
presented in Section 4.3. Finally in Section 4.4 we discuss our results, point to the

limitations of this study, and suggest future work.

4.1 Method

A within-subject randomized complete block design [Mon91, CDS86] was used.
Subjects were divided into three groups and each subject was given each of the three
treatments in sequence. Group determined the order in which subjects received the

treatment.

4.1.1 Subjects

Eighteen subjects, three groups of six each, from Purdue University Department
of Computer Sciences participated in the experiment. FEach subject had at least
three years of programming experience. Fach subject was also familiar with UNIX
utilities used in the experiment (used at least two of the three utilities). Eight of
them had formal training in music performance and/or theory. These eight could
play an instrument and read music. Subjects were divided in three groups, namely,
(1, Gy, and G5. They were randomly assigned to one of the groups to get an even

mix of people with and without background training in music.

4.1.2 Input Variables

There is one independent variable: cue-type. Cue-type can be “visual”, “aural”
or “aural-visual”. If cue type is “visual” it means that the program in question

produces only textual output; if cue typeis “aural” the program in question produces

'We have adopted the international standard format for reporting scientific experiments. This
format is popularly known as IMRAD (Introduction, Method, Results, Analysis, and Discussion) in
the scientific community.

38

only aural output and if cue typeis “aural-visual” the program in question produces

both textual and aural output.

4.1.3 Response Variables

There are two response variables; correctness (C) and time-taken (T). Correctness
represents the percentage of correct answers given by a subject, and time-taken is
the time he/she took in answering the questions. To denote C and T for each of the
three cases, we use subscript v for visual, a for aural, and av for aural-visual cues.

Below we formally define the variables.

Cy, = (# of correct answers using visual cues)/(total# of questions)

Co = (# of correct answers using aural cues)/(total # of questions)

Cow = (# of correct answers using aural-visual cues)/(total # of questions)
T, = time taken (in minutes) using visual cues

T, = time taken (in minutes) using aural cues

To = time taken (in minutes) using aural-visual cues

For each subject the response variable T is recorded and C is computed for each

of the three cue types.

4.1.4 Hypotheses

The Null Hypothesis (Hp):

Cue type has no effect on response variables correctness and time-taken.

The Alternative Hypothesis (Hy):

Cue Type affects response variables correctness and time-taken.

4.1.5 Materials

A Sun workstation running SunOS 4.3 was used to execute all the programs. For
sound generation, a Proteus/3 WORLD MIDI synthesizer module was connected to

the workstation through the serial port /dev/ttya of the workstation. A computer

39

serial port to MIDI port interface (Keytronics MIDIATOR) was used. To listen to
audio output subjects used headphones which received the audio signal transmitted
via a wireless speaker system [Rec]. The speakers created an intermittent noise due
to static when the battery used in the headphones was not fully charged. The battery
was kept fully charged to avoid the problem.

Each subject examined the three types of cues by executing different versions of
a UNIX utility via a shell script A sample fragment from one such script is shown in

Figure 4.1.

Selection of Programs

Three UNIX utilities (cal, look, and sort) were used. All these programs
produce some sort of textual output when executed. Our intention was to select pro-
grams that produced textual output because this output would serve as the primary
input to each subject. Also we required that programs be written in C so they could
be auralized using the current implementation of Listen. Subjects in Gy were given
cal, those in (G5 were given look and those in (G3 were given sort.

Several incorrect versions of each of the three programs were created. Each such
incorrect program is called a mutant [DT87, GJM91]. Mutants were chosen from
Wong’s doctoral thesis [Won93]. Some mutants were generated using PROTEUM
[DJCI3], a tool for mutation testing of C programs. Appendix C lists all the mutants

used.

4.1.6 Visual to Aural Output Mappings

Below we describe how the visual output was mapped to aural output.

In cal calls to functions pstr(), janl() were mapped to a note on flute and
a different note on guitar. Variable i was tracked using piano sound. The LSL file
to generate the above mappings is shown in Figure 4.2. The above mappings were
chosen in order to create an aural signature for the correct cal program. It was

conjectured that slight variations in the program would cause the aural signature to

60

cd /homes/vk/brahma/research/mutation/expt/executables/aural/Sort

while true

do
clear
echo "Correct Program"
echo "=======——m-—m—- "
echo; echo; echo; echo; echo; echo; echo; echo;
echo "UNIX sort utility"
echo "In this section you will only hear the aural output"
echo; echo; echo; echo; echo; echo; echo; echo;
echo "Press <return> to listen to the correct program..."
read dummy
clear
Sort /homes/vk/brahma/research/mutation/expt/sources/Sort/inputs/in2
2> /dev/null 1> /dev/null
echo; echo; echo; echo; echo; echo; echo; echo;
echo -n "Again (y/n) 7"
read choice
case ${choice} in
¥ i
*) break o
esac
done

Figure 4.1: A fragment of the shell script run.sort used by subjects in group G3.
The fragment shown here corresponds to the aural cues stage of the experiment.
It executes the program Sort on a predetermined input and redirects stdout and
stderr to /dev/null. This redirection disallows any visual output to appear on the

screemn.

61

change when both the correct and the incorrect program were executed on the same
test case.

In look all the occurrences of while body_begin were mapped to a note on the
flute, i.e. each time control reached the first statement inside a while loop a particular
note would be generated. Variable cnt was tracked using the dtrack command
provided in LSL. The dtrack used a Value Dependent Aural Pattern (VDAP) to
map the value of cnt to a sound. The LSL file to generate the above mappings is
shown in Figure 4.3.

In sort the variable cp was tracked using dtrack only inside the function sort ()

using a VDAP. The LSL file to generate the above mappings is shown in Figure 4.4.

4.1.7 Procedure

Upon arrival each subject was escorted into the experiment room and was seated
in front of the workstation. They were given the primary instructions. The primary
instruction document is reproduced in Appendix C. The document described in brief,
the purpose of the experiment, what each subject was expected to do, and what
measurements would be taken. Each subject was provided with tables to record their
classification of the mutants. Any questions a subject had regarding the instructions

were answered at this point. Next they proceeded to the training phase.

4.1.8 Training

Each subject executed a sample script similar to the one they used in the main
experiment. This was done in order to minimize any errors that might creep in
due to the procedure. Most subjects were less familiar with aural mode of output as
compared with the visual mode. In most cases, subjects took longer to go through the
aural section of the training than the visual. Their questions about the experiment

were answered before proceeding to the main experiment.

62

begin auralspec

specmodule temp

begin temp
VAL

*ok ok Tempo
*%/

syncto mm q=360;

VAL
*okk Corresponds to the dates printed
*%/
dtrack i
when rule = function_entry:'cal"
until rule = function_return:'cal"
using piano_snd;
notify rule = function_entry:"pstr"
using flutel_snd;
notify rule = function_return:'"janl"
using jumpO;
end temp;

end auralspec.

Figure 4.2: LSL specification file for auralizing UNIX cal program. Command
syncto synchronizes the audio output to a metronome clicking 360 beats per
minute. Command dtrack i tracks the value of variable i. The tracking starts
after the function cal is entered and tracking ends just before control returns
from it. Command notify rule = function_entry:"pstr" and notify rule =
function return:"janl" notify the two said events by generating a simple note in

either case using flutel_snd and jumpO respectively.

63

begin auralspec
VDAP begin

track_cnt (int cnt)

{
if (ent > 4) { /*LSL:
begin
play iep_snd;
end
*/
}
else { /*LSL: begin end */
}
}
VDAP end;

specmodule temp

begin temp
VAL

*ok ok Tempo
*%/

syncto mm q=360;

notify rule = while_body_begin

using flutel_snd;

dtrack cnt
when rule = function_entry:'canon"
until rule = function_return:'canon"
using track_cnt(cnt);
end temp;

end auralspec.

Figure 4.3: LSL specification file for auralizing UNIX look program. Command
syncto synchronizes the audio output to a metronome clicking 360 beats per minute.
Command dtrack cnt tracks the value of variable cnt. The tracking starts after the
function canon is entered and ends just before control returns from it. Tracking is

defined by a Value Dependent Aural Pattern (VDAP) specified by function track_cnt.

64

begin auralspec
VDAP begin

out_str_track(char ch)

{
int value = ch - ’a’;
switch(value) {
case 0: /*LSL: begin
play flutel_snd;
end */
break;
case 2: /*LSL: begin
play flute2_snd;
end */
break;
default: /*LSL: begin
play iter2;
end */
break;
}
}
VDAP end;

specmodule temp
begin temp
syncto mm q=240;
notify rule = function_entry:"main" using fne_snd;
/* Map certain characters in the
string to different sounds */
dtrack cp
when rule = function_entry:"sort"
until rule = function_return:'"sort"
using out_str_track(*cp);
end temp;

end auralspec.

Figure 4.4: LSL specification file for auralizing UNIX sort program. Command
syncto synchronizes the audio output to a metronome clicking 240 beats per minute.
Command dtrack cp tracks the value of variable cp. The tracking starts after the
function sort is entered and tracking ends just before control returns from it. Track-
ing is defined by a Value Dependent Aural Pattern (VDAP) specified by function

out_str_track.

65

4.1.9 Measurements

The data in Table C.4 in Appendix C shows the mean values of correctness
broken down by cue type (Visual, Aural, Aural-Visual). The data in Table C.5 in
Appendix C shows the mean values of time-taken broken down by cue type (Visual,

Aural, Aural-Visual).

4.2 Evolution of the Main Experiment

This sections highlights some of the points in the evolution of the three different

types of cues, and other materials.

4.2.1 Aural Output

As explained in the previous section, some aspect of the visual output was mapped
to one or more notes creating different mappings by varying parameters such as pitch,
and timbre. It seems intuitive and has been demonstrated in past research [Bre93]
that the amount of information that can be presented using sound depends to a
large extent on the “goodness” of the sounds employed. We are not aware of any
quantitative methods to measure “goodness” of aural output. However, there are
guidelines for designing good sounds [Bre93]. These guidelines address such issues
as similarity and dissimilarity of attributes related to the sounds, proximity, good
continuation, coherence etc. Several mappings were tried before choosing the final
one. The feedback from the pilot study conducted on two subjects was used to modify
the mappings. It is in this area that Listen was helpful is experimenting with various

data-to-sound mappings.

4.2.2 Visual Output

During the initial stages of the experiment, it was decided to map run-time infor-
mation such as control flow to sound. In order to have a balanced design, one would

like to present the same information (control flow) via the three different modes of

66

output. Programs would then need to generate the control flow information which
would require modifying the source programs. However, in order to simplify the de-
sign, it was decided to use the three different modes to display only the output and not

the control flow information. This required no modification of the source programs.

4.2.3 Aural-Visual Output

This consisted of both the aural and visual output. It was left to the subjects to
use the output as they wanted. No instructions were given as to whether they should
concentrate on both the outputs or otherwise. It is to be noted that the audio and
visual outputs were not synchronized in that all the visual output was produced much
faster than the aural output. Aural output was generated at a slower pace so that a

user could listen to it. 2

4.2.4 Pilot Study

The complete experiment was piloted on two subjects and this produced some
modifications to the experiment. For example, some of the messages being displayed
by the shell scripts were non-intuitive and they were improved. In the case of sort the
tempo of the auralization was reduced because subjects in the pilot study indicated
that they wanted to get an approximate count of the number of notes played in the
three distinct phases of execution. Initially replay-tactic was thought of as an
independent variable. According to this variable, subjects could be classified into two
groups namely, replay and no-replay. Then the effect if any, of the replay tactic
on the response variables could be studied. It was not clear whether there will be
some subjects who will not need replay. However as both the subjects in the pilot
study did replay sounds several times, it appeared that the classification based on
replay tactic would be skewed in favor of the replay group. Replay tactic was

therefore not included as a variable in the final experiment.

