LISTEN: A TOOL TO INVESTIGATE THE
USE OF SOUND FOR THE ANALYSIS OF
PROGRAM BEHAVIOR®

David B. Boardman Vivek Khandelwal Geoffrey Greene
Aditya P. Mathur

February 26, 2001

Abstract

We describe the architecture and use of a tool named LISTEN. This is a general
purpose tool to instrument computer programs so that during program execution as-
pects of program behavior are mapped to audible sound. Ongoing research aimed at
investigating the usefulness of sound in various programming-related tasks and a lack
of supporting tools led to the development of LISTEN. This tool is expected to find use
in tasks such as program testing and debugging, development of programming envi-
ronments for the visually handicapped, and data analysis using aural cues. We also
report our initial experience gathered during exploratory use of LISTEN and provide a
summary of ongoing research using this tool.

1 Introduction

Visualization is a widely used means of displaying various aspects of a program’s run time
behavior. By a program’s run time behavior we mean the flow of control and the change
of values of various data items computed by the program. For example, during debugging,
one may observe the path followed by a program on a given test case by watching on
a display screen the movement of a dot through various nodes in the flowgraph of the
program. Simulation of an automobile engine is often accompanied by a visualization of
the movement of the pistons through various cylinders. More examples of visualization of
program behavior can be found in the literature on program visualization.

In comparison to graphics/text based visualization, sound has been used much less in
displaying aspects of program behavior. However, we do find examples of research aimed
at investigating the use of sound in understanding program behavior and in adding sound
to simulations for increased appeal. A survey of the use of sound in understanding program
behavior is reported by Francioni and Jackson [7]. In an early work Gaver[8, 9] proposed
the use of auditory icons for use as a part of Apple’s interface on the Macintosh machines.
It is believed, and has been demonstrated in a few cases, that the use of sound can enhance
program understanding. Yeung[15] proposed the use of sound to recognize multivariate
analytical data. Francioni and Jackson [7] used program auralization to understand the
runtime behavior of parallel programs. Brown and Hershberger [5] auralized some of their

*This work was supported in part by an educational supplement from the National Science Founda-
tion No. CCR 9102311 and 9123502-CDA. The authors are with Software Engineering Research Center
and Department of Computer Sciences, Purdue University, W. Lafayette, IN 47907. David B. Boardman,
Vivek Khandelwal, Geoffrey Greene, and Aditya P. Mathur may be contacted at, respectively, board-
man@cs.purdue.edu, vk@cs.purdue.edu, greene@cs.purdue.edu, and apm@cs.purdue.edu.

animations generated using the Zeus animation system. In his doctoral dissertation, Ed-
wards [6] built and evaluated a word processor with an audio interface for use by visually
handicapped users.

Programming environments and applications developed so far have attempted to use
visual media to a great extent [1]. Though research in the use of audio in workstations[10, 13]
has been on the rise, audio remains a distant second to visual media. However, with the
availability of relatively inexpensive audio devices such as synthesizer modules and sound
digitizers and the provision of sound generators in workstations, audio is within reach of
most PC and workstation users.

We have designed and implemented LISTEN to provide a general purpose environment
for adding sound to a program so as to be able to “listen” to any aspect of its behavior.
The approach used in LISTEN is intended to simplify the task of adding sound to a program
resulting in relative ease of experimentation in this area. In the remainder of this paper
we describe the architecture of LISTEN, features of a language LSL used in LISTEN, and an
illustrative example to show the utility of LISTEN.

Section 2 describes the architecture of the LISTEN system. An intermediate language,
named Listen Specification Language (LSL), that serves as the carrier of a programmer’s
intentions regarding mapping program behavior to sound, is reviewed briefly in Section 3. A
simple experiment to evaluate the use of sound in software testing is described in Section 4.
Conclusions from and status of the current research are reported in Section 5.

2 Components and processes in LISTEN

LISTEN instruments a given C program to enable the generation of sound during its execu-
tion . Various components of LISTEN and the processes executed during its use are shown
in Figure 1. A brief description of the system follows; details appear in [3].

