
Preliminary Report On
Design Rationale, Syntax, and Semantics of

LSL:
A Specification Language for Program

Auralization∗

David B. Boardman Aditya P. Mathur

August 30, 1993

Abstract

The need for specification of sound patterns to be played during program execu-
tion arises in contexts where program auralization is useful. We present a language
named LSL (Listen Specification Language) designed for specifying program auraliza-
tion. Specifications written in LSL and included in the program to be auralized are
preprocessed by an LSL preprocessor. The preprocessed program when compiled and
executed generates MIDI or voice data sent through a MIDI interface to a synthesizer
module, or via audio channels, to an audio processor, which transforms the notes or
voice into audible sound. LSL has the generality to specify auralization of a variety of
occurrences during program execution. It derives its broad applicability from its few
generic elements that when adapted to any procedural programming language, such
as C, C++, or Ada, enable the writing and use of LSL specifications for auralizing
sequential, parallel, or object oriented programs in that language. We view LSL as
a useful tool for building general purpose multimedia applications and for research in
program auralization.

∗This work was supported in part by an educational supplement from the National Science Foundation
No. CCR 9102311 and 9123502-CDA. The authors are with Software Engineering Research Center and
Department of Computer Sciences, Purdue University, W. Lafayette, IN 47907. Aditya P. Mathur can be
contacted at (317)494-7822 or via email at apm@cs.purdue.edu. David Boardman can be contacted via email
at boardman@cs.purdue.edu.

1

Contents

1 Introduction 5

2 The need for LSL 6

3 Basic definitions and LSL requirements 7

3.1 ASPECs and realizations . 7

3.2 Occurrence space characterization . 8

3.3 Sound space characterization . 9

3.4 Programming language independence . 9

4 Features and syntax of LSL 9

4.1 Constants, variables, and types . 11

4.2 Sound pattern specification . 17

4.3 Event notification . 17

4.4 Data tracking . 21

4.5 Activity monitoring . 22

4.6 Timed events . 23

4.7 Playback synchronization . 24

4.8 Assignments, loops, and conditionals . 25

4.9 Controlling auralization state . 25

4.10 Event, data, and activity classes . 27

4.11 Embedding LSL commands . 28

5 Examples of LSL/C use 29

6 LSL in a programming environment 35

6.1 LSL editor . 36

7 An LSL implementation outline 37

7.1 LSL preprocessor . 38

7.2 Graphic interface . 39

7.3 The LSL sound library . 40

8 Summary 40

Acknowledgements 41

2

Appendix : Syntax of LSL 43

9 LSL Syntax Conventions 43

10 Lexical Conventions 50

11 Static Semantics 53

3

List of Figures

1 A domain-based view of program auralization. The ASPEC in this example

consists of four occurrence and sound pattern pairs as shown. (ei, si) are

elements of the specified mapping. 8

2 Occurrence space characterization in LSL. 10

3 Structure of an LSL specification containing one module.. 12

4 Sample activity patterns specifiable in LSL. E1, E2, and E3 denote events.

Start and End denote the start and end of program execution. 23

5 Use of LSL in a programming environment. 35

6 LSLed in a programming environment. 38

List of Tables

1 Primitive types in LSL. 14

2 Attributes in LSL. 15

3 Sample note values using LSL duration attributes. 16

4 Default values of run time parameters. 17

5 Keywords and codes for LSL event specifiers in C. 20

6 Predefined functions in LSL. 21

7 Language Dependent Terminals in LSL Grammar. 53

4

1 Introduction

The idea of using sound to understand program behavior and to analyze data using sound

has been reported by several researchers. By program and data auralization we refer to,

respectively, the activity of mapping aspects of program execution or properties of data to

sound1. A survey of the use of sound in understanding program behavior or analyzing data

collected from experiments or generated by a program is reported by Francioni and Jack-

son [7]. It is believed, and has been demonstrated in a few cases, that the use of sound can

enhance program understanding. Yeung [18] proposed the use of sound to recognize multi-

variate analytical data. Francioni and Jackson [7] used program auralization to understand

the runtime behavior of parallel programs. Brown and Hershberger [4] auralized some of

their animations generated using the Zeus animation system. In his doctoral dissertation,

Edwards [6] built and evaluated a word processor with an audio interface for use by visually

handicapped users. Gaver [8, 9] proposed the use of auditory icons for use as a part of Apple’s

interface on the Macintosh machines.

It has been noted by researchers that in most situations program output is visual. Pro-

gramming environments and applications developed so far have attempted to use visual

media to a great extent [2]. Though research in the use of audio in workstations [11, 14]

has been on the rise, audio remains a distant second to visual media. However, with the

availability of low cost audio devices such as synthesizer modules and sound digitizers and

the provision of sound generators in workstations, audio is within reach of most PC and

workstation users.

We have designed a language that simplifies the task of specifying which occurrences

during program execution are to be auralized and how. The language is named Listen

Specification Language, abbreviated as LSL. Listen is the name of our project to investi-

gate possible uses of sound in programming environments and software based applications.

The need for LSL, its syntax, use, and current implementation status are described in the

remaining sections. Section 2 outlines the need for specifications of program auralizations

and LSL. Language requirements and the underlying rationale are presented in Section 3.

Essential features of LSL are presented in Section 4. Examples illustrating the use of LSL

in various applications are given in Section 5. Section 6 explains how LSL can mesh with

a programming environment. An implementation strategy for LSL is outlined in Section 7.