’In Listen v2.0 one can synchronize the two kinds of output by supplying the -syncaudio flag
to the preprocessor. This blocks the audio output and returns control to the calling function only
after audio output is over.

67

Table 4.1: Table of means showing effect of cue type on correctness

cue type | N | Mean | Std Dev.

aural 18 | 0.622 0.152

visual 18 | 0.867 0.137

aural-visual | 18 | 0.978 0.065

4.2.5 Design Decisions

Since the aural-visual output was composed of both the aural and visual output the
experiment design was a slightly compromised form of a completely balanced design.
Subjects in groups G5 and (5 could have a transfer effect due to the aural-visual
output affecting their response to the other cue types. The effect of this phenomenon
was minimized by selecting different mutants for each cue type. Output produced

by different mutants was different which reduced the transfer effect.

4.3 Results and Analysis

Based on the measurements as described in the measurement section and the
value of correctness was calculated, time-taken was recorded. An ANOVA for a
randomized complete block design [Mon91, Mor90] was performed to investigate the
effect of cue type on correctness and time-taken.

The ANOVA revealed that cue type had a significant effect on correctness (F, 4
= 19.87, p < 0.05). To compare the respective effects of each of the three cue types,
Paired T-Tests [Mon91] were performed. Comparison-wise T statistic values were
computed using o« = 0.0167. They revealed a significant difference between aural and
visual (T = —4.89, p < 0.0167), between aural and aural-visual (T = —8.00, p <
0.0167), and between visual and aural-visual (T = —3.01, p < 0.0167). Table 4.1
shows the mean and standard deviation values of correctness for each of the three

cue types. Aural cues resulted in lowest scores, visual cues resulted in higher scores

63

Table 4.2: Table of means showing effect of cue type on time-taken

cue type | N | Mean | Std Dev.

aural 18 | 4.06 1.21

visual 18 | 3.28 0.75

aural-visual | 18 | 2.78 0.65

than aural cues, and aural-visual cues resulted in the highest scores. Effect of group
was found non-significant (F3 15 = 0.13, ns). Effect of subject within group against
the error term was also found non-significant (Fy530 = 0.81, ns). Group and cue
type interaction effect was non-significant (F4 30 = 2.08, ns).

Figure 4.5 plots the mean values of correctness for each group and cue type. Ap-
pendix C contains the statistics and plots used to validate the normality assumption
on the data.

cue type also had a significant effect on time-taken (F54 = 21.21, p < 0.05).
To compare the respective effects of each of the three cue types, Paired T-Tests were
performed. They revealed a significant difference between aural and visual cues (T =
4.08, p < 0.0167), between aural and aural-visual cues (T = 6.06, p < 0.0167), and
between visual and aural-visual cues (T = 3.43, p < 0.0167). Table 4.2 shows the
mean and standard deviation values of time-taken for each of the three cue types.
Subjects took the longest when using aural cues, took less time with visual cues than
aural cues, and took the least amount of time using aural-visual cues.

Effect of group was found non-significant (Fy15 = 0.49, ns). Effect of subject
within group against the error term was found significant (Fi530 = 6.52, p < 0.05).
Group and cue type interaction effect was non-significant (Fy30 = 1.17, ns).

Figure 4.6 plots the mean values of correctness for each group and cue type. Ap-
pendix C contains the statistics and plots used to validate the normality assumption

on the data.

69

The SAS [SASb, SASa] program used for statistical analysis of the data appears

in in Appendix C. The output of the SAS program is also listed in this Appendix.

4.4 Discussion

The results indicate that cue type had a significant effect on both correctness and
time taken. This implies that aural cues alone were not sufficient to differentiate
between correct and incorrect outputs. However, with a combination of the aural and
visual cues, subjects were able to detect the differences in output more accurately and
faster. This result is not completely unexpected. Similar results have been reported
in the past [Por94]. In particular, Portigal [Por94] reported similar results when
different cue types were used to convey the structure of a hypertext document. Our
results agree with those presented in that work except that we found a statistically

significant difference between the effect of visual and aural-visual cues.

4.4.1 Limitations of Our Study

In our experiment, the quality of mappings to sound plays an important role in the
effectiveness of aural cues. A particular mapping to sound may be unable to detect
and thus convey the differences in output for a given test run. Or, it may produce an
aural output which is only slightly different from the correct output. In both these
situations it may not be possible for the subject to correctly classify the output. The
quality of mappings to sound is another variable that may affect Correctness. We are
not aware of any methods to quantify this “quality”.

In the particular task that was employed in this experiment, visual cues had an
advantage over aural cues because the visual cues were more detailed than their aural
counterparts. If we attempt to convey all the information provided in visual cues, the
amount of audio cues generated will be very large. In order to play all of the audio
cues one would either need to increase the speed at which notes are played or simply
maintain the normal speed but take much longer to output. We decided to provide

only a fraction of information to maintain the same speed at which to play notes,

70

so as to convey even minor differences in output. In a future study, more complex
patterns of sounds such as earcons may be used to increase the amount of information
in the aural cues.

The number of “incorrect” programs examined was kept small so as to limit the
total time per subject. This caused the response time data to get skewed in that

many subjects were clustered around the same values for time-taken.

4.5 Summary

An experiment was conducted to compare the effectiveness of aural, visual, and
aural-visual cues in conveying the differences in output of a program. A randomized
complete block design was used. ANOVA revealed that cue type had a significant
effect on both correctness and time-taken. subjects performed best with aural-
visual cues and worst with aural cues. Aural cues alone were not able to convey the
differences in output in all cases. Same was the case with visual cues. A combination
of both, however, revealed minute differences in some cases. The results should
encourage the use of aural cues in applications where minute changes in program

output need to be monitored.

Mean Correctness by Group and Cue Type

CORRECT
1.00 A (@) @

0.98
0.96 -
0.94 o)
0.92 1
0.90 -
0.88
0.86 1
0.84 - > 9
0.82 -
0.80 1
0.78
0.76 1
0.74 1
0.72
0.70 1
0.68 -
0.66 -
0.64 1
0.62 -
0.60 -
0.58 1
0.56 -
0.54 1
0.52 -

GROUP

CUETYPE aural © ° o av © ° 2 visual

Figure 4.5: Mean values of correctness plotted by group and cue type.

71

Mean Time Taken by Group and Cue Type

TIME
5_
4_
> <
<
3 A (@) d
D
2'I T T
1 2 3
GROUP
CUETYPE aural © ° o av © ° 2 visual

Figure 4.6: Mean values of time-taken plotted by group and cue type.

72

73

5. CONCLUSIONS

5.1 Conclusions

The work reported here is divided into two distinct parts. In the first part, we
describe the architecture and implementation of Listen v2.0. We believe that in its
current form this tool will be usable by software developers and testers to add audio
output to their programs for various purposes. In the second part, we describe an
experiment to compare the effectiveness of aural, visual, and aural-visual cues to
convey differences in program output. Three UNIX utilities cal, look, and sort
were used as correct programs. Each program’s visual output was mapped to sound.
Data to sound mappings were designed using the data tracking facility available in
Listen v2.0. It was found that subjects could distinguish correct program outputs
from incorrect ones in the case of aural-visual cues more often than in the remaining
two cases. Statistical analysis showed the aural-visual cues to be significantly better
than visual cues for this particular task.

It has been demonstrated by several researchers that audio can be used to convey
the output generated by a program. However, there have been few studies to obtain
quantitative measures of the relative effectiveness of aural, visual, and aural-visual
cues in various programming-related tasks. This experiment provides quantitative
results to suggest that aural cues could be a useful supplement to visual cues to

convey the output of a program.

5.2 Future Work

Using Listen v2.0 one can create a variety of auralizations for C programs. Com-

mands to notify an event, track an activity, track data, define classes of auralizations,

74

and synchronize the audio output in different ways combine to give a powerful tool
to map program events and states to sound. The run-time audio controller allows
the user to control the output in several useful ways. However, the implementation
of LSL in v2.0 is not complete. Some of the enhancements that we recommend for

future versions are listed below.

e To support other methods of audio production. This includes using the built-in
audio capabilities of the workstation. It would involve providing a database of
sounds for each method of sound-production. This database would contain a
rich set of default sounds as well as facility to add new sounds making the tool

more accessible to those users who do not have access to a MIDI synthesizer.

e To produce audio output in MIDI file format. This would enable the storing
of audio output for playing at a later time without having to re-execute the

program. Also it would allow for easy exporting of audio output to other tools.

e To provide more features in the text editor of the GUI to aid in producing quick
auralizations. Examples of such features are notes, bells, and whistles similar

to the already existing trip note feature.

e To improve the run-time audio controller. To provide support for manipulating
instruments. This will involve providing an extra layer of abstraction in sound
database. This layer will contain a generic set of instruments which will be
mapped to specific instruments for different MIDI devices. To provide support
for communication between a single sound server and multiple clients over a

network.

We would like to conduct some variations of the study reported here. It should be
useful to conduct a similar experiment using subjects who are visually-handicapped
to compare the results with sighted users. Another possibility is to use aural cues
which vary in parameters such as pan and spatial location of sound.

The size of the programs employed is another factor in the results obtained from

an experiment of this kind. The programs used in this experiment were small, ranging

75

from 170 LOC (Look) to 913 LOC (Sort). Do similar results hold when the same
experiment is conducted on large size programs ? Since the motivation for using sound
is to supplement the information provided through the visual channel, we expect aural

cues to be useful for large programs as well.

BIBLIOGRAPHY

76

BIBLIOGRAPHY

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,

[B+92]

[Bal92]

[Bal94]

[BI92]

[Bla94]

[BM93]

[Boa94]

[Boc94]

and Tools. Addison-Wesley Publishing Company, Reading, MA, 1986.

S. A. Brewster et al. A detailed investigation into the effectiveness of
earcons. In Proceedings of the First International Conference on Audi-
tory Display (ICAD’92), pages 471-498. Santa Fe Institute, Santa Fe, NM,
Addison-Wesley Publishing Company, 1992.

J. A. Ballas. Delivery of information through sound. In Proceedings of the
First International Conference on Auditory Display (ICAD’92), pages 79—
94. Santa Fe Institute, Santa Fe, NM, Addison-Wesley Publishing Company,
1992.

J. A. Ballas. Effect of event variations and sound duration on identifica-
tion of everyday sound. In Proceedings of the Second International Con-
ference on Auditory Display (ICAD’94). Santa Fe Institute, Santa Fe, NM,
Addison-Wesley Publishing Company, 1994.

M. H. Brown and J. Hershberger. Color and sound in algorithm animation.

Computer, 25(12):52-63, December 1992.

M. M. Blattner. In our image: Interface design in the 1990s. IEEE Multi-
media, 1(1):25-36, 1994.

D. B. Boardman and A. P. Mathur. Preliminary report on design rationale,
syntax, and semantics of LSL: A specification language for program aural-
ization. Technical Report SERC-TR-143-P, Software Engineering Research
Center, Purdue University, W. Lafayette, IN, 1993.

D. B. Boardman. LISTEN: An environment for program auralization. Mas-
ter’s thesis, Purdue University, Department of Computer Sciences, West

Lafayette, IN 47907-1398, August 1994.