As shown in this figure, a user of LISTEN begins by editing the source program, if not
available, and a specification file. The specification file, hereafter referred to as an Au-
ralization Specification (ASPEC) file, contains commands written in LSL. As described in
Section 3, these commands specify the mapping of program behavior to sound. The pro-
gram source file and the ASPEC are input to IsSICC which parses the ASPEC to create
an Auralization Database consisting of data obtained from the ASPEC. Next, the source
program is parsed and a parse tree is created. This parse tree is now decorated by adding
instrumentation using information contained in the Auralization Database. The instru-
mentation consists of some initialization code and calls to sound generation routines placed
appropriately in the tree. These sound generation routines are a part of the LSL Library.
The decorated parse tree is then deparsed and instrumented C source code generated.

During the execution of the instrumented program calls to LSL library routines generate
data sent to a sound generation device. In the current implementation a synthesizer module?
is used to generate sound. Through the ASPEC one can control several characteristics of
the sound so generated. Some of these characteristics are pitch, timbre, time of generation,
duration, and rate. A run time system, not shown in Figure 1, allows alteration of these
parameters during program execution. A Graphical User Interface allows the easy creation
and modification of an ASPEC. An ASPEC is an ASCII file and can also be edited using

any text editor.

We currently use a Roland Sound Canvas and a Proteus/3 World as the synthesizer modules to generate
sound.

= A
C " [] : : [] []
GCJ . Sound
= | Soun = u = = =
™ []] L] [] []
8 = | Database | 2 = | Decorated | = . .
= LSL Spec |= - = | Parse Tree | a . .
Q = Auralizationf = E Decoratedf - 4 J hj'
O =fDatabase E Parse Tree | = (S:OLérce E
= ode
9 . . . ® MIDI Data
g C Program |= . . a . .
] . - . . - -
(S . " [] : : L] []
O -
U) n [] L] L [] L] >
LSL C
Editing Parsing Parsing Decoration Deparse Compilation Execution

Processing Phase

Figure 1: Components and processes in LISTEN.

3 An overview of LSL

As mentioned earlier, LSL is a language to specify mappings from program behavior to
sound. The design goals for LSL are:

1. Generality: It should be possible to specily any auralization using LSL.

2. Language independence: 1t should be possible to use LSL with the commonly used
programming languages such as C, C**, Ada, Pascal, and Fortran.

Below we provide a briefl explanation of how the above goals were met and review key
features of the language. An illustrative example is provided to help in understanding the
use of LSL and the LISTEN system.

3.1 ASPECs and realizations

To be able to design a language using which one can specify all possible auralizations, a
quantification of two domains is established. Let £ be the domain of all those occurrences
during the execution of any program that one may wish to auralize. The nature of such
occurrences is discussed below. Let S be the domain of all possible sound patterns that
may be associated with each element of £. A mapping from E to S is an association of
sound patterns in S to occurrences in E. Such a mapping is specified as a set of pairs (e,)
where e € F/ and s € S. The term program auralization for a given program P refers to
the set {(e1,s1),(€2,52),...,(€n,Sn)}, where each (e;,s;),1 < ¢ < n is an association of an
occurrence to a sound pattern. In this paper we refer to a program that emits sound during
execution as an “auralized program”. The task of instrumenting a program so that it emits
sound during execution will be referred to as “program auralization”.

A language L for program auralization is a notation to specify any such mapping for
any program. A mapping specified using L is referred to as auralization specification ab-
breviated as ASPEC. Specifications are always written with reference to a given, though

Figure 2: A domain based view of program auralization.

arbitrary, program in some programming language. Figure 2 illustrates this view of program
auralization. Note that an ASPEC is a many-to-many mapping.

Let (e,s) be an element of an ASPEC for program P. During the execution of P if
each occurrence e is identified by a sound pattern s, it is said that the pair (e, s) has been
realized. An ASPEC for program P is considered realized if all its elements are realized for
all executions of P. An implementation of L for programs in a given programming language
PL is said to be correct if each ASPEC, written in L, for any program P, written in PL is
realized.