Current status of LSL implementation is reported in Section 8. A summary and preliminary

conclusions regarding the utility of LSL appear in Section 8.

1We include human voice in this context.

5

2 The need for LSL

Our research is concerned with the investigation of various uses of sound in programming

environments. Some generic questions we ask and seek answers to are listed below.

1. How useful is sound in debugging programs ?

2. How useful is sound in program understanding ?

3. Can program auralization be used to improve the quality of simulations of various

kinds such as telephone networks, mechanical systems, and biological systems ?

4. How can sound be used to make programming environments usable by, in particu-

lar, the visually handicapped with the same ease as by individuals without such a

handicap ?

As mentioned above, researchers have attempted to obtain answers to similar questions. We

believe that significant progress remains to be made before sound is used widely in various

programming related tasks.

While investigating answers to the above questions, we encountered a need for a general

purpose mechanism to specify the auralization of programs. In the absence of such a mech-

anism, auralization is done by editing the source code and adding calls to library procedures

that generate sound. For example, suppose that a parallel program to be executed on a ma-

chine with 1000 processors is to be auralized. The auralization should be such that whenever

an even numbered processor sends data, a sound with timbre characteristic T1 is generated

and whenever an odd numbered processor sends data a sound with timbre T2 is generated.

When so auralized, a listener will be able to distinguish between data sends by even and

odd numbered processors. Assuming that one has access to a library routine gen sound to

generate sound with a specific timbre, one can edit the program and add calls with appro-

priate parameters to gen sound at all places where a data send occurs. This could become

an inconvenient task if communication statements are distributed over many procedures in

a large program spread over several source files. The task could be simplified if one could

formally specify the auralization mentioned above. Such a specification and the program to

be auralized could be preprocessed automatically to generate a source program with code

inserted for the desired auralization. Any change in auralization will then require a change

only to the specification and not to the source of the parallel program.

As another example, consider the task of debugging a distributed system that controls

various functions of an automobile. It is desired to auralize the program so that each call

to a control procedure, e.g. to procedure gear change, is identified by a suitable sound.

6

As above, one may edit the source to achieve the desired effect. Another alternative is

to formally specify the above auralization requirement and use preprocessing to add the

necessary code.

A more difficult situation arises when the value of one or more variables is to be monitored.

Suppose that we want to monitor the value of a variable x in a program. Whenever this

variable exceeds a predetermined value a sound should be generated. Again, one may use

an editor to add a few lines of code at all places in the program where x has been defined.

An easier alternative appears to be to formalize the above auralization and preprocess it.

During further development of the software if one decides to monitor other variables, the

specification can be easily modified as compared to editing the code which might require

careful passes through various source files.

Examples such as the ones above led us to consider designing a language for specifying

auralizations. We note the pioneering work in the design of languages for music [13, 17]. The

main purpose of these languages was to specify music. In their present form, these languages

are not suited to the auralization tasks mentioned above.

3 Basic definitions and LSL requirements

Based on the perceived need for a specification language, we set forth the following idealized

requirements for LSL.

1. Generality : It should be possible to specify any auralization using LSL.

2. Language independence: It should be possible to use LSL with the commonly used

programming languages such as C, C++, Ada, Pascal, and Fortran.

Below we define basic terms and introduce concepts that help us formalize the above goals.

Our formalization brings reality to the above requirements. LSL satisfies the requirements

with respect to this formalization.

3.1 ASPECs and realizations

To be able to design a language that can specify all possible auralizations, we need a quan-

tification of two domains. Let E be the domain of all those occurrences during the execution

of any program that one may wish to auralize. The nature of such occurrences is discussed

below. Let S be the domain of all possible sound patterns that may be associated with each

element of E. A mapping from E to S is an association of sound patterns in S to occurrences

in E. Such a mapping is specified as a set of pairs (e, s) where e ∈ E and s ∈ S. The term

7

Occurrence space Sound pattern space

(e1, s1)

(e2, s2)

(e3, s3)

(e4, s4)

(e5, s5)

Figure 1: A domain-based view of program auralization. The ASPEC in this example
consists of four occurrence and sound pattern pairs as shown. (ei, si) are elements of the
specified mapping.

program auralization for a given program P refers to the set {(e1, s1), (e2, s2), . . . , (en, sn)},
where each (ei, si), 1 ≤ i ≤ n is an association of an occurrence to a sound pattern. A

language L for program auralization is a notation to specify any such mapping for any pro-

gram. A mapping specified using L is referred to as auralization specification abbreviated as

ASPEC. We assume that specifications are always written with reference to a given, though

arbitrary, program in some programming language. Figure 1 illustrates this view of program

auralization. Note that an ASPEC is a many-to-many mapping.

Let (e, s) be an element of an ASPEC for program P . During the execution of P if

each occurrence e is identified by a sound pattern s, we say that the pair (e, s) has been

realized. An ASPEC for program P is considered realized if all its elements are realized for all

executions of P . We say that an implementation of L for programs in a given programming

language PL is correct if each ASPEC, written in L, for any program P , written in PL is

realized.