D. S. Bock. ADSL: An auditory domain specification language for program
auralization. In Proceedings of the Second International Conference on
Auditory Display (ICAD’9]). Santa Fe Institute, Santa Fe, NM, Addison-
Wesley Publishing Company, 1994.

[Bre93]

[BSGRY)]

[CDSS6]

[Coh94]

[D+87]

[DBOY3]

[DJC93]

[DS88]

[Edws9]

[FJ92]

[Gav86]

[Gav89]

[Gav93]

[GIMO1]

77

S. A. Brewster. Providing a structured method for integrating non-speech
audio into human-computer interfaces. PhD thesis, University of York,
Department of Computer Science, 1993.

M. M. Blattner, D. Sumikawa, and R. Greenberg. Earcons and icons: Their
structure and common design principles. Human Computer Interaction,

1(4):11-44, 1989.

S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering Met-
rics and Models, chapter Measurement and Analysis, pages 113-182. The
Benjamin/Cummings Publishing Company, Inc., 1986.

J. Cohen. Out to Lunch: Further adventures monitoring background activ-
ity. In Proceedings of the Second International Conference on Auditory Dis-

play (ICAD’94). Santa Fe Institute, Santa Fe, NM, Addison-Wesley Pub-
lishing Company, 1994.

R. A. DeMillo et al. Software Testing and FEvaluation. The Ben-
jamin/Cummings Publishing Company, Inc., 1987.

ACM. LogoMedia: A Sound Enhanced Programming Environment for Mon-
itoring Program Behavior, 1993.

M. E. Delamaro, J. C. Jino, and M. L.. Chaim. Proteum: Uma ferramenta
de teste baseada na analise de mutantes. In Software Tools proceedings of
Seventh Brazilizian Symposium on Software Engineering, October 1993.

S. Defuria and J. Scacciaferro. MIDI Programming for the Macintosh.
M&T Publishing, Inc, Redwood City, CA, 1988.

A. D. N. Edwards. Soundtrack: An auditory interface for blind users.
Human-Computer Interaction, 4(1):45-66, 1989.

J. M. Francioni and J. A. Jackson. Breaking the silence: Auralization of
parallel program behavior. Technical Report TR 92-5-1, Computer Science
Department, University of Southwestern Louisiana, 1992.

W. W. Gaver. Using sound in computer interfaces. Human-Computer In-

teraction, 2:167-177, 1986.

W. W. Gaver. The sonicfinder: An interface that uses auditory icons.
Human-Computer Interaction, 4(1):67-94, 1989. Lawrence Erlbaum Asso-
ciates, Inc.

W. W. Gaver. Synthesizing auditory icons. In Proceedings of the INTER-
CHI’93, Human Factors in Computer Systems, pages 228-235, 1993.

C. Ghezzi, M. Jazayeri, and D Mandrioli. Fundamentals of Software FEngi-
neering. Prentice Hall, Englewood Cliffs, NJ, 1991.

[GS90]

[GSO91]

TEE94]
[Jam92]

[KEE90]

[KR8S]

[Kra92a]

[Kra92b]

[LPCI0]

[MBJ85]

[Mon91]

[Mor90]

[MR92]

78

W. Gaver and R. Smith. Human Computer Interaction-INTERACT 90,
chapter Auditory Icons in Large Scale Collaborative Environments, pages

735-740. Elsevier Science Publishers B.V. (North Holland), 1990.

W. W. Gaver, R. B. Smith, and T. O’Shea. Effective sounds in complex
systems: The ARKola simulation. In Proceedings of the CHI’91, Human
Factors in Computer Systems, pages 8590, 1991.

IEE. Nonspeech audio at the interface. Multimedia, 1(1):33, Spring 1994.

D. H. Jameson. Sonnet: Audio-enhanced monitoring and debugging. In
Proceedings of the First International Conference on Auditory Display
(ICAD’92), pages 253-265. Santa Fe Institute, Santa Fe, NM, Addison-
Wesley Publishing Company, 1992.

R. Kamel, K. Emami, and R. Eckert. Px: Supporting voice in workstations.

IEEE Computer, 23(8):73-80, 1990.

B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice-Hall, Englewood Cliffs, NJ, 1988.

G. Kramer. An introduction to auditory display. In Proceedings of the
First International Conference on Auditory Display (ICAD92), pages 1-
77. Santa Fe Institute, Santa Fe, NM, Addison-Wesley Publishing Company,
1992.

G. Kramer. Some organizing principles for representing data with sound.
In Proceedings of the First International Conference on Auditory Display
(ICAD’92), pages 185-221. Santa Fe Institute, Santa Fe, NM, Addison-
Wesley Publishing Company, 1992.

L. F. Ludwig, N. Pincever, and M. Cohen. Extending the notion of a
window system to audio. IEEE Computer, 23(8):66-72, 1990.

D. L. Mansur, M. M. Blattner, and K. I. Joy. Sound-graphs: A numerical
analysis method for the blind. In Proceedings of the 18th Hawaii Interna-
tional Conference on Systems Science, pages 163—174. IEEE, 1985.

D. C. Montgomery. Design and analysis of experiments. Wiley: New York,
third edition, 1991.

D. F. Morrison. Multivariate Statistical Methods, chapter Some Elementary
Statistical Concepts, pages 1-35. McGraw-Hill Publishing Company, third
edition, 1990.

T. M. Madhyastha and D. A. Reed. A framework for sonification design.
In Proceedings of the First International Conference on Auditory Display
(ICAD’92), pages 267-289. Santa Fe Institute, Santa Fe, NM, Addison-
Wesley Publishing Company, 1992.

[MRO5]

[Myn92]

[Myn94]

[ON92]

[Por94]

[Rec]

[S+94]

[SASa]

[SASD]

[Won93]

[Yeu80]

[You94]

79

T. M. Madhyastha and D. A. Reed. Data sonification: Do you see what I
hear 7 IEEFE Software, pages 45-56, March 1995.

E. D. Mynatt. Auditory presentation of graphical user interfaces. In
Proceedings of the First International Conference on Auditory Display
(ICAD’92), pages 533-555. Santa Fe Institute, Santa Fe, NM, Addison-
Wesley Publishing Company, 1992.

E. D. Mynatt. Designing with auditory icons. In Proceedings of the Sec-
ond International Conference on Auditory Display (ICAD’94). Santa Fe
Institute, Santa Fe, NM, Addison-Wesley Publishing Company, 1994.

T. O’Reilly and A. Nye. X Toolkit Intrinsics Programming Manual.
O’Reilly and Associates Inc., osf/motif 1.2 edition, 1992.

S. Portigal. Auralization of document structure. Master’s thesis, The Uni-
versity of Guelph, January 1994.

Recoton Corp., 2950 Lake Emma Road, Lake Mary, FL 32746. Wireless
Stereo Headphone System Manual.

R. D. Stevens et al. Design and evaluation of an auditory glance at algebra
for blind readers. In Proceedings of the Second International Conference on

Auditory Display (ICAD’9]). Santa Fe Institute, Santa Fe, NM, Addison-
Wesley Publishing Company, 1994.

SAS Institute Inc. SAS/GRAPH User’s Guide, first edition. Version 6,
Volumes 1 and 2.

SAS Institute Inc. SAS/STAT User’s Guide, fourth edition. Version 6,
Volumes 1 and 2.

E. W. Wong. On Mutation and Data Flow. PhD thesis, Purdue Univer-
sity, Department of Computer Sciences, West Lafayette, IN 47907-1398,
December 1993.

E. S. Yeung. Pattern recognition by audio representation of multivariate
analytical data. Journal of Analytical Chemistry, 52(7):1120-1123, June
1980.

D. A. Young. The X Window System Programming and Applications with
Xt. PTR Prentice Hall, second edition, 1994.

APPENDICES

80

Appendix A: LSL Grammar

The grammar below is reproduced from [BM93].

A.1 LSL Syntax Conventions

The syntax of LSL is described below using a modified form of BNF[ASUS6.
Nonterminals are in italics, keywords in teletype font, and lexical symbols in bold

font. Alternates of a nonterminal are separated by the | symbol.

1. Isl-spec — begin auralspec
spec-module-list

end auralspec.

2. spec-module-list — spec-module-list spec-module
3. | spec-module
3. spec-module — specmodule id

program-id-list
global-interaction-list
declarations
spec-def-list

VDA P-list

begin id
spec-def-body

end id;

6. program-id-list — external ext-id-list;

G

8. global-interaction-list> global-interactions global-interaction-list

G

10. global-interactions — interact-id id-list;

11.

13.

15.

17.

18.

19.

21.

23.

24.

26.

interact-id —
spec-def-list —
VDA P-list —
VDA P-spec —
spec-def —
spec-def-body —
spec-command —

named-command —

name-tag-list —

unnamed-command —

import | export

spec-def spec-def-list

G

VDAP-spec VDAP-list

G

VDAP begin
I- function

VDAP end;

specdef id (spec-par-list)
declarations

begin id

spec-def-body

end id;

spec-command spec-def-body

| spec-command

named-command

| unnamed-command
name-tag-list unnamed-command

id :: name-tag-list

| id ::

set-globals-command
| play-command

| notify-command

| dtrack-command

| atrack-command

| assign-command

81

39.
40.

42.

44,

45.

48.

o4.

39.

57.

set-globals-command—

global-par-list

global-par

play-command

play-list

pattern-specifier

play-pars

tagged-list

tags

—

—

82

| loop-command

| if-command

| specdef-use-command
| VDA P-call-command
| turn-command

| toggle-command

| sync-command

set global-par-list;
global-par-list, global-par
| global-par

score-const-id

| device-const-id

play play-list;
pattern-specifier || play-list

| pattern-specifier && play-list
| play-list

id

| constant

| specdef-use-command

| VDA P-call-command

| pattern-specifier play-pars
| (play-list)

with tagged-list

tagged-list, tags

| tags

score-const-id

39.

62.

64.

65.

67.

69.

70.

72.

73.

76.

78.

80.

82.

34.

score-const-id

const-id

dotted-id

score-tag

device-tag-list

device-const-id
device-tag

notify-command

all-selective

label-parameter

label-list

event-specifier

connector

event

| device-const-id

score-tag = const-id

| mm mmspec

| mode-specifier

constant

| dotted-id
id
keysig

| timesig

device-const-id , device-tag-list

| device-const-id

device-tag = const-id

chan | inst

83

notify all-selective label-parameter event-specifier

sound-specifier scope-specifier;

all | selective| ¢

label = label-list
G

label-list, id

| id

event-specifier connector event

| event
and | or

rule = id

84

| rule = id:instance-list

| instance = instance-list

| assertion = l-condition

| rtime = expression after event
| (event-specifier)

| event (first)

91. instance-list — instance-list && instance
| instance
93. instance — string

94. sound-specifier — using play-list

G

96. scope-specifier — 1in tagged-scope-list

G

98. tagged-scope-list — tagged-scope-list and tagged-scope
| tagged-scope

100. tagged-scope — scope-tag = scope-tagid-list
101. scope-tag — filename | func

103. scope-tagid-list — scope-tagid-list, scope-tagid
| scope-tagid

105. scope-tagid — selector | string

107. dtrack-command — dtrack dtrack-id-list start-event-spec term-event-spec

sound-specifier scope-specifier;
108. atrack-command — atrack start-event-spec term-event-spec sound-specifier

scope-specifier;

109. start-event-spec — when event-specifier scope-specifier

89

G

111. term-event-spec — until event-specifier
scope-specifier

G

113. ext-id-list — ext-id-list , 1- id
| 1-id
115. dtrack-id-list — dtrack-id-list and dtrack-id
| dtrack-id
117, dtrack-id — 1-1d init-value capture-specifier scope-specifier
118. init-value — init = l- expression

G

120. capture-specifier ~— capture = id

G

122. mode-specifier — mode = continuous | mode = discrete | mode = sustain
125, assign-command — selector := expression;
126. selector — id | id[element-selector]

128. element-selector ~ — expression-list

129. expression-list — expression-list |, expression
| expression
131. loop-command — for-loop | while-loop
133. for-loop — for id := expression to expression slep-expression

statement-body

134. step-expression — step expression

G

136.