3.2 Occurrence space characterization

Ideally, it should be possible to specify any auralization. To do so, the space of all possible
occurrences that might arise during program execution must be defined. Towards this
end a three-dimensional space using the orthogonal notions of position, data, and time
are selected. Position refers to any identifiable point in a program. For example, in a C
program, beginning of a function call, end of a function return, start of a while-loop, start
of a while-loop body, and start of a condition, are all positions. In general, an identifiable
point is any point in the program at which an executable syntactic entity begins or ends.
This implies that a position cannot be in the middle of an identifier or a constant. In
terms of a parse tree for a given program, any node of the parse tree denotes a position.
For example, the subscripted dot (e;) denotes seven possible positions in the following
assignment: o1 X ey = e3X o4 + 053 05 /07 2.

Data in a program refers to constants allowed in the language of the program being
auralized and the values of program variables. A data relationship is an expression consisting
of constants, variables, and function calls. Time refers to the execution time of the program.
It is measured in units dependent on the system responsible for the execution of the auralized
program. In a heterogeneous system, time is measured in units agreed upon by all elements
of the system.

As shown in Figure 3, a three dimensional space is used for specifying occurrences in
LSL. Two kinds of occurrences are distinguished: events and activities. LSL allows an
arbitrary combination of data relationships, positions, and time to specify an event or an
activity associated with program execution.

Data

Position

Time

Figure 3: Occurrence space characterization in LSL.

3.3 Sound space characterization

The sound space is characterized by sound patterns comprised of notes, durations, play
styles, and instruments. Notes of arbitrary durations can be combined to form sound
patterns. Each note can be associated with one of several play styles and with an arbitrary
instrument. For example, a note can be played staccato on a piano with a specified volume.
Combining notes in various ways gives rise to a domain consisting of an infinity of sound
patterns. Digitized sound, such as human voice, is considered a sound pattern.

3.4 Programming language independence

The second requirement stated above is significant as LSL should be usable by programmers
regardless of their preference for one programming language or the other. Adherence to
this requirement has produced a language which in the strict sense should be considered
as a meta-language. Omne can therefore adapt LSL to specific programming languages.
However, in the implementation for our research the LSL/C, an adaptation of LSL for the
C programming language [11] is implemented.

3.5 Features and syntax of LSL

Next, we briefly review the features of LSL; details may be found in [2, 4]. An LSL program
is known as a specification. Each specification is composed of one or more specification
modules. Fach specification module is composed of zero or more specification definitions
and one main specification. A specification module, a specification definition, and a main
specification are analogous to, respectively, a module, a procedure, and a module body in
a Modula-2[14] program.

Event specification

As mentioned above, one can map program events, activities, and data to sounds using LSL
commands. Event specification is achieved by the notify command. notify is a generic
command and can be adapted to a variety of procedural languages. In examples below we
assume that programs being auralized have been coded in C.

1. notify all rule=while_loop_body_begin using body_begin;

notify all rule= while_loop_body_end using body_end;

These specify two event types, namely the beginning and end of a while-loop body
using two general purpose syntactic specifiers. It also indicates that all positions in
the program where such events could occur are to be auralized. Thus, a C program
auralized using the above notify will generate the sound corresponding to the vari-
ables body_begin and body_end, respectively, whenever the beginning and end of a
while-loop body are executed.

. notify selective label = speciallloop rule=while_loop_body_begin using
body _begin;
This is the same as Example 1 except that the event selection is selective. Thus,
any loop body labeled by special_loop will be auralized. Any syntactic entity can be
labeled in the program being auralized by placing an LSL label command in front of
that entity.

”

. notify all instance= “4+count” and “search(x)” using count_or search in func

= “gearch”, “report”;

This specifies the execution of the statements ++count and search(z) as the events.
When any of these two events occur, count_or_search is played. However, these events
are to be recognized only inside functions search and report.