3.2 Occurrence space characterization

Ideally, we would like to be able to specify any auralization. To do so, we need to characterize

the space of all possible occurrences that might arise during program execution. Towards this

end we select a three-dimensional space using the orthogonal notions of position, data, and

time. Position refers to any identifiable point in a program. For example, in a C program,

beginning of a function call, end of a function return, start of a while-loop, start of a while-

loop body, and start of a condition, are all positions. In general, an identifiable point is any

point in the program at which an executable syntactic entity begins or ends. This implies

that a position cannot be in the middle of an identifier or a constant. In terms of a parse

tree for a given program, any node of the parse tree denotes a position. For example, the

8

subscripted dot (•i) denotes seven possible positions in the following assignment: •1X•2 =

•3X •4 + •5 3 •6 /•7 2.

Data in a program refers to constants allowed in the language of the program being

auralized and the values of program variables. A data relationship is an expression consisting

of constants, variables, and function calls. Time refers to the execution time of the program.

It is measured in units dependent on the system responsible for the execution of the auralized

program. In a heterogeneous system, time is measured in units agreed upon by all elements

of the system.

As shown in Figure 2, a three dimensional space is used for specifying occurrences in LSL.

Two kinds of occurrences are distinguished: events and activities. LSL allows an arbitrary

combination of data relationships, positions, and time to specify an event or an activity

associated with program execution.

3.3 Sound space characterization

The sound space is characterized by sound patterns comprised of notes, durations, play styles,

and instruments. Notes of arbitrary durations can be combined to form sound patterns. Each

note can be associated with one of several play styles and with an arbitrary instrument. For

example, a note can be played staccato on a piano with a specified volume. Combining notes

in various ways gives rise to a domain consisting of an infinity of sound patterns. Digitized

sound, such as human voice, is considered a sound pattern.

3.4 Programming language independence

The second requirement stated above is significant as we want LSL to be usable by program-

mers regardless of their preference for one or the other programming language. Adherence

to this requirement has produced a language which in the strict sense should be considered

as a meta-language. One can therefore adapt LSL to specific programming languages as

described later. In all examples below, we use a C [12] adaptation of LSL termed LSL/C.

4 Features and syntax of LSL

The salient features of LSL are reviewed next. Details of LSL syntax and semantics appear in

the Appendix. An LSL program is known as a specification. Each specification is composed

of one or more specification modules. Each specification module is composed of zero or more

specification definitions and one main specification. A specification module, a specification

definition, and a main specification are analogous to, respectively, a module, a procedure,

9

Position

Data

Time

X (An event)

Figure 2: Occurrence space characterization in LSL.

10

and a module body in a Modula-2 [15] program. As an example of LSL specification structure

consider the specification listed in Figure 3. It begins with begin auralspec and ends with

end auralspec. Each module begins with a header identified by the specmodule keyword

followed by the module name such as spec module 1, spec module 2, and so on in this

example. A module header is followed by applicability constraints which specify parts of the

program to which the specifications are to be applied. Then come declarations of variables

used in this module followed by zero or more specification definitions such as spec def 1,

spec def 2, and so on. Global variables are shared between various modules. Variables

and specification definitions to be exported (imported) are listed in the export (import)

declaration. Variables declared in the program being auralized can also be used inside LSL

specifications. These are known as external variables.

4.1 Constants, variables, and types

LSL is a typed language. It contains constants, variables, and types just as several other

languages do. An identifier name is a sequence of one or more characters consisting of upper

or lower case letters, digits, and the underscore (). The first character in an identifier must

be a letter or an underscore. Upper and lower case letters are treated as being different.

Variables and constants can be assigned arbitrary names. Values likely to arise during

program auralization are grouped together into primitive types. Table 1 lists the primitive

types available in LSL. Values of type note and pattern are enclosed in quotes to distinguish

them from variable names. A note is specified by indicating its pitch e.g. “E4b” indicates

E-flat above the middle C on a piano keyboard. Attributes listed in Table 2 can be added to

a note separated by a colon (:). A pattern is a sequence of notes and voices2 played in the

specified sequence. A sequence of notes within a pattern can be enclosed in parentheses to

indicate a blocked chord also referred to as a chord pattern. A variable name can be used

within a pattern by preceding it with a dot. For example, if the identifier cmajor denotes

a chord pattern, then p:= “.cmajor E5” denotes a pattern consisting of the value of cmajor

followed by the note E5. Just as values could be printed or displayed in computer programs,

we say that values of type note and pattern could be played back during the execution of

an auralized program.

The set of key signatures constitutes the type ksig. Pre- or user-defined functions are

used to manipulate values of type ksig. Constants of type ksig are enclosed inside double

quotes and can be assigned to variables of the same type. A key signature could be predefined

or user defined. A predefined key signature consists of two parts: a key name and a modifier.

2Throughout this work data of type “voice” refers to digitized sound. Thus, for example, both digitized
voice and digitized guitar sound are characterized as voice data.

11

begin auralspec

specmodule myprog auralize

/* This module contains specifications to auralize myprog procedure. */

/* Applicability constraints, if any, come here. */

/* Declarations for variables global and external to this module . */

specdef specdef 1 (parameters);
/* Declarations of parameters, local variables, and functions. */
begin specdef 1
...
end spec specdef 1;

spec-def spec def 2 (parameters);
/* Declarations of parameters, local variables, and functions. */
begin specdef 2
...
end specdef 2;

...
specdef specdef n (parameters);
/* Declarations of parameters, local variables, and functions. */
begin specdef n
...
end specdef n;

begin myprog auralize;
/* Specifications for module myprog auralize. */
...

end myprog auralize;

/* Other module specifications. */
...

end auralspec.

Figure 3: Structure of an LSL specification containing one module..