137.

139.

141.

142.

143.

145.

147.

1438.

150.

151.

152.

154.

155.

157.

158.

while-loop —
statement-body —
if-command —

if-then-command —
if-then-else-comman+>

specdef-use-comman>

actual-par-list —
actual-par —
spec-par-list —

VDA P-call-commands
turn-command —

on-off —

toggle-command — —

toggle-source —
sync-command —
sync-to-id —

86

while condition do statement-body

begin spec-def-body end

| spec-command,

if-then-command

| if-then-else-command
if condition then statement-body
if condition then statement-body else statement-body

id (actual-par-list);
[id ();

actual-par-list, actual-par

| actual-par

ELPression

id-list | ¢

l-id (1- actual-parameter-list);
turn on-off device-tag-list,

on

| of f
toggle toggle-source = constant;

keyboard

| midi
syncto sync-to-id;

program

| sync-par-list

160.

162.

166.

169.

170.

173.

175.

180.

181.

183.

185.

186.

188.

sync-par-list —
synec-par —
mmkeyword —
mmspec —

duration-expression —

duration-factor —

duration-atiribute —

declarations —
applicability —
apply-list —
apply-decl —

const-declaration —

const-list —

87

sync-par-list, sync-par

| sync-par

bufsize = const
| noslow
| mmkeyword

| mmkeyword mmspec
mm | mmabs | mmrel
duration-expression = const

duration-expression duration-factor
| duration-expression + duration-factor

| duration-factor

duration-attribute

| (duration-expression)
flhlqlels
applicability const-declaration var-declaration

apply-list

G

apply-list; apply-decl
| apply-decl

applyto tagged-scope-list;

const const-list,

G

const-val-pair const-list

| const-val-pair

190.

191.

193.

195.

196.

198.

206.

207.

209.

210.

212.

214.

220.

const-val-pair

var-declaration

var-decl-list

var-type-list

vd-list

type

array-declarator

range-list

range

ELPression

term

factor

condition

id = constant ;

var var-decl-list;

G

var-type-list ; var-decl-list

| var-type-list
id-list : type

id | id-list
| id

88

int | note | pattern | voice | file | ksig | tsig

| array-declarator

array [range-list | of type

range-list , range

| range

ELPTESSION . . EIPresSSion

expression addop term

| term

term mulop factor

| factor

(expression)
| unop factor

| id

| id(actual-par-list)

[1id()

| const

condition relop cterm

222. cterm

224, cfactor

227. addop
229. mulop
231, unop
232, relop
238. logop

A.2 Lexical Conventions

89

| cterm

cterm logop cfactor

| cfactor

ELPression
| (condition)

| not cfactor

+1-

Using regular expressions| ASU86| we define the lexical elements of LSL.

1. Comments are enclosed inside /* and */. Comments may not appear within a

token. A comment within another comment is not allowed.

2. char denotes any ASCII character.

3. One or more spaces separates tokens. Spaces may not appear within tokens.

4. An id is a sequence of letters or digits with the first character being a letter.

The underscore (-) can be used in an identifier. Upper and lower case letters

are treated as being different in an id.

id
letter

(=)*letter (letter | digit | -)*
[a-zA-7]

90

digit — [0-9]

5. A keyword may not be used as an id. Upper and lower case are treated differ-

ently.

6. A constant can be an integer or a string. An integer is a sequence of digits. A
string is a sequence of characters enclosed within double quotes. As a constant
can be interpreted in a variety of ways in LSL, we provide below a complete

grammar for constants.

1. constant — integer
| string
|time-sig
4. integer — digitt
5. string — “char-sequence”
6. char-sequence — note-sequence
| key-sig
| file-name

| function-name
10. note-sequence — (note | .id)*
| (note-sequence: attribute-sequence)

| (note-sequence)

14. note — note-generic note-modifier

15. note-generic — c|d|e|f|glalb|r|C|D|E|F|G|A|BJ|R
31. note-modifier — flat-sharp™ octave

32. flat-sharp — Db|#

34. octave — [0-8]

35. attribute-sequence — atlribute™
36. attribute — duration tagged-value-list*

37. duration — simple-duration

39.

45.

48.
30.

52.
33.

62.
63.
64.

66.
67.
63.
69.
70.

simple-duration —
duration-expression —
op —
key-sig —
pre-defined —
mode —
user-defined —
time-stg —
beat-structure —
filename —
function-name —
tagged-value-list — —
tagged-value —
play-attribute-tag —

| (duration-expression)

flhlqfels

| ptime = integer

duration-expression op simple-duration

| simple-duration

| (duration-expression)

+ e
pre-defined

| user-defined
note:mode
major

| minor

| lydian

| ionian

| mixolydian
| dorian

| aeolian

| phrygian

| locrian

(note-sequence)

(beat-structure : int)

beat-structure + int

| int
chart

chart

tagged-value-list tagged-value
play-attribute-tag = constant

chan | play | inst | mm | mm mmspec

91

92

7. Interpretation of a string is context dependent. Thus, for example, when as-
signed to a variable of type pattern, the string “.cmajor C5” denotes a sequence
of notes consisting of the value of the variable .cmajor followed by the note C5.
The same string when used in the context file = “.cmajor C5” denotes a file
name .cmajor C5. Notes enclosed in parentheses such as in “G3 (C4E4G4) C5”
are treated as forming a blocked chord. The string “hello” results in an invalid
assignment command when it appears on the right side of an assignment to a

variable of type pattern.

8. Ambiguity may arise while defining a note sequence such as in “cb b”. To avoid

this, the notes may be separated by at least one space character such as in “cb

b”.

9. The grammar above contains some terminals prefixed by l-. Such terminals
denote language specific constructs. A complete list of such terminals appears
in Table A.1. These terminal symbols may be nonterminals or terminals in the
grammar of the language L of the auralized program. The LSL preprocessor
attempts to parse over the strings corresponding to such symbols. These strings

are parsed by the compiler for L.

A.3 Static Semantics

The following constraints apply to LSL specifications. These are not indicated by
the syntax.

1. All identifiers must be declared before use. Identifiers that belong to the aural-

ized program must appear as externals.

2. Local attribute values, such as metronome values, channels, etc. which are spec-

ified explicitly as attributes, take precedence over corresponding global values.

93

Table A.1: Language Dependent Terminals in LSL Grammar.

Terminal

Meaning

Example from C

l-condition

1-id

l-expression

l- function

|- actual-parameter-list

Conditional express-
ion which evaluates to true
or false.

Identifier

An expression that evaluates
to a value of type matching
the type of the left side of
the assignment in which it
appears.

A function invoked for track-

ing one or more variables.

List of actual parameters.

(x <y && p>q)

drag_icon

(min — val * 2)

function

Any C

definition.

int x, int * y

94

However, they do not alter the global values. Global values of such parame-
ters may be set using the set command within an LSL specification or in the

program.

. Identifiers declared within a specmodule M are global to M and may be used
by all specdefs declared within M. Identifiers declared within a specdef S are
local to 5" and may not be used by other specdefs or in any other specmodule.
Identifiers may be exported by an specmodule for use by any other module by
explicitly mentioning it in an export declaration. A module may use an iden-
tifier exported by another module by explicitly importing it using the import
declaration. All program variables used in an specdef or a specmodule body
must be specified as externals. Program identifiers, global to a VDAP defi-
nition, need not be declared. However, all such identifiers must be declared in

the context wherein VDAP will be placed and compiled by the C compiler.
. A VDAP specification must be a valid C function when using LSL/C.

. The formal and actual parameters must match in number and type between a

specification definition and its use.

. All matching begins and ends must match in the identifiers that follow the
corresponding keyword. Thus, for example, a begin gear which matches with
an end change will be flagged as a warning because gear and change do not

match.

. LSL has default values for various parameters such as metronome, channel, and

instrument.

. The expression in a relative timed event must evaluate to a positive integer or
else a run time warning is issued. A relative timed event is ignored if it occurs

after program execution terminates.

. A file or function specified in a scope tag must exist for the program to be

auralized.

10.

11.

12.

13.

14.

95

While monitoring an activity or data, tracking will terminate upon program

termination if the start event occurs after the terminating event.

An expression in a range-list must evaluate to an integer and must not contain
any variable names. Subscript expressions that evaluate to a value outside the

specified range are not allowed.

If both the initial value and the capture location are specified for a variable to
be tracked, LSL will attempt to satisty both requirements. Thus, the variable
will be initialized at an appropriate point during program execution. Its value
will also be captured as specified. The value captured will override any previous

value of the variable.

The syntax of LSL allows for the naming of any command. However, only names
of notify, dtrack, and atrack correspond to classes. Naming of other com-
mands is permitted to allow referencing of commands while editing or reading

an LSL specification.

Use of toggle may give rise to ambiguities at run time. For example, if the
space key on the computer keyboard has been specified as a toggle source and the
executing program requests for input data, it is not clear if the space character
should be treated as a toggle request or input to the program. The user may
avoid such ambiguities by selecting a toggle source that will not be required as
input to the program. Alternately, the user may rely on the run time window

based monitor to input toggle requests.

96

A4 Grammar Rules Sorted Alphabetically

The syntax of LSL is described below using a modified form of BNF[ASUS6.
Nonterminals are in italics, keywords in teletype font, and lexical symbols in bold

font. Alternates of a nonterminal are separated by the | symbol.

1. actual-par-list — actual-par-list, actual-par
| actual-par
3. actual-par — expression
4. addop - 4| -
6. all-selective — all | selective | ¢
9. applicability — apply-list
G
11. apply-decl — applyto tagged-scope-list;
12. apply-list — apply-list; apply-decl
| apply-decl
14. array-declarator ~ — array | range-list | of type
15. assign-command — — selector := expression;
16. atrack-command — atrack start-event-spec term-event-spec sound-specifier

scope-specifier;

17. capture-specifier ~ — capture = id
G

19. cfactor — expression
| (condition)

| not cfactor

22. condition — condition relop cterm

24.

26.

28.

30.

31.

33.

34.

35.

37.

39.

40.

41.

43.

44,

49.

const-declaration

const-id

const-list

const-val-pair

cterm

declarations
device-const-id

device-tag-list

device-tag
dotted-id

dtrack-command

dtrack-id-list

dtrack-id

duration-attribute

—

duration-expression —

97

| cterm

const const-list,

G

constant

| dotted-id

const-val-pair const-list

| const-val-pair
id = constant ;

cterm logop cfactor

| cfactor
applicability const-declaration var-declaration
device-tag = const-id

device-const-id , device-tag-list

| device-const-id

chan | inst

id

dtrack dtrack-id-list start-event-spec term-event-spec
sound-specifier scope-specifier;

dtrack-id-list and dtrack-id
| dtrack-id

1- 14 init-value capture-specifier scope-specifier
flhlqlels

duration-expression duration-factor

| duration-expression + duration-factor

52.

o4.