. notify all assertion = (x<y || p>q) using assertion_failed;

This specifies an event which occurs whenever the condition

(x<y || p>q) is not satisfied. Note that this condition is based on variables in the
program being auralized. When this condition is not satisfied, assertion_failed is to
be played.

. notify all rule = conditional expression and assertion = odd(x) using
cond_sound in filename = “myfile.c”;
This example shows how to specify the auralization of all conditional expressions that

occur in file myfile.c only when condition odd(z) is not satisfied.

. The all and selective tags can restrict any event selection. Multiple labels are used
within one notify command as in the following.

notify selective label = loop_1, loop2 rule=while_loop_body_begin using
body _begin;

notify selective label = special_loop rule= while_loop_body_end
using body_end;

Data tracking

Event notification consists of specifying one or more events and reporting them aurally
during program execution. There are applications wherein changes to values of variables
need to be monitored. It is certainly possible to specify assignments to such variables
as events and then report the execution of these assignments aurally. Such reporting is,
however, independent of the data being assigned. To obtain data dependent auralization,
LSL provides the dtrack command. A few examples of dtrack use appear below.

1. dtrack speed; will track variable speed using an initial value of 0 and default sound

parameters such as note pitch and volume.

Sound

| -
-

Start E End .
Program execution
Sound
| -
Start El E2 End Program execution
Sound
Start E1l E2 E3 End Program execution

Figure 4: Sample activity patterns specifiable in LSL. Start, E, E1, E2, E3 and End denote
events that occur during program execution. The vertical axis indicates the presence or
absence of sound.

2. dtrack crash init=false; will track crash assuming an initial value of false.

3. dtrack z capture=x_reset; will track z after capturing its initial value at the assign-
ment labeled by the LSL label z_reset

4. dtrack mouse and color using color_mouse_melody (&mouseval, &colorval) ; will track
variables mouse and color using a user defined function named color_mouse_melody
with two parameters.

5. dtrack speed when speed>65 until x<65 mode=continuous; will begin tracking
speed whenever its value exceeds 65 and will stop tracking it immediately after its
value becomes equal to or less than 65. Tracking will resume if the start event occurs
again. The discrete mode can be used to avoid resumption of tracking of speed.

Activity tracking

An activity is a sequence of actions between two events. An activity begins at the occurrence
of an event and ends at the occurrence of a later event. As mentioned earlier, start and
termination of program execution are considered as events. LSL allows the specification of
tracking arbitrary activities using the atrack command. Using the start and terminating
events one may specify a variety of activity tracking patterns as shown in Figure 4.

4 Experience with LISTEN

We have conducted several simple experiments with LISTEN. Below we describe an exper-
iment aimed at exploring the use of sound in understanding the behavior of a program
and determining if one can obtain information about certain attributes of the program,
specifically efficiency and correctness, simply by listening to it during execution.

4.1 Listening to an inefficient selection sort

In one experiment a selection sort[12] program was coded by an individual. A suitable
ASPEC for this program was also written by the same individual. Two other members of
our research team, who had not seen the code listened to the selection sort for various input
data values. While experimenting with this sort routine we posed the following questions:
What would we learn when we hear the program? We then decided to auralize the program
so that during its execution we can listen to (a) the start and end of program execution,
(b) the elements that are being exchanged, (c) the start of the body of the for-loop inside
which comparisons are made between data being sorted, and (d) the execution of each
program statement. Item (d) above is also known as a heartbeat. While listening to a
program a hearbeat provides a sense of timing. Our selection sort program sorts an input
array consisting of N integers into ascending order. Note that there are many program-
sound mappings. We selected one of these mappings arbitrarily.