12

Examples of key names are Eb (denoting E flat) and C# (denoting C sharp). Modifiers could

be major, minor (same as harmonic minor), lydian, ionian (same as major), mixolydian,

dorian, aeolian, phrygian, and locrian. Thus, for example, “C#:minor” and “E:phrygian”

are valid key signatures. A user defined key signature is any enumeration of notes. For

example, “C D Eb G A” is a key signature of a pentatonic scale.

The set of time signatures constitutes the type tsig. Constants of type tsig are enclosed

within parentheses. A time signature consists of two parts: the beat structure and the note

that takes one beat. For example, (4:4) is a simple time signature indicating 4 beats to a

measure with a quarter note of one beat in duration. A more complex time signature is

(3+2+2:8) which indicates a beat structure of 3+2+2 with an eigth note taking one beat.

A beat structure such as 3+2+2 indicates that the first measure is of 3 beats in duration,

followed by two measures each of 2 beats duration, followed by a measure of 3 beats and

so on. Time signatures can be assigned to variables of the same type and manipulated by

functions.

Type file is the set of file names. A filename is specified by enclosing the name within

double quotes. Thus, “your name please.v” can serve as a file name. The use of file names

is illustrated through LSL examples below. Note that we use a string of characters enclosed

within double quotes in a variety of contexts. It is the context that unambiguously determines

the type of a string.

A special type voice has been included to play digitized voice during program execution.

We have assumed that voice will be digitized using a suitable digitizer, e.g. the Audiome-

dia II [5] card from Digidesign, and stored as a sample in a file. It is this sample that

becomes a constant and can be assigned to a variable of type voice. Voice can be used in

note patterns by specifying variables of type voice.

Variables must be declared before use. The following declaration declares body begin

and body end to be of type note, loop begin, loop end, and measure to be of type pattern.

var

body begin, body end: note;

loop begin, loop end, measure: pattern;

Note and rest values

Attributes aid in specifying various properties of notes and patterns. Perhaps the most

common attribute of a note or a chord sequence is its duration. For example, “E4:q” denotes

a quarter note whose duration will be determined by the time signature and the metronome

13

Table 1: Primitive types in LSL.

Keyword Sample values Description

int −20 or 76 Set of integers.

note “E4b” Set of notes; not all of these may be played back in a
particular implementation. A subset of the notes is
labelled starting at A0 and going up to C8 as found
on an 88-key piano keyboard. These 88 notes cor-
respond to integer values of 0 to 87. Other notes
values may be obtained using the predefined func-
tion inttonote. Other predefined functions are listed
in Table 6.

R A rest is treated as a silent note with duration spec-
ified by a duration attribute.

tsig (3:8) or (3+2+2:4) Set of pairs of values denoting a time signature. The
first element in the pair specifies the beat structure
i.e. the number of beats per measure. The second el-
ement is the note value that corresponds to one beat.
The beat structure could be complex as explained in
the text.

ksig “Eb:minor”

“(C D E F# G A B)”

Set of k-tuples of pitch values. The set may be speci-
fied using abbreviations such as Eb:minor to indicate
the key of Eb minor or by enumerating all pitches re-
gardless of their specific position on a keyboard as in
the example.

pattern “G3E3C4” Set of note and/or chord patterns consisting of zero
or more notes or chords.

voice † Set of digitized voice patterns. A variable of this
type can be set to point to a memory or disk file
containing a digitized voice pattern.

file “done-voice.v” Set of file names. File extensions are interpreted. .c
is for C program files, .v for digitized voice files.

† Any digitized sound in a suitable format, e.g. AIFF [3].

14

Table 2: Attributes in LSL.

Code Applicability Description

f Note Indicates a full note .

h Note Indicates a half note.

q Note Indicates quarter note.

e Note Indicates eight note.

s Note Indicates sixteenth note.

chan Note, pattern Specifies the MIDI† channel on which to play.

play Note Indicates one or more play styles.

inst Note, pattern Specifies which instrument is to play.

mm Pattern Metronome setting. This is applicable only to patterns.
Notes not part of a pattern are played for a duration de-
termined by global metronome setting. A metronome
setting specified for a pattern takes priority over any
global setting only while this pattern is played.

ptime Note, pattern Specifies the exact time in seconds to play the note or a
pattern.

† MIDI is an acronym for Musical Instrument Digital Interface.

15

Table 3: Sample note values using LSL duration attributes.

Note value Attribute
combinations

Quarter note q or hh

Eight note hq

Sixteenth note hhq or qq

Thirty second note hhhq

Sixtyfourth note hhhhq or ss

Dotted half note h+q

Dotted quarter note q+hq

Dotted eigth note hq+hhq

value. The duration attributes can be multiplied or added to get dotted quarter note, and

other fractions of note values. For example, (hq) read as half of quarter denotes an eight note,

(hhq) read as half of half of a quarter denotes a sixteenth note. Table 3 lists sample note

values and the corresponding attribute combinations. Various rests could be obtained using

the attribute combinations shown in Table 3 with the letter R. For example, “R:(hq+hhq)”

denotes a dotted eight rest.

Duration can be specified for a chord by a single duration attribute. For example,

“(C4E4G4):q” denotes a chord consisting of three quarter notes. Notes and chords for which

the duration is not specified explicitly, as in “E4”, are played for a duration determined by

implementation dependent default durations (See Table 4 for various defaults.).