39.

57.

64.

66.

63.

70.

76.

duration-factor

element-selector

event-specifier

event

expression-list

ELPression

ext-id-list

factor

for-loop

| duration-factor

duration-attribute

| (duration-expression)
expression-list

event-specifier connector event

| event

rule = id

| rule = id:instance-list

| instance = instance-list

| assertion = l-condition

| rtime = expression after event
| (event-specifier)

| event (first)

expression-list , expression

| expression

expression addop term

| term

ext-id-list | 1- id
| 1-id

(expression)

| unop factor

| id

| id(actual-par-list)
id()

| const

98

for id := expression to expression step-expression

7.

79.

80.

82.

34.

86.

88.

89.

90.

92.

94.

95.

97.

99.

global-interaction-list>

global-interactions —

global-par-list —
global-par —
id-list —
if-command —

if-then-command —

if-then-else-comman+>

init-value —
instance-list —
instance —
interact-id —
label-list —
label-parameter —

99

statement-body

global-interactions global-interaction-list

G
interact-id id-list;

global-par-list, global-par
| global-par

score-const-id

| device-const-id

id , id-list

| id

if-then-command

| if-then-else-command

if condition then statement-body

if condition then statement-body else statement-body

init = 1- expression

G

instance-list && instance

| instance

string

import | export
label-list, id

| id

label = label-list

G

101.

103.

105.

106.

109.

110.

113.

115.

117.

118.

119.

121.

127.

128.

logop
loop-command

[sl-spec

mmkeyword
mmspec
mode-specifier
mulop

name-tag-list

named-command

notify-command

on-off

pattern-specifier

play-command

play-list

100

L& |]
for-loop | while-loop

begin auralspec
spec-module-list

end auralspec.

mm | mmabs | mmrel

duration-expression = const

mode = continuous | mode = discrete | mode = sustain

|/

id :: name-tag-list

| id ::

name-tag-list unnamed-command

notify all-selective label-parameter event-specifier
sound-specifier scope-specifier;

on

| of f
id
| constant

| specdef-use-command

| VDA P-call-command

| pattern-specifier play-pars
| (play-list)

play play-list;

pattern-specifier || play-list

131.

132.

134.

136.

137.

143.

145.

147.

149.

152.

154.

156.

157.

159.

play-pars

program-id-list

range-list

range
relop

scope-specifier

scope-tagid-list

scope-tag

score-const-id

score-tag

selector

set-globals-command—

sound-specifier

spec-command

| pattern-specifier && play-list
| play-list

with tagged-list

external ext-id-list;

G

range-list , range

| range
ELPTESSION . . EIPresSSion
<|>|<=l=|>=|<>

in tagged-scope-list

G

scope-tagid-list, scope-tagid
| scope-tagid

filename | func

score-tag = const-id

| mm mmspec

| mode-specifier
keysig

| timesig

id | id[element-selector]
set global-par-list;
using play-list

G

named-command

101

161.

163.

165.

166.
167.

169.

170.

172.

spec-def-body

spec-def-list

spec-def

spec-module-list

spec-module

spec-module

102

| unnamed-command

spec-command spec-def-body

| spec-command

spec-def spec-def-list

G

specdef id (spec-par-list)
declarations

begin id

spec-def-body

end id;

spec-module-list spec-module

| spec-module

specmodule id
program-id-list
global-interaction-list
declarations
spec-def-list

VDA P-list

begin id
spec-def-body

end id;
| spec-module

specmodule id
program-id-list
global-interaction-list

declarations

173.

175.

177.

179.

181.

183.

184.

186.

190.

192.

spec-par-list —

specdef-use-comman>

start-event-spec —
statement-body —
step-expression —
sync-command —
sync-par-list —
sync-par —
sync-to-id —
tagged-list —

spec-def-list
VDA P-list
begin id
spec-def-body

end id;
id-list | €

id (actual-par-list);
| id ();

when event-specifier scope-specifier
G

begin spec-def-body end
| spec-command,

step expression

G

syncto sync-to-id;
sync-par-list, sync-par

| sync-par

bufsize = const

| noslow

| mmkeyword

| mmkeyword mmspec

program

| sync-par-list

tagged-list, tags
| tags

103

194.

196.

197.

199.

tagged-scope-list ~ —

tagged-scope —
tags —
term-event-spec —

scope-specifier

201.

203.

204.

206.

207.

215.

term —

toggle-command — —

toggle-source —
turn-command —
type —

unnamed-command —

104

tagged-scope-list and tagged-scope
| tagged-scope

scope-tag = scope-tagid-list

score-const-id

| device-const-id

until event-specifier

G

term mulop factor

| factor
toggle toggle-source = constant;

keyboard

| midi
turn on-off device-tag-list,

int | note | pattern | voice | file | ksig | tsig

| array-declarator

set-globals-command
| play-command

| notify-command

| dtrack-command

| atrack-command

| assign-command

| loop-command

| if-command

| specdef-use-command

| VDA P-call-command

228.

229.

231.

233.

234.

235.

237.

238.

unop N
var-decl-list —
var-declaration —
var-type-list —

VDA P-call-commands

VDA P-list —
VDA P-spec —
while-loop —

105

| turn-command
| toggle-command

| sync-command

var-type-list ; var-decl-list

| var-type-list

var var-decl-list;

G
id-list : type
l-id (1- actual-parameter-list);

VDAP-spec VDAP-list

G

VDAP begin
I- function

VDAP end;

while condition do statement-body

A.5 Subset of LSL Grammar Implemented in version 2.0

The syntax of LSL is described below using a modified form of BNF[ASUS6.

Nonterminals are in italics, keywords in teletype font, and lexical symbols in bold

font. Alternates of a nonterminal are separated by the | symbol.

1.

[sl-spec —

begin auralspec
spec-module-list

end auralspec.

11.

13.

14.

16.

20.

spec-module-list —
spec-module —
spec-def-list —
spec-def —
spec-def-body —
spec-command —

named-command —

name-tag-list —

unnamed-command —

notify-command —

106

spec-module-list spec-module

| spec-module

specmodule id
begin id
VDAP-list
spec-def-body

end id;

spec-def spec-def-list

G

specdef

begin id

spec-def-body

end id;

spec-command spec-def-body

| spec-command

named-command

| unnamed-command
name-tag-list unnamed-command
id :: name-tag-list

| id ::

notify-command
| dtrack-command
| atrack-command

| sync-command

notify event-specifier

sound-specifier scope-specifier;

21.

23.

25.

29.

31.

32.

34.

36.

38.

39.

41.

43.

44,

45.

event-specifier

connector

event

instance-list

instance

sound-specifier

scope-specifier

tagged-scope-list

tagged-scope
scope-tag

scope-tagid-list

scope-tagid

dtrack-command

atrack-command

107

event-specifier connector event

| event
and | or

rule = id
| rule = id:instance-list
| assertion = l-condition

| (event-specifier)

instance-list && instance

| instance
string

using constant

G

in tagged-scope-list

G

tagged-scope-list and tagged-scope
| tagged-scope

scope-tag = scope-tagid-list
filename | func

scope-tagid-list, scope-tagid
| scope-tagid

string

dtrack dtrack-id-list start-event-spec term-event-spec

sound-specifier scope-specifier;

atrack start-evenl-spec term-event-spec

46.

48.

30.

52.

33.

o4.

36.

38.

60.

63.

65.

67.

63.

70.

start-event-spec —
term-event-spec —
dtrack-id-list —
dtrack-id —
sync-command —
sync-to-id —
sync-par-list —
sync-par —
mmkeyword —
mmspec —
id-list —

VDA P-call-commands

VDAP-list —

VDA P-spec —

sound-specifier scope-specifier;

when event-specifier scope-specifier;

G

until event-specifier scope-specifier;

G

dtrack-id-list and dtrack-id
| dtrack-id

1-1d scope-specifier
syncto sync-to-id;
program | sync-par-list

sync-par-list, sync-par

| sync-par
mmkeyword | mmkeyword mmspec

mm | mmabs | mmrel

| ¢ = const
id , id-list
| id

l-id (1- actual-parameter-list);
VDAP-spec VDAP-list
G

VDAP begin
I- function

VDAP end;

109

Appendix B: Run-Time Audio Controller Protocols

In Section B.1, we describe all the commands that may be issued to the sound
server. Sections B.2, B.3, and B.4 provide the purpose and a brief description of the

functions in the client library, sound server, and run-time GUI, respectively.

B.1 The Sound Server Protocol

e CHANNEL_OFF channel

Turn off a single MIDI channel.

e CHANNEL_ON channel

Turn on a single MIDI channel.

o CLASS_OFF class_name

Turn off a class of specifications.

e CLASS_ON class_name

Turn on a class of specifications.

e DEFINE_NEW_SOUND name channel note patch velocity duration

Add a new sound to the sound database.

e DEFINE_SOUND name channel note velocity duration

Modify an existing sound in the database.

o EXIT

Finish playing all notes and kills the server.

o GET_CLASS_DEF class_name

Get the definition of a class. Class definitions are of the form: class_name status,

where status s () when the class is off and 1 when on.

110

GET_FIRST_CLASS

Reset the iterator to the first class in the class list and return its definition.

GET_NEXT_CLASS

Increment the iterator to the next class in the class list and return its definition.

GET_FIRST_SOUND

Reset the iterator to the first sound in the sound list and return its definition.

GET_NEXT_SOUND

Increment the sound iterator to the next sound in the sound list and return its

definition.

GET_FIRST_SPEC

Reset the iterator to the first specification in the specification list and return

its definition.

GET_NEXT_SPEC

Increment the iterator to the next specification in the specification list and

return its definition.

GET_NUMBER_OF _SOUNDS

Return the number of sounds in the sound list.

GET_NUMBER_OF _SPECS

Return the number of sounds in the sound list.

GET_SOUND_DEF sound_name

Return the definition of a sound. Sound definitions are of the form: name

channel note velocity duration patch.

GET_SPEC_DEF spec_name

111

Return the definition of a specification. Specification definitions are of the form:

type status name sound number_of_classes classes.

HEARTBEAT

Do a heartbeat.

HEARTBEAT_NO_NOTE

Do a heartbeat without sound.

INIT

No-op. Test the connection from a client.

LOAD_SOUND_DB file_name

Load a sound database file.

LOAD_SPEC_DB file_name

Load an LSL specification file.

MAP_SOUND spec_name sound_name

Remap a specification’s sound to another sound in the sound list.

MERGE_SOUND_DB file_name

Load a sound database file and merge it with the sound list.

PAUSE

Pause the MIDI driver.

PLAY_RAW channel note velocity duration

Add a raw sound to the MIDI queue.

PLAY_SOUND_1 sound_name

Add a sound to the MIDI queue.

112

PLAY_SOUND_2 sound_name note

Add a sound to the MIDI queue and change the note.

PLAY_SOUND_3 sound_name mode

Add a sound to the MIDI queue. Turn the note off if mode = 0, on if mode = 1.

PLAY_SOUND_DIRECT sound_name

Write the sound directly to the MIDI device, bypassing the queue.

PLAY_SPEC_1 spec_name

Add the sound for the given specification to the MIDI queue.

PLAY_SPEC_2 spec_name note

Add the sound for the given specification to the MIDI queue and change the

note.