An ASPEC written in LSL that meets the above goal is shown in Figure 6. The notify
command specifes the beginning of the for-loop body as an event. This event is mapped
to a Sticks sound. This is one of a large number of sounds that are a part of the sound
database in the LISTEN system? The dtrack command specifies that the variable temp,
used inside function exchange is to be tracked using the Flute2 sound, also a part of the
LISTEN sound database. This implies that whenever the value of temp changes, the Flute2
sound will be emitted. The syncto mmrel command specifies that the heartbeat will be
120 beats per minute. Thus, when an event occurs, the emitted sound will be synchronized
to this heartbeat. An alternative would be to synchronize sound generation to program
execution. The latter scheme is not useful for this example as it results in a sound pattern
that lasts for an interval too short for the human ear to identify distinct notes because the
program executes very fast, and therefore is unable to convey any useful information.

Having edited the ASPEC file, we compile the sort program and the ASPEC using
1s1CC. This results in an executable code. When the executable code is executed on a given
test input one hears the notes, emitted by the program, via the synthesizer module and a set
of speakers. Figure 7 shows the score, in western staff notation®, the notes that are emitted
when the sort program is executed. These notes were generated for an input consisting of
four elements 1, 3, 5, and 6. Notice that this is an already sorted array. The division of the
score into different measures and the key and time signatures is arbitrary in this example.
Note, however, that LSL has the ability to specify these parameters to control the various
characteristics of the generated sound pattern.

There are four staves in Figure 7 one corresponding to each of the different event or data
being tracked. These staves have been labelled for clarity. In this example, we assigned,
respectively, woodblock, tubular bell, stick, and flute sounds to the four staves labelled
Heartbeat, Program, for body begin, and Exchange. The Hearbeat staff has a total of
77 notes. Each of these corresponds to the execution of a program statement. A hearbeat
note is generated when any statement of the user program is executed. Heartbeat notes are
not generated when a system library routine (e.g. printf) is invoked. The Program staff
has just two notes, that are aligned with, respectively, the first and the last hearbeat notes.
The for body begin staff has a total of six notes aligned with heartbeat notes 29, 30, 31,
41, 42, and 52. The first three notes correspond to the first execution of the loop, the next

2A sound in the Listen sound database consists of a type which could be MIDI sound or voice. In the
current version of LISTEN only MIDI sounds are supported. For each MIDI sound the database contains
the channel number, instrument code, and pitch code. MIDI is an acronym for Musical Instrument Digital
Interface. It is a serial interface to connect computers and musical instruments.

We are assuming that the reader is familiar with the staff notation. For those who are not and would
like to listen to the sound generated in our experiments, a cassette tape is available from any of the authors.

#include <stdio.h>

#define MAX 100
#define TRUE 1
#define FALSE 0
#tdefine NORMALIZE_FACTOR 70
int A[MAX];

static int ecount=0;
static int num_of_elements;

void main()

{
int i;
read_numof_elements();
read_array();
print_array(A);
selection_sort(4);
print_array(A);
printf("\nTotal exchanges = Jd\n", ecount);

}

void exchange(x, y)

int *x;

int *y;

{
int temp;
ecount++;
temp = *x;
XX = *y;
*xy = temp;

}

Figure 5: (a) Functions main and exchange for the selection sort routine.

void selection_sort(int A[MAX])

{
int i;
int j;
int position;
int smallest;
i=0;
while (i<num_of_elements)
{
position = i;
smallest = A[position];
/* find smallest from i+1 th element to the last */
for (j=i+i; j<num_of_elements; j++)
{
if (A[j] < smallest)
{
position = j;
smallest = A[position];
}
}
/* put the smallest element thus found at i’th place */
exchange(&A[position] ,&A[i]);
++1;
}
}

Figure 5: (b) Function selection_sort. Functions for input/output of array elements are
not listed here.

10

begin auralspec
specmodule paper-example
begin paper-example

syncto mmabs q = 120;

notify rule = prog_begin using Begin_snd;
notify rule = prog_end using End_snd;

notify rule = for_body_begin
using Sticks_snd
in func = "bubble_sort" and func = "selection_sort";

dtrack temp
when rule = function_entry:'"exchange"
until rule = function_return:'exchange"
using Flute2_snd;

end paper-example;
end auralspec.