Type constructor

Values of primitive types can be combined together into an array. The following sequence

declares an array of measures, each measure being a pattern. Elements of an array can be

accessed by subscripting. Thus tclef staff [k+1] refers to the (k+1)th element of tclef staff

which is of type pattern.

const

scoresize = 25;

var

tclef staff: array [1..scoresize] of pattern;

16

Table 4: Default values of run time parameters.

Item Default value

Metronome q=120

Key signature C major

Time signature (4:4)

Channel 1

Instrument code 1

Note duration q

Play mode discrete for notify

discrete for dtrack

continuous for atrack

Pitch “C4”

4.2 Sound pattern specification

The play command is used to specify what sounds are to be generated when some part of

a program is executed. The general syntax3 of play is:

play <playlist>

where <playlist> is a list consisting of one or more notes and patterns specified using con-

stants, variables, and function calls. Key and time signatures are some of the parameters

that may be specified. Elements of <playlist> can be separated by a comma (,) or a parallel

(‖) sign. An example of play command appears below.

play (loop background ‖ (func call, no parameters)) with mm q =120, inst = “piano”;

The above play when executed will play the sound associated with the variable loop background

together with a sequence of sounds denoted by the variables func call and no parameters.

Default key and time signatures will be used. The metronome will be set to play 120 quarter

notes per minute and the notes will be played using a piano sound.

4.3 Event notification

A useful characteristic of LSL is its ability to specify events to be auralized. A programmer

may formulate an event to be auralized in terms of the application. However, such a speci-

fication is translated in terms of program position, data, and time as described earlier. For

3Syntactic entities are enclosed in < and >. Optional entities are enclosed in { and }. For a complete
syntax of LSL see Appendix.

17

example, in an automobile simulator, events such as gear change, speed set, resume cruise,

and oil check may be candidates for auralization. Suppose that the occurrence of these

events is indicated by calls to procedures that correspond to the simulation of an activity

such as gear change. It is these procedure calls that serve as event indicators to LSL. Thus,

for example, such a call to the gear change procedure could be mapped to sound using an

LSL specification.

Event specification is achieved by the notify command. notify is a generic command

and can be adapted to a variety of procedural languages. In examples below we assume that

programs being auralized have been coded in C. The syntax of notify appears below:

notify {<all-selective>} {<label-parameter>} <event-specifier> {<sound specifier>}
{<scope-specifier>}

<all-selective> specifies which subset of events selected by a notify are to be auralized.

Possible event codes are all and selective. If selective is used, one or more labels must

be specified to indicate which events are to be selected. <event-specifier> specifies one or

more events to be notified aurally.

There are five ways to specify an event. One may specify a general syntactic entity, a

special syntactic entity, an assertion, a relative timed event, and any combination of the

above four. Relative timed events are discussed in Section 4.6; other methods are described

below. Table 5 lists all event codes in LSL/C. For example, while-statement-enter is an event

specifier; the corresponding event occurs once each time a while statement is executed. The

start and termination of program execution serve as events.

The expression (x < y) serves as a special syntactic entity. The associated event occurs

whenever the expression (x<y) is executed. An assertion such as (x + y) > (p + q) also

specifies an event which occurs whenever the assertion evaluates to false. If e1 and e2 are

two events specified using any of the above approaches, then (e1 and e2) and (e1 or e2) are

also events.

The scope of a notify may be restricted using the <scope-specifier>. In LSL/C, the

scope can be restricted to one or more functions or files. For example, if an assertion is to

be checked only inside function sort, one may suitably restrict the scope to that function.

Labels can be used in conjunction with scope restrictions to specify arbitrarily small regions

in a program.

The sound specifier is a variable name, constant, or a function call that specifies the

intended auralization of the selected events. Sample notify commands appear below.

1. notify all rule=while loop body begin using body begin;

notify all rule= while loop body end using body end;

18

2. notify selective label = special loop rule=while loop body begin using body begin;

notify selective label = special loop rule=while loop body end using body end;

3. notify all instance= “++count” and “search(x)” using count or search in func =

“search”, “report”;

4. notify all assertion = (x<y ‖ p≥q) using assertion failed;

5. notify all rule = conditional expression and assertion = odd(x) using cond sound

in filename = “myfile.c”;

Example 1 above specifies two event types, namely the beginning and end of a while-

loop body using two general purpose syntactic specifiers. It also indicates that all positions

in the program where such events could occur are to be auralized. Thus, a C program

auralized using the above notify will generate the sound corresponding to the variables

body begin and body end, respectively, whenever the beginning and end of a while-loop

body are executed.

Example 2 is the same as Example 1 except that the event selection is selective. Thus,

any loop body labelled by special loop will be auralized. Any syntactic entity can be labelled

in the program being auralized by placing an LSL label command in front of that entity as

described in Section 4.11.

Example 3 specifies the execution of the statements ++count and search(x) as the events.

When any of these two events occur, count or search is played. However, these events are to

be recognized only inside functions search and report.

Example 4 above specifies an event which occurs whenever the condition (x<y ‖ p≥q) is

not satisfied. Note that this condition is based on variables in the program being auralized.

When this condition is not satisfied, assertion failed is to be played. Example 5 shows how

to specify the auralization of all conditional expressions that occur in file myfile.c only when

condition odd(x) is not satisfied.

The all and selective tags can restrict any event selection. Multiple labels are used

within one notify command as in the following.

notify selective label = loop 1, loop 2 rule=while loop body begin using body begin;

notify selective label = special loop rule= while loop body end using body end;

The above notify commands specify the same type of events as in Example 2 except that

loop body begins and ends that contain any one of the two labels loop 1 and loop 2 will be

selected for auralization.