PLAY_SPEC_3 spec_name mode

Add the sound for the given specification to the MIDI queue. Turn the note off

if mode = 0, on if mode = 1.
RESUME

Restart the MIDI driver after a pause.

SAVE_SOUND_DB file_name

Save the sound list to a sound database file.

SAVE_SPEC_DB file_name

Save the specification list to an LSL specification file.

SET_TEMPO tempo_value

Set the tempo.

113

e SOUND_INDEX sound_name

Get the index of the sound in the sound list. Used to check that a sound is in
the list.

e SPEC_OFF spec_name

Turn off a specification.

e SPEC_ON spec_name

Turn on a specification.

e UNLOAD_SOUND_DB

Free the sound list.

e UNLOAD_SPEC_DB

Free the specification and class lists.

B.2 The Client Library

xlisten and user executable file share the code for interacting with the sound

server. This code exists in the client library, libclient. a.

o _1sl_send. [ch] contains the code for starting the sound server, opening con-

nections to the server, and sending and receiving messages from the server.

— Public Functions:

/* Opens a connection to the server, starting it if reqd */
int _lsl_open(const char *serv_name, const char *tmp_path,

const char *serv_socket, const char *cli_socket);

/* Sends a command to the server and returns the responsex*/

int _1sl_send(int servfd, const char *wbuf, char *rbuf);

— Private Functions:

114

/* Gets a response from the server. */

int _1sl_recv(int servfd, char *rbuf);

/* Initiate a connection to the server. */
int _1sl_conn(const char *cli_socket,

const char *serv_socket);

/* Creates a UNIX domain socket and bind it to a name */

int _1sl_create_socket(const char* name);

/* Bind a socket to a path name. */

int _1sl_bind_socket(int fd, const char *name);

e _1sl_proto.h contains the list of all command strings in the protocol.
e _rt_driver.c contains the main() function. It initializes LSL and calls the

real main(), which is renamed by 1s1CC to _1_m.

B.3 The Sound Server

The sound server is responsible for maintaining a map between the LSL specifi-
cations in an LSL file and the sound associated with the specification, for monitoring

the status of the LSL specifications, for playing sounds, and for pausing and resuming

the MIDI device.

e main. [ch] checks command-line arguments and initializes the program.

— Public Functions:

/* Initialize command-line arguments and enter server loop*/

int main(int argc, char *argv[]);

/* Shuts down the server. */

115

void quit(int sig);
e loop. [ch] contains the main loop of the server.

— Public Functions:

/* The main loop of the server. */

int loop(const char *name, int semid);
— Private Functions:

/* Cleans up after a client. */

void cli_done(int clifd, fd_set *allset);
e serv. [ch] contains utility functions for the server.

— Public Functions:

/* Announce server’s willingness to listen for connections*/

int serv_listen(const char *name);

/* Wait for a client connection to arrive. */

int serv_accept(int listenfd, uid_t *uidptr);
— Private Functions:

/* Bind a socket to a path name. */

int bind_socket(int fd, const char *name);

e cli_list.[ch] maintains the server’s list of clients.

— Public Data:

/* The client list. */

extern ClientStruct *AppClientlList;

— Public Functions:

116

/* Add a new client to the list. */

int client_add(int fd, uid_t uid);

/* Delete a client from the list. */

void client_del(int fd);

/* Delete all clients from the list. */

void client_empty(void);

/* Get the client with the given descriptor. */

ClientStruct *client_get(int fd);
— Private Functions:

/* Allocate space for new client structures. */

void client_alloc(void);
e dispatch. [ch] dispatches commands to the appropriate function.

— Public Functions:

/* Dispatches commands to the appropriate function and sends
* results back to the client. */

void dispatch(ClientStruct *cliptr, char *buf);
— Private Functions:

/* Looks up a keyword in a table to get the case label for
* dispatch(). */

int which_keyword(char *token);

e table.h contains an array of all the command strings in the protocol. This list

must be in the same order as the list in commands.h.

117

e commands.h contains an enumerated type with entries corresponding to the
commands in the protocol. This type is used to map the command strings in
the protocol to integers. This list must be in the same order as the list in

table.h.
e serv_send. [ch] sends responses back the the client.

— Public Functions:

/* Send a reply back to a client. */

int serv_send(int clifd, int status, char *buf);
e sound. [ch] sends responses back the the client.

— Public Functions:

/* Turn off/on a MIDI channel. */
int channel0ff(int channel);

int channelOn(int channel);

/* Turn off/on a class. */
int classOff(char *class);

int classOn(char *class);

/* Turn off/on a spec. */
int spec0ff(char *spec);

int specOn(char *spec);

/* Change the sound of a spec. */

int mapSpecToSound(char *spec, char *sound);

/* Modify an existing sound. */

int modifySound(char *sound, int channel, int note,

118

int velocity, int duration);

/* Add a new sound. */
int newSound(char *sound, int channel, int note,

int velocity, int duration, int patch);

/* Play the sound with the given parameters. */
int playRaw(int channel, int note, int velocity,

int duration);

/* Play the sound for the spec. */
int playSpecl(char *spec);
int playSpec2(char *spec, int mode);

int playSpec3(char *spec, int value);

/* Play the sound. */
int playSoundi(char *sound);
int playSound2(char *sound, int mode);

int playSound3(char *sound, int value);

/* Play the sound, bypassing the MIDI queue. */

int playSoundDirect(char *sound);

/* Get the number of specs. */

int getNumberSpecs(void);

/* Reset/increment speclist iterator, returning the spec.x*/
int resetSpecIter(char *reply);

int incrSpecIter(char *reply);

119

/* Reset/increment classlist iterator, returning the class.*/
int resetClassIter(char *reply);

int incrClassIter(char *reply);

/* Reset/increment soundlist iterator, returning the sound.*/
int resetSoundIter(char *reply);

int incrSoundIter(char *reply);

/* Get the spec’s definition. */

int getSpecDef(char *name, char *reply);

/* Get the class’s definition. */

int getClassDef(char *name, char *reply);

/* Get the sound’s definition. */

int getSoundDef(char *name, char *reply);
— Private Functions:

/* Play the sound with the given number. */
int playSoundByNuml(int sound,struct spec *spec);
int playSoundByNum2(int sound,int mode, struct spec *spec);

int playSoundByNum3(int sound,int value, struct spec *spec);

e files. [ch] handles file operations such as loading and unloading LSL specifi-

cation files and sound databases.

— Public Functions:

/* Load another sound file; merge it with the one loadedx*/

int mergeSoundFile(char *file);

120

/* Load a sound file. */

int loadSoundFile(char *file);

/* Unload a sound file. */

int unloadSoundFile(void);

/* Load a LSL specification file. */

int loadSpecFile(char *file);

/* Unload a LSL specification file. */

int unloadSpecFile(void);

B.4 The Run-Time Controller GUI

xlisten is a X/Motif GUI which uses the sound server to control the behavior
of an auralized program. xlisten connects to the sound server through the client
library and has controls for loading and unloading files, remapping LSL specification
sounds, turning LSL specifications and classes of specifications on and off, editing
existing sounds, and adding new sounds. The GUI can fork off a single executable
program which can then connect to the sound server and play sounds in a way that
the GUI defines. During the execution of the auralized program, a user can use the

GUI to suspend and resume the program execution.
e main.c contains the top-level code for x1listen.
— Public Data:
— Public Functions:

/* The top-level function. Parses command-line arguments,
* starts the sound server, creates the main window, loads

* files, and enters the X event loop. */

121

int main(int argc, char *argv[], char *envp[]);

/* Signal handler/exit function. Cleans up the mess. */

void quit(int sig);

e mainWindow. [ch] contains the code for the main window of the GUI, including
the status lines and the sort and display toggle button groups. It also contains

the error, warning and question dialog code.
— Public Data:
— Public Functions:

/* Creates the main window and all its subwindows. */

Widget createMainWindow(Widget parent) ;

/* Displays a question dialog. */

int questionDB(char *message) ;

/* Displays a warning dialog. */

int warningDB(char *message);

/* Displays an error dialog. */

int errorDB(char *message);
— Private Functions:

/* Creates the lines in the main window displaying the
* names of the files currently loaded. */

Widget createStatusLine(Widget parent) ;

/* Creates two toggle button groups for sorting and display

* selection for the specification list. */

122

Widget createToggleBox(Widget parent);

/* Creates a single toggle button inside a toggle button
* group. */
Widget createRadioBox(Widget parent, char* labelName,

char *frameName, char *boxName, int behavior);

/* Creates Change Sound (Edit Auralization) button. */

Widget createControlButtons(Widget parent);

/* Callback for Change Sound (Edit Auralization) buttonk/
void editAuralCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for the sort toggle button group. */
void sortBoxCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for the display toggle button group. */
void displayBoxCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Displays a question, warning, or error dialog depending
* on the mode and returns the response. */

int messageDB(char *message, int mode);

/* Callback for the message dialog buttons. */
void messageDBCB(Widget w, int *answer,

XmAnyCallbackStruct *cbs);

123

/* From Feb 1995 Motif FAQ #116.

* Creates an XmString to handle embedded ’\n’ characters.
* It’s mostly equivalent to XmStringCreateLtoR().

*/

XmString multilineXmString(char *s);
e mainMenu. [ch] contains the code for the main menu inside the main window.

— Public Functions:

/* Create the main menu inside the main window. */

Widget createMainMenu(Widget parent) ;
— Private Functions:

/* Make the pulldown menu for each top-level menu item */
Widget makePulldown(Widget parent, char *name, int mnemonic,

Menultem *items);

/* Callback for Open Default Sound Database menu item. */
void fileOpenDefaultSDBCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for Open Executable menu item. */
void fileOpenExecCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for Open Executable File Selection dialog. */
void loadExecFileCB(Widget w, XtPointer clientData,

XmFileSelectionBoxCallbackStruct *callData);

124

/* Callback for Open LSL Specification File menu item. */
void fileOpenLSLCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for Open LSL Specification File Selection dialog. */
void loadLSLFileCB(Widget w, XtPointer clientData,

XmFileSelectionBoxCallbackStruct *callData);

/* Callback for Import Sound Database File Selection dialog. */
void importSDBFileCB(Widget w, XtPointer clientData,

XmFileSelectionBoxCallbackStruct *callData);

/* Callback for Import Sound Database menu item. */
void fileImportSDBCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for Open Sound Database menu item. */
void fileOpenSDBCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for Open Sound Database File Selection dialog. */
void loadSDBFileCB(Widget w, XtPointer clientData,

XmFileSelectionBoxCallbackStruct *callData);
/* Callback for Save LSL Specification menu item. */
void fileSaveLSLCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for Save Sound Database menu item. */

125

void fileSaveSDBDB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for Quit menu item. */
void fileQuitCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for Global Sync item. */
void prefGlobalSyncCB(Widget w, XtPointer clientData,

XtPointer callData);
e fileBox. [ch] contains the code for the file selection dialogs.

— Public Functions:

/* Create the file selection dialog. */

Widget createFileBox(void);

/* Open the file selection dialog. */
Widget openFileBox(char *title, char *filter,

void (*okCallback) (), XtPointer okClientData);
— Private Functions:

/* Callback for Cancel button in file selection dialog. */
void fileBoxCancelCB(Widget w, XtPointer clientData,

XtPointer callData);
/* Closes file selection dialog. */

void closeFileBox(XmFileSelectionBoxCallbackStruct *callData);

e fileOps. [ch] contains the code for interacting with the sound server to perform

file operations.