Figure 6: Sample ASPEC for the selection sort program.

two to the second execution, and the last one to the third and final execution. Lastly, the
Exchange staff has four notes aligned with heartbeat notes 35, 46, 56, and 65.

Members of our development team listened to the sounds generated during the execution
of selection sort program on different test inputs. What surprised us, at least the ones who
had not coded the sort program, was the presence of the four notes corresponding to the
exchange function for a sorted input. Obviously, we had not expected to hear the flute
sound which was assigned to the exchange operation. When we checked with the individual
who had coded the program we discovered that the program was correct but ineflicient and
was performing the exchanges anyway.

4.2 Listening to an erroneous selection sort

The individual who coded the selection sort had another experience to report. A typing
mistake occured during the initial coding of selection of selection sort. As a consequence
there was an error in the for loop inside the selection sort function. The incorrect loop was
for (j=i+i; j<num of elements; j++)

where the initialization j=i+1 was incorrectly typed in as j=i+i. This resulted in a sound for
two exchange operations without an intervening sound for any comparison. This deviation
from expected aural behavior of the program alerted the individual who coded the program
and led to the discovery of the error. The sound pattern that led to the discovery of this
above error resulted from the exchange operations. Several exchange operations were heard
without any sound from corresponding to a comparison. This aural behavior of the program
surprised the listener, who had coded the algorithm, and led him to the error.

11

A Poorly Coded Selection Sort

Composer: Listen System

Heartbeat %
0

/1 § A]
Program Sk te = 2 |
ANV NS 3 T 1

a T
for body begin > O {i i
k= 3 1

Exchange

Hbt O fim—= == » = » » » » » + + + =+ >
R ———— B — e — o ——————
Prog #f\\ i

ANV

)

<)
for bb z E@
e 71—

0
Exch e i

03
Hbt 7@@‘
R ———— R — s — e ——————

B N !
Prog 5 |
\a\J 1
<) 1
for bb e — y 3 |
o ‘
0 yiy]
Exch 5 fr—— Fhe— |
\a\} V 7 AL | 1
apn
Hbt %
(=X ! ! f ! ! ! J ! ! ! ! ! ! ! J j
a 7 1
Prog s |
\a\l 1
b
&)= 1N 1
for bb e =7) < |
7 & 1
PP - ,
Exch S 2 = o B !
AN 7 I 1
& |
0
Hbt s = = = = = = = & & » » » < < |
Fo e e e 7 H
A v
|
T ¥
Prog o— 2 f i
)
s .
for bb i H
0
AV A H ¥
Exch st <7 — 3 |
\Q)\/ V A I §
-

Figure 7: Score representing the notes generated by the auralized version of the selection
sort.

12

4.3 Listening to other sort programs

We made the following observations while “listening” to a few other sorting programs which
include bubble sort and insertion sort:

e The sounds generated during the execution of a program on a given input, form a
distinctive pattern. This pattern is known as the aural signature of the program on
the given input.

¢ Based on its aural signature, an eflicient implementation can be differentiated from an
inefficient one. By “efficient” we mean efficient in terms of any measurable quantity
associated with program execution e.g. execution time, memory usage, number of
disk accesses etc.

e The “goodness” of an aural signature depends, among other factors, on the sound
specification (the ASPEC). Here “goodness” refers to the amount of useful information
that the aural signature reveals about the program’s behavior.

5 Summary, status, and conclusions

We have described a system named LISTEN that has been designed and prototyped to
experiment with the use of sounds in understanding and analyzing run time behavior of
computer programs. The system allows an experimenter to specify a mapping of program
related various events, activities, and program variables to almost an infinite variety of
sound patterns. It is expected, and has been our initial experience, that such a mapping
will allow the listener of a program to begin expecting certain sounds from the program.
When one does not hear as per expectations one begins to suspect some anomaly in the
code. Such a suspicion could be merely a misunderstanding on the part of the listener
or could lead to the discovery of a program error. We believe the basic approach used
in our work will be useful in the development of software systems that provide program
auralization in addition to or as an alternative to the visual method of displaying program
behavior. In the case of a user with vision related disabilities, such an alternative might be
attractive.