19

Table 5: Keywords and codes for LSL event specifiers in C.

Category Event specifier Code† Event specifier Code†

Program start start end end

Expression variable var assignment expression aex

conditional expression cex

Iteration iteration statement ist iteration body begin ibb

iteration body end ibe while statement enter wse

while statement exit wsx do while dow

for statement enter fre for statement exit frx

while body begin wbb while body end wbe

for body begin fbb for body end fbe

do while body begin dbb do while body end dbe

Jump jump statement jmp continue statement cst

break statement bst return statement rst

goto statement gst

Selection selection statement sst if statement ist

if then part itp if else part iep

switch statement sst switch body begin sbb

switch body end sbe

Functions function call fnc function entry fne

function return fnr
† Event specifiers and their abbreviated codes can be used interchange-
ably to specify a rule in a notify statement.

20

Table 6: Predefined functions in LSL.

Function name Mapping Description

intton int → note Converts an integer to a note. Integers in the
inclusive range 0 to 87 get converted to notes A0
to C8.

ntoint note → int Converts a note to an integer.

nabove note × ksig → note Returns the note above the input in the given
scale.

nbelow note × ksig → note Returns the note below the input in the given
scale.

naboveh note → note Returns the note one half step above the input.

nbelowh note → note Returns the note one half step below the input.

circlen ksig → ksig Returns the next key signature in the circle of
fifths. Valid only for predefined key signatures.

circlep ksig → ksig Returns the previous key signature in the circle of
fifths. Valid only for predefined key signatures.

sectotick int → int Converts seconds to system dependent ticks.

4.4 Data tracking

Event notification consists of specifying one or more events and reporting them aurally during

program execution. There are applications wherein changes to values of variables need to be

monitored. It is certainly possible to specify assignments to such variables as events and then

report the execution of these assignments aurally. Such reporting is, however, independent

of the data being assigned. To obtain data dependent auralization, LSL provides the dtrack

command. The syntax of dtrack appears below.

dtrack <track-id-list> <sound-specifier> {<mode-specifier>}
{<start-event-spec>} {<term-event-spec>}

Using dtrack, one or more variables can be tracked. For the variable to be tracked, an initial

value can optionally be specified using the init keyword. The type of the initial value must

match that of the variable to be tracked. The initial value may also be captured immediately

after the execution of an assignment labelled using an LSL label.

As in notify, a <sound-specifier> specifies the sound to be used while tracking the

variables. Here we introduce another method for specifying sounds which is particularly

useful in conjunction with the dtrack command. A sound pattern whose characteristics

21

depend on program generated data will be referred to as a Value Dependent Aural Pattern

and abbreviated as VDAP. The using clause in the <sound-specifier> specifies the name of

the function, say f , that emits a VDAP based on variables being tracked. f is a language

dependent function containing LSL commands for auralization. Thus, in LSL/C, f is a valid

C function interspersed with LSL commands. f is executed after each assignment to the

variable being tracked.

Tracking may be carried out in continuous or discrete mode. In continuous mode, tracking

begins at the start of program execution, unless specified otherwise. A note pattern is emitted

continuously until there is a change in the value of the variable being monitored. When the

value changes, a newly computed note pattern is emitted continuously. In discrete mode,

a note pattern is emitted once whenever the tracked variable changes its value. In discrete

mode tracking begins the first time the tracked variable changes its value after program

execution.

Tracking can also be controlled using <start-event> and <term-event>. Start and termi-

nating events are specified, respectively, using the when and until clauses. A few examples

of dtrack use appear below.

1. dtrack speed; will track variable speed using an initial value of 0 and default sound

parameters such as note pitch and volume.

2. dtrack crash init=false; will track crash assuming an initial value of false.

3. dtrack x capture=x reset; will track x after capturing its initial value at the assign-

ment labelled by the LSL label x reset

4. dtrack mouse and color using color mouse melody (&mouseval, &colorval) ; will track

variables mouse and color using a user defined function named color mouse melody with

two parameters.

5. dtrack speed when speed>65 until x≤65 mode=continuous; will begin tracking speed

whenever its value exceeds 65 and will stop tracking it immediately after its value

becomes equal to or less than 65. Tracking will resume if the start event occurs again.

The discreet mode can be used to avoid resumption of tracking of speed.

4.5 Activity monitoring

An activity is a sequence of actions between two events. An activity begins at the occurrence

of an event and ends at occurrence of a later event. As mentioned earlier, start and termi-

nation of program execution are considered as events. LSL allows specification of tracking

arbitrary activities using the atrack command given below.

22

Program execution

Sound

Start E

Program executionStart E1 E2

End

End

Program executionStart E1 E2 EndE3

Sound

Sound

Figure 4: Sample activity patterns specifiable in LSL. E1, E2, and E3 denote events. Start
and End denote the start and end of program execution.

atrack { when <event-specifier> } { until <event-specifier> }
<sound-specifier> {<mode-specifier>}

<event-specifier>, <sound-specifier>, and <mode-specifier> have the same meaning as in

the dtrack command. Tracking begins when the event specified immediately following when

occurs (start event) and stops when the event specified following until occurs (terminating

event). If the start event is omitted, tracking begins at the start of program execution.