126

— Public Functions:

/* Load an executable file. */

int loadExecutable(char *name);

/* Load an LSL specification file. */

int loadSpecFile(char *name);

/* Load a sound database. */

int loadSoundDatabase(char *name);

/* Load the default sound database. */

int loadDefaultSoundDatabase();

/* Import a sound database into one already loaded. */

int importSoundDatabase(char *name);
— Private Functions:

/* Return the base name of the file name. */

char *basename(char *name);

/* Return the absolute path of the file name, assuming
* it is relative to the current working directory. */

char *absolutePath(char *base);

e runButtons. [ch] contains the code for executing, pausing, and resuming the

auralized program.

— Public Functions:

/* Create the main window buttons for running, pausing, and

* resuming execution of the auralized program. */

127

Widget createRunButtons(Widget parent) ;

/* Callback for Run with Arguments menu item. */
void runWithArgsCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for Run with Arguments dialog box. */
void runCommandCB(Widget w, XtPointer clientData,

XmSelectionBoxCallbackStruct *callData) ;

/* Callback for Run menu item and Run button. */
void runCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for Pause menu item and Pause button. */
void pauseCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for Continue menu item and Continue button. */
void continueCB(Widget w, XtPointer clientData,

XtPointer callData);
Private Functions:

/* Executes a process. */
void execProcess(const char *cmd, const char *args,

char *envp[]);

/* Sets button sensitivity depending on whether the mode is
* STOPPED, RUNNING, or PAUSED. */

void setButtonSensitivity(int mode);

128

e specWindow. [ch] contains the code for the specification selection list in the

main window.

— Public Functions:

/* Create the specification list window. */

Widget createSpecWindow(Widget parent) ;

/* Destroy the window. */

void destroySpecWindow(void);

/* Initialize the lists of specfications and classes after
* a new file has been loaded. */

void initializeInfolists(void);

/* Update the structure describing the given specification*/

void updateSpec(char *name);

/* Update the structure describing the given class. */

void updateClass(char *name);

/* Update the list after a change is made. */

void updateSpecWindow(void);

/* Callback for a list element window’s on/off button. */
void specToggleCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for a click on a list element window.

* Selects the element. */

129

void selectSpecActionCB(Widget w, XEvent *event,

String *params, Cardinal *numParams) ;

/* Callback for a button-3 click on a list element window.
* Selects the element and opens the Change Sound dialogk/
void editAuralActionCB(Widget w, XEvent *event,

String *params, Cardinal *numParams) ;
Private Functions:

/* Create a generic list element window. */

LineStruct *createBaseLine(Widget parent, int index)

/* Create a class list element window. */
LineStruct *createClassLine(Widget parent, int index,

ClassInfoStruct *class);

/* Create a specification list element window. */
LineStruct *createSpecLine(Widget parent, int index,

SpecInfoStruct *spec);

/* Destroy the lists of specifications and classes. */

void destroyInfolists(void);

/* Remove all the list element windows from specification
* list window. */

void clearSpecWindow(void);

/* Compare two specifications for sorting . */

int compareSpec(void *a, void *b);

130

/* Compare two classes for sorting . */

int compareClass(void *a, void *b);

e editAural. [ch] contains the code for the Change Sound (aka Edit Auraliza-
tion) dialog that is invoked by clicking the Change Sound button or by clicking

a specification with the third mouse button.

— Public Functions:

/* Create the Change Sound Dialog. */

void createEditAuralDialog(Widget parent);

/* Open the Change Sound Dialog. */

void openEditAuralDialog(LineStruct* line);

/* Callback for the OK button. */
void specOkCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for the Cancel button. */
void specCancelCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for the Edit Existing Sound button. */
void editSoundCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for the Add New Sound button. */
void addSoundCB(Widget w, XtPointer clientData,

XtPointer callData);

131

/* Callback for the Play Sound button. */
void testSoundCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for item selection in the sound list. */
void changeSoundCB(Widget w, XtPointer clientData,

XmListCallbackStruct *callData) ;

/* Callback for the on/off radiobuttons. */
void specToggleBtnCB(Widget w, XtPointer clientData,

XtPointer callData);
— Private Functions:

/* Fills the list of classes for the specification. */

void fillClassList(SpecInfoStruct *spec);

/* Inserts a string into a list widget in alphabetical order*/

int insertIntoList(char *string, Widget list);

/* Makes a radio button box. */

Widget makeRadioBoxWithSeparators(Widget parent);

/* Fills the sound list. */

void fillSoundList(char *selectedSound);

/* Empties the sound list. */

void clearSoundList(void);

e editSound. [ch] contains the code for the Edit Existing Sound and the Add

New Sound dialogs.

132

— Public Functions:

/* Creates the dialog. */

void createEditSoundDialog(Widget parent);

/* Opens the dialog. If sound is NULL, its Add New Sound
* dialog, otherwise, its the Edit Existing Sound dialog*/

void openEditSoundDialog(char *sound);

/* Destroys the dialog. */

void destroyEditSoundDialog(void);

/* Callback for the OK button. */
void editOkCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for the Cancel button. */
void editCancelCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for the Play button. */
void testRawSoundCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback for the Change Instrument button. */
void instrumentChangeCB(Widget w,

XtPointer clientData, XtPointer callData);
— Private Functions:

/* Makes an option menu widget. */

133

Widget makeOptionMenu(Widget parent, char *label,

char *choices[], XtCallbackProc callback);

/* Callback to destroy the option menu’s container. */
void deleteOptionMenuContainerCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Callback to check Name field when the user leaves it*/
void textFocusOutCB(Widget w, XtPointer clientData,

XtPointer callData);

/* Makes a scale widget. */
ScaleBox *makeScaleBox(Widget parent, char *name,
char *lowLabel, char *highlabel, int low, int high,

int initial);

/* Gets the duration selected in the duration option menu. */

int getDuration(void);

134

Appendix C: Experiment Materials and Results

C.1 Instructions to Subjects

Thank you for your participation in this experiment. The purpose of this experi-
ment is to compare the effectiveness of aural cues, visual cues, and a combination of

aural and visual cues in understanding program behavior.

e You will be given a C program and some erroneous versions of the same program.
Each erroneous version contains one bug e.g. it may differ from the correct
program in exactly one relational operator (e.g. a '’ <’ changed to ' >’ or

" <='). Each erroneous program is called a mutant.
o Execute the correct program on a given test input. Examine the output.
e Repeat the following three steps for each mutant.
e Execute a mutant on the same input. Examine the output.

o Classify the mutant into one of the two categories, namely, LIKELY-KILLED
or LIKELY-EQUIVALENT.

You will use the following criterion for classification. If the output produced by a
mutant is same as that produced by the correct program, then that mutant should be

classified as LIKELY-EQUIVALENT else it should be classified as LIKELY-KILLED.

C.1.1 Examining visual-only cues

Look at the output produced by the correct program. Look at the output produced
by a mutant. If outputs are exactly the same, classify as LIKELY-EQUIVALENT
else as LIKELY-KILLED.

You may execute the programs as many times as you like.

135

C.1.2 Examining aural-only cues

Listen to the output produced by the correct program. Listen to the output pro-
duced by a mutant. If outputs are exactly the same, classify as LIKELY-EQUIVALENT
else as LIKELY-KILLED.

You may execute the programs as many times as you like.

Table C.1: Mutants for Cal program

| Line # | Original Code | Modified Code
36 ¥y = tm->tm_year + 1900 y = tm->tm_year + 1800
44 if(y<i || y>9999) if(y<i || y<9999)
52 for(i=0; i<6%24; i+=24) for(i=0; i<=6%24; i+=24)
61 if(y<i || y>9999) if (y>9999)
68 for(i=0; i<12; i+=3) for(i=0; i<12; i+=4)
94 if(xs++ == ’\0’) if (k++s == ’\0?)
98 if(x--s 1=) if (x--s == 7)
108 30, 31, 30, 31, 30, 31, 30, 30,
119 mon[2] = 29 mon[3] = 29
120 mon[9] = 30 mon[9] = 31
127 case 1: mon[2]=28; break; | delete this case
149 if(i==3 && mon[m]==19) if(i==3 || mon[m]==19)
155 s++ delete this statement
146 d%=7 i%=7
160 s = pt+w s = p

Table C.2: Mutants for Look program

‘ Line # ‘ Original Code ‘ Modified Code
118 puts(entry) puts{copy)
158 *copy = EOS *src = EOS
95 top = mid bot = mid
97 else bot = mid bot = mid
155 for(cnt=len+1; (c=#src++) && cnt;--cnt) for (cnt=len;(c=*src++) && cnt;--cnt)
138 *buf++ = ¢ *++buf = ¢
155 for (cnt=len+1; (c=#*src++) && cnt;--cnt) | for (cnt=len+l; (c=*copy++) && cnt;--cnt)
157 *copy++=fold && isupper(c)? tolower(c):c | *copy++=fold && (isupper(c)? tolower(c):c)
47 fold = YES len = YES
106 canon(entry, copy) canon(copy, entry)

Table C.3: Mutants for Sort program

‘ Line # ‘ Original Code ‘ Modified Code
783 cflg =1 cflg = 0
772 p->ignore = dict+128 p->ignore = dict+290
211 break continue
442 if(rline(ibuf[i-1]1)) if(rline(ibuf[i]))
631 if(b = *--ipb - *--ipa) if(b = *—-ipb - --*ipa)
439 while((*dp++ = *cp++) !'= ’\n’) | while((*++dp = *cp++) != ’\n’)
634 if(*--ipa !'= ’0’) --xipa != ’07)
235 p->nflg = gq->nflg q->nflg = p->nflg
689 *pb == ’\n’ 7-fields[0].rflg: *pb == ’\n’ 7-fields[0].nflg:
910 j = --hp delete this statement
691 -fields[0].rflg fields[0] .rflg
336 if(cp[len - 2] !'= >\n’) if(cp[len - 2] !'= ’\t’)

137

Table C.4: Raw Data on correctness by cue type.

138

Each entry is the value of

correctness for a given subject using a given cue type.

‘ Subject # ‘ Visual ‘ Aural ‘ Aural-Visual

1 1.0 0.8 0.8
2 0.8 0.8 0.8
3 1.0 0.4 1.0
4 0.8 0.4 1.0
5 1.0 0.4 1.0
6 1.0 0.4 1.0
7 1.0 0.6 1.0
8 0.6 0.6 1.0
9 0.6 0.6 1.0
10 1.0 0.6 1.0
11 0.8 0.6 1.0
12 1.0 0.8 1.0
13 0.8 0.6 1.0
14 0.8 0.8 1.0
15 0.8 0.6 1.0
16 1.0 0.8 1.0

139

Table C.5: Raw Data on time-taken by cue type. Each entry is the value of

time-taken for a given subject using a given cue type.