Further development of the LISTEN system is continuing. The focus of current work is
to (a) develop a run time graphical interface for altering program-sound mappings during
program execution, (b) develop an auralized version of a debugging tool for use by blind
users, and (c) explore the use of aural cues in program testing and debugging.

From our interactions with programs we have arrived at the following conclusions:

1. Repeated listening to an auralized program creates an “aural signature” in the mind of
the listener. The listener’s mind tends to question the existence of patterns when they
do not conform to an initial expectation. It is this questioning that may lead to one
or more of the following (a) improved understanding of the program and (b) discovery
of an error.

2. The benefit of sound in a computing environment will be directly related to the
quality of the ASPEC. One must choose sound patterns which portray appropriate
information with respect to a given occurrence mapping.

3. With respect to debugging or analyzing behavior, it appears that a developer must
spend significant time becoming familiar with the sound of a system or program. If
this aural training period is not realized it appears a user gains less information from

13

the sound. This suggests that there is a training time or sensitizing period that a
developer must go through to gain the greatest benefit from sound in a computing
environment.

It may be possible to establish a general ASPEC which creates a distinctive aural
signature for a C program in an application domain. An aural signature may provide
insight into program behavior. Based on initial experiences a developer may determine
what part of the code is executing, how the program behaves on a given input, and
narrow the search space when debugging.

Acknowledgements

Bob Liu and Jack Lawry helped in the development of the LSL compiler. Bob Horgan
provided support in the use of ATAC. Verna Abe and Helen Brown taught the rudiments of
music theory that shaped the design of LSL. Will Montgomery and Neil Herzinger answered
endless MIDI related questions. Qur thanks go to all these individuals.

References

[1]

[10]

[11]

A. L. Ambler and M. M. Burnett. Influence of visual technology on the evolution of
language environments. IEEE Computer, 22(10):9-22, 1989.

LSL: A Specification Language for Program Auralization, 1994.

D. B. Boardman. Listen: An environment for program auralization. Master’s thesis,
Purdue University, Department of Computer Science, W. Lafayette, IN 47907, 1994.

D. B. Boardman and A. P. Mathur. Preliminary report on design rationale, syntax,
and semantics of LSL: A specification language for program auralization. Technical
Report SERC-TR-143-P, Software Engineering Research Center, Purdue University,
W. Lafayette, IN, USA, 1993.

M. H. Brown and J. Hershberger. Color and sound in algorithm animation. Computer,
25(12):52-63, December 1992.

A.D.N. Edwards. Soundtrack: An auditory interface for blind users. Human-Computer
Interaction, 4(1):45-66, 1989.

J. M. Francioni and J. A. Jackson. Breaking the silence: Auralization of parallel pro-
gram behavior. Technical Report TR 92-5-1, Computer Science Department, University
of Southwestern Louisiana,, 1992.

W. W. Gaver. Using sound in computer interfaces. Human-Computer Interaclion,
2:167-177, 1986.

W. W. Gaver. The sonicfinder: An interface that uses auditory icons. Human-Computer
Interaction, 4(1):67-94, 1989.

R. Kamel, K. Emami, and R. Eckert. Px: Supporting voice in workstations. IFEF
Computer, 23(8):73-80, 1990.

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

14

[12] D. E. Knuth. Art of Computer Programming: Sorting and Searching Algorithms, vol-
ume 3. Addison-Wesley Publishing Company, Reading, MA, 1975.

[13] L. F. Ludwig, N. Pincever, and M. Cohen. Extending the notion of a window system
to audio. IFEFE Computer, 23(8):66-72, 1990.

[14] R. Sethi. Programming Languages: Concepts and Constructs. Addison-Wesley Pub-
lishing Company, Reading, MA, 1989.

[15] E. S. Yeung. Pattern recognition by audio representation of multivariate analytical
data. Analytical Chemistry, 52(7):1120-1123, June 1980.

15