Tracking ends at program termination if the terminating event is omitted. If both the

start and terminating events are omitted then the entire program execution is tracked. In

continuous mode, an activity begins whenever the starting event occurs and terminates

at the terminating event. In the discrete mode, an activity occurs as above but does not

resume. Using the start and terminating events one may specify a variety of activity tracking

patterns as shown in Figure 4.

4.6 Timed events

LSL provides a powerful mechanism to auralize timed events. time is a special variable in

LSL which denotes the time spent from the start of program execution. Time is measured

in system dependent ticks; each tick being the smallest unit by which time could be incre-

mented. Thus, any expression using time can be used as a timed event. As an example,

23

suppose that the gear change function must be invoked in a program in less than 60 seconds

after the program execution begins. It is desired to playback variable bad program if this

condition is not satisfied. The following notify illustrates how to write this specification in

LSL.

notify rule = function call: gear change and assertion=time ≤ sectotick(60)

using bad program mode = discrete;

In the above example, sectotick is an LSL predefined function to convert seconds to ticks.

Notice that the expression time > sectotick(60) is a valid way to specify an event as described

earlier while discussing the syntax of notify.

It is often required to specify time relative to the occurrence of some event. This can be

done in LSL using relative timed events as shown below.

rtime = <expression> after <event-specifier>

Consider the use of this mechanism in the following example for tracking an event.

dtrack when (rtime=sectotick(30)) after rule = function call: missile launch

until rule= function return: target hit using missile in motion;

The above dtrack can be read as “Begin tracking 30 seconds after the function missile launch

has been called and terminate tracking when the function target hit returns. The tracking

sound is defined by the LSL variable missile in motion. Thus, using a combination of time

and rtime, one may specify a variety of timed events for auralization.

4.7 Playback synchronization

Synchronization mode controls the playback of notes during program execution. There are

two such modes: program or metronome. In the program mode, playback is synchronized

to the program. In the metronome mode it is synchronized to a global metronome. The

syncto command is used for setting the synchronization mode. The syntax of syncto is:

syncto <sync-to>

The <sync-to> parameter can be program or mm for synchronization with, respectively,

program execution or a global metronome. Multiple syncto commands may be placed in an

LSL specification to alter the synchronization mode.

In the metronome mode, a buffer holds the notes generated by the executing program.

When this buffer is full and the program attempts to send a note for playback, the playback

routine does not return control to the program until the received note can be buffered. This

may slow down program execution. To avoid this situation in metronome mode, one may use

24

the noslow parameter such as in the command syncto mm q=120, noslow. When the noslow

parameter has been specified, playback routine discards notes that are received when the

buffer is full. This could cause some events or data tracking to pass by unauralized. The size

of the playback buffer can be controlled by setting the bufsize parameter such as in syncto

mm=120, bufsize=1000 which specifies a buffer size that will hold at least 1000 notes.4

4.8 Assignments, loops, and conditionals

An assignment command has the general syntax shown below.

identifier {<subscript list>}:= <expression>;

where identifier is the name of a variable. Expression is any valid expression that evaluates to

the type of the identifier on the left of the assignment. <subscript list> is a list of subscripts

used for selecting array elements if the identifier denotes an array. Loops can be formulated

in an LSL specification using the for and while constructs. Syntax of these two constructs

is given below.

for <for index> := <init expression> to <final expression> {step <step expression>}
<spec sequence>

while <condition> do <spec sequence>;

The semantics of each of the above commands are similar to that of the for and while

statements in Pascal. All expressions in a for command must evaluate to integers. A

<spec sequence> is a sequence of zero or more LSL specification commands.

Conditional commands are provided in LSL for selectively specifying an auralization.

The syntax of a conditional command appears below. Its semantics are similar to that of

the if statement in Pascal.

if <condition> then <spec sequence> {else <spec sequence>}

4.9 Controlling auralization state

During execution, an auralized program can be in one of two auralization states: ON or OFF.

In the ON state any sound data resulting from the occurrence of an auralized event is sent to

the sound processor. In the OFF state any such sound data is suppressed. LSL provides two

commands to dynamically alter the auralization state. These are the turn and the toggle

commands. These commands have no effect when placed inside an LSL specification. They

may affect the auralization state when placed inside the auralized program.

4Each note belonging to a chord counts as one note.

25

Using turn is one way to switch sounds on or off. turn on switches the sound on

and turn off switches it off. The command may be placed anywhere inside the auralized

program. Upon the start of program execution, the auralization state is ON. The turn

command takes effect immediately after it is executed. Sound channels can be switched off

selectively by specifying the channel number as in turn off chan=4; switches off any sound

on channel 4.

Another way to turn the sound on or off is with the toggle command. The syntax of

toggle is given below.

toggle {id} <toggle-source> = constant

where <toggle-source> could be the MIDI or computer keyboard indicated, respectively, by

the keywords midi and keysig. The constant is a string containing the toggle note from the

MIDI keyboard and the toggle key from the computer keyboard. When specified, id denotes

the name of a class (defined below) of events, activities, and data items to be affected by

this command.

During program execution, the auralization state can be toggled using the source specified

in the command. For example, if the middle C on a MIDI keyboard is the toggle source,

tapping the middle C once, after program execution begins, turns the sound off. Tapping it

again turns it on. Input from the toggle source is processed only when an auralized event

occurs. When such an event occurs, an LSL library routine is invoked to check for a pending

toggle request. If a request is pending, the auralization state is switched to OFF if it is ON,

or to ON if it is OFF.