‘ Subject # ‘ Visual ‘ Aural ‘ Aural-Visual

1 4 6 3
2 5 6 3
3 3 2 2
4 3 2 2
5 3 4 2
6 2 2 2
7 2 3 2
8 3 4 2
9 3 4 3
10 4 5 4
11 3 4 3
12 4 5 4
13 4 4 3
14 4 5 3
15 3 4 3
16 3 4 3

C.2 SAS Program Used for Data Analysis

options

%include plotlw;

data fir

input subject cuetype $ correct Time Q@;

if

else

1s=70;

st

if _n_

else group=3;

card
1
1

W W W o 0w W N NN O O O, Tl R R W W WY NN

e e =
= B = O O ©

s;
visual
aural
av
visual
aural
av
visual
aural
av
visual
aural
av
visual
aural
av
visual
aural
av
visual
aural
av
visual
aural
av
visual
aural

av

visual

aural

av

visual

aural

av

o O O o ©O

o ®» ® O ®» O O & ;»m O o ;» o »® O O s O O s O O Pk WO BN O W W O ® W O

36 then group=2;

n<= 18 then group=1;

W ok W oW R W N R WY WY N NN R WD WY WW T WO

140

12
12
12
13
13
13
14
14
14
15
15
15
16
16
16
17
17
17
18
18
18

run;

/*****************************/

/*¥%

/*****************************/

Titlel ’Frequency Table of % Correct’;

visual
aural
av
visual
aural
av
visual
aural
av
visual
aural
av
visual
aural
av
visual
aural
av
visual
aural

av

proc tabulate;

class cuetype correct group;

table group*cuetype,correct;

run;

Titlel ’Frequency Table of Time’;

proc tabulate;

class cuetype time group;

table group*cuetype,time;

run;

/**/

/*¥%

/**/

data one;

set first;

[« o] [« o]

o o
o »® ® O ®W W O ® O O O ® O W ® O & w o » O

Tables of data

W oW W R W W R W W R W W T W R T

Transform % correct with an arcsine to stabilize residuals

141

142

correct=arsin(correct) 5

run;

[sk ook sk sk ok ko ok ok ok ko sk ok sk skok ok ok /

/*** HNested Factorial *x/

[sk ook sk sk ok ko ok ok ok ko sk ok sk skok ok ok /

/***x Y, Correct *x/

[sk ook sk sk ok ko ok ok ok ko sk ok sk skok ok ok /

Titlel ’Nested Factorial’;

Title2 ’Y% Correct’;

proc glm data=one;
class group subject cuetype;
model correct = group subject(group) cuetype group*cuetype;
test h=group e=subject(group);
test h=cuetype e=group*cuetype;
output out=resid p=pred r=resid;

run;

[F Rk ko kR okokok ok ko kR k ok Rk ok /
/*** normality assumption *x/
[F Rk ko kR okokok ok ko kR k ok Rk ok /
proc rank normal=blom out=nresid;
ranks nresid;
var resid;

run;

Title4 ’Q-Q Plot’;
proc gplot;
plot resid*nresid / frame;

run;

Title4 ’Shapiro-Wilk Test of Normality’;
proc univariate normal;
var resid;

run;

[F R A A A A AA KA AAAAAFAAKFF KK [
/*** variance assumption **/
[F R A A A A AA KA AAAAAFAAKFF KK [

Title4 ’Plot to Review Residual Variance’;

symboll value=square;
symbol2 value=dot;

symbol3 value=star;

143

run;
proc gplot;

plot resid*pred=cuetype / frame;
run;
proc gplot;

plot resid*cuetype / vref=0 frame;
run;
proc gplot;

plot resid*group / vref=0 frame;
run;
proc gplot;

plot resid*subject / vref=0 frame;
run;

[sk ook sk sk ok ko ok ok ok ko sk ok sk skok ok ok /
/**¥*%x Time *%/
[sk ook sk sk ok ko ok ok ok ko sk ok sk skok ok ok /
Title2 ’Time’;
proc glm data=one;
class group subject cuetype;
model time = group subject(group) cuetype group*cuetype;
test h=group e=subject(group);
test h=cuetype e=group*cuetype;
output out=resid p=pred r=resid;

run;

[F Rk ko kR okokok ok ko kR k ok Rk ok /
/*** normality assumption *x/
[F Rk ko kR okokok ok ko kR k ok Rk ok /
proc rank normal=blom out=nresid;
ranks nresid;
var resid;

run;

Title4 ’Q-Q Plot’;
proc gplot;
plot resid*nresid / frame;

run;

144

Title4 ’Shapiro-Wilk Test of Normality’;
proc univariate normal;
var resid;

run;

[ko ks ok ok ok koK sk kR ok Kk kK ok

/*** variance assumption **/

[ko ks ok ok ok koK sk kR ok Kk kK ok

Title4 ’Plot to Review Residual Variance’;
proc gplot;

plot resid*pred=cuetype / frame;

run;
proc gplot;

plot resid*cuetype / vref=0 frame;
run;
proc gplot;

plot resid*group / vref=0 frame;
run;
proc gplot;

plot resid*subject / vref=0 frame;
run;

[ko ks ok ok ok koK sk kR ok Kk kK ok
/*x* Plot of data *%/
[ko ks ok ok ok koK sk kR ok Kk kK ok
proc sort data=first;

by group cuetype;

run;

proc means data=first noprint;
by group cuetype;
var time correct;
output out=mean mean=time correct;

run;

symboll value=square i=join;
symbol2 value=dot i=join;

symbol3 value=star i=join;

titlel ’Mean Correctness by Group and Cue Type’;

proc gplot;

145

plot correct*group=cuetype / frame;

run;

titlel ’Mean Time Taken by Group and Cue Type’;
proc gplot;
plot timexgroup=cuetype / frame;

run;

/s ok ok ok sk sk skok ok ok kkok ok skokok sk okok ok /
/*** Paired t-tests *x/
/s ok ok ok sk sk skok ok ok kkok ok skokok sk okok ok /
transpose data=first out=trans;

id cuetype;

by subject;

var time correct;

run;

proc sort; by _name_; run;
data two;
set trans;
a_v=aural-visual;
a_av=aural-av;
v_av=visual-av;

run;

titlel ’Paired t-test’;

proc means n mean stderr t prt;
by _name_;
var a_v a_av v_av;

run;

C.3 Results of SAS Program

Nested Factorial

% Correct

General Linear Models Procedure

Dependent Variable: CORRECT

Source

Model

Error

Corrected Total

Source

GROUP

SUBJECT (GROUP)
CUETYPE
GROUP*CUETYPE

Source

GROUP

SUBJECT (GROUP)
CUETYPE
GROUP*CUETYPE

Tests of Hypotheses using the Type III MS for

DF

23

30

53

R-Square

0.774932

DF

DF

Sum of Squares

7.55507032

2.19426600

9.74933632

24.09262

Type I 88

0.01600772
0.89145916
6.03976365
0.60783980

Type III S8

0.01600772
0.89145916
6.03976365
0.60783980

SUBJECT(GROUP) as an error term

Source

GROUP

DF

Type III S8

0.01600772

F Value

4.49

Pr > F

0.0001

CORRECT Mean

F Value

0.11
0.81
41.29
2.08

F Value

0.11

0.81

41.29
2.08

F Value

1.12253544

Pr > F

0.8967
0.6566
0.0001
0.1086

Pr > F

0.8967

0.6566

0.0001
0.1086

Pr > F

0.8750

5

16:07 Saturday, May 6, 1995

146

147

Tests of Hypotheses using the Type III MS for
GROUP*CUETYPE as an error term

Source DF Type III S8 F Value Pr > F
CUETYPE 2 6.03976365 19.87 0.0084
Nested Factorial 6

% Correct 16:07 Saturday, May 6, 1995

Shapiro-Wilk Test of Normality

Univariate Procedure

Variable=RESID

Moments
U] 54 Sum Wgts 54
Mean 0 Sum 0

Std Dev 0.203473 Variance 0.041401
Skewness 0.015648 Kurtosis -0.28624

Uss 2.194266 CSS 2.194266
cv . Std Mean 0.027689
T:Mean=0 0 Pr>|T| 1.0000
Num "= 0O 54 HNum > O 26
M(Sign) -1 Pr>=|H| 0.8919
Sgn Rank 16.5 Pr>=|S| 0.8886
W:Normal 0.979662 Pr<u 0.6939

Nested Factorial 8

Time 16:07 Saturday, May 6, 1995

General Linear Models Procedure

Dependent Variable: TIME

Source DF Sum of Squares F Value Pr > F
Model 23 47.59259259 6.90 0.0001
Error 30 9.00000000

Corrected Total 53 56.59259259

R-Square Cc.V. TIME Mean
0.840969 16.25111 3.37037037
Source DF Type I 88 F Value Pr > F
GROUP 2 1.92592593 3.21 0.0545
SUBJECT (GROUP) 15 29.33333333 6.52 0.0001
CUETYPE 2 14.92592593 24.88 0.0001
GROUP*CUETYPE 4 1.40740741 1.17 0.3425
Source DF Type III S8 F Value Pr > F
GROUP 2 1.92592593 3.21 0.0545
SUBJECT (GROUP) 15 29.33333333 6.52 0.0001
CUETYPE 2 14.92592593 24.88 0.0001
GROUP*CUETYPE 4 1.40740741 1.17 0.3425
Tests of Hypotheses using the Type III MS for
SUBJECT (GROUP) as an error term
Source DF Type III S8 F Value Pr > F
GROUP 2 1.92592593 0.49 0.6207
Tests of Hypotheses using the Type III MS for
GROUP*CUETYPE as an error term
Source DF Type III S8 F Value Pr > F
CUETYPE 2 14.92592593 21.21 0.0074
Nested Factorial 9
Time 16:07 Saturday, May 6, 1995

Shapiro-Wilk Test of Normality

Univariate Procedure

Variable=RESID

Moments

148

i)

Mean

Std Dev
Skewness
Uss

cy
T:Mean=0
Num "= 0O
M(Sign)
Sgn Rank
W:Normal

54

0
0.412082
0.027655
9

0

54

-4

-1.5
0.963986

Sum Wgts
Sum
Variance
Kurtosis
Css

Std Mean
Pr>|T|
Num > O
Pr>=|HM|
Pr>=|S|
Pr<W

paired t-test

54

0
0.169811
0.520225
9
0.056077
1.0000
23
0.3409
0.9898
0.1986

10

16:07 Saturday, May 6, 1995

——————————————————— WAME OF FORMER VARIABLE=CORRECT ----------------—-

T Prob>|T]|

-4.8906651 0.0001

-8.0000000 0.0001
-3.0070838 0.0079

T Prob>|T]|

4.0816663 0.0008

6.0585578 0.0001

Variable i} Mean Std Error
AV 18 -0.2444444 0.0499818
A_AV 18 -0.3555556 0.0444444
V_AV 18 -0.1111111 0.0369498
————————————————————— NAME OF
Variable i} Mean Std Error
AV 18 0.7777778 0.1905540
A_AV 18 1.2777778 0.2109046
V_AV 18 0.5000000 0.1457458

3.4306312 0.0032

149

150

Q—Q Pilot

RESID
0.6

0.4

0.3 e

0.2 1 L

0.1 1 +

0.0 1 +

—0.1]

— 0.2 1

— 0.3 1 +

— 0.4

—0.5+4
-3 -2 —1 o 1 2 3
RANK FOR VARIABLE RESID

Figure C.1: Nested Factorial Q-Q Plot for correctness to test if residuals are nor-

mally distributed. A Shapiro-Wilk test confirms the normal distribution.

151

Time
Q—Q Pilot
RESID
2_
1 -
+ +
.
+ ++
o_
+ o+
++
_1- T T T T T T
—3 -2 —1 (o] 1 2 3

RANK FOR VARIABLE RESID

Figure C.2: Nested Factorial Q-Q) Plot for time-taken to test if residuals are normally
distributed. A Shapiro-Wilk test confirms the normal distribution.