A program may contain both turn and toggle commands. A turn might change the

auralization state to off only to be switched back to on by a toggle. This is certainly one useful

scenario. Note that whereas turn commands are placed into the code prior to compilation

and do not provide the user any control after compilation, the toggle command permits

dynamic changes to the auralization state. The toggle default in LSL is the space bar on

the computer keyboard. Thus, even when no toggle is specified in a program, auralization

state may be toggled using the space bar.

Regardless of the auralization state, note values are generated and sent to the library

routine responsible for playback. It is this library routine that decides, based on the current

auralization state, if the received notes are to be played or not. In the metronome sync mode,

all notes emitted are buffered in a special playback buffer maintained by the library routine.

The buffered notes are removed from the buffer when their turn comes for playback. This is

determined by the current metronome setting. When playback resumes due to a toggle or

a turn changing the auralization state to on, the notes are played back in accordance with

26

the metronome setting. In program sync mode, notes received by the library routine are

discarded if playback is turned off.

4.10 Event, data, and activity classes

An event class5 consists of one or more events. A notify command specifies one or more

events which may occur at several positions inside a program and several times during

program execution. Events specified in one or more notify commands constitute an event

class. Similarly, a data class is a collection of one or more variables. A dtrack command

specifies one or more variables to be tracked. Variables specified in one or more dtrack

commands constitute a data class. An activity class is defined similarly with respect to

activities specified in one or more atrack commands. A class that consists of at least two

elements of different types, e.g. event and activity, or event and data, or data and activity,

is known as a mixed class.

It is possible for a user to define each of the above classes in an LSL specification. This

is done by naming one or more notify, dtrack, and atrack commands. Any of these three

commands can be named using the following syntax:

id1::id2::. . . ::idn::command

where each subscripted id above denotes a name and command denotes any event, data, or

activity specification command. Multiple commands can share a name. Each id, when used

as the name of a command, is treated as the name of a class. The class so named consists

of events, data, or activities specified in the commands named by id. One command can be

assigned multiple names. This makes it easy to define classes that are not disjoint. Consider

the following example.

function related::notify rule=function call;

function related::notify rule=function return;

data related::dtrack a and b and c;

special::data related::dtrack p and q;

The above three commands have been named to identify three classes. Class function related

consists of events that correspond to function calls and return. Another class named data related

consists of data items a, b,c, p, and q. Yet another class named special consists of data items

p and q.

The notion of a class can be used to model abstraction during program auralization. For

5Classes defined in this section have no intentional relationship with the notion of classes in C++ and
object oriented programming literature.

27

example, consider the auralization of tractor control software. The programmer may like

to group all the events into two classes. One class consists of events that correspond to

engine control. Another class consists of events that correspond to the control of parapher-

nalia attached to the tractor, e.g. a seeding device. By simply using the event specification

mechanism of LSL there is no way to explicitly incorporate these classes into an LSL speci-

fication. The mechanism of naming a command, as described above, however, does provide

a convenient means for defining classes.

Once defined, classes of events can be accessed at an abstract level using their names.

For example, during the execution of an auralized program, it is possible to interact with

the LSL run-time system and turn off the auralization of all events within a class. It is also

possible to request LSLed (described in Section 6.1 below) to provide a comprehensive list of

classes and their individual elements. Thus the use of classes enables a user to interact with

an auralized program in terms of “high level” occurrences, e.g. events, instead of dealing

with syntax based definitions.

4.11 Embedding LSL commands

LSL commands can be embedded in C programs inside comments. The LSL preprocessor

recognizes an LSL command embedding if the first token beginning with a letter immediately

following the comment begin delimiter (/*) is LSL:. Immediately following the delimiter,

a sequence of LSL commands can be placed enclosed within the begin and end delimiters.

For an example of such an embedding see Example 6 on page 32. The LSL commands so

embedded are translated to C code by the LSL preprocessor. LSL commands such as play

and notify get translated into calls to library functions. Other LSL commands, such as

assignments and dtrack commands get translated into more complex C code.

It is possible to identify specific constructs of a C program by labelling. A label is placed

inside a comment by using the keyword label as the first keyword starting with a letter

immediately following the comment start delimiter. Thus, for example, /* label=here,

onemore */ provides two labels here and onemore for possible use by the LSL preprocessor.

The following example shows how to label the beginning and end of a loop.

...

while (c = getchar()!=eof)

{
/*label=special loop This is an LSL label for the beginning of loop body. */

++nc;
...

28

/*label=special loop This is an LSL label for the end of loop body. */

}

5 Examples of LSL/C use

We now present a few examples illustrating the use of LSL. Each example consists of a

problem statement and a solution using LSL/C. In each example we assume that, unless

specified otherwise, default values are used for various sound related parameters such as

MIDI channel, timbre, volume, and metronome value.

Example 1

It is desired to auralize all loops in a C program. Loops will be identified by the while-do

constructs. On entry to a loop, note C4 is to be played for half a measure duration. Each

time control reaches the start and end of a loop body, notes E4 and G4 are to be played,

respectively. On loop exit, note C5 is to be played for a full measure. The following LSL/C

specification meets the above auralization requirements.

begin auralspec

specmodule loop auralize

var

l begin, l end, b begin, b end: note;

begin loop auralize

l begin:= “C4:h”; l end:= “C5:f”;

b begin:= “E4:q”; b end:= “G4:q”;

notify all rule = while statement enter using l begin;

notify all rule = while statement exit using l end;

notify all rule = while body begin using b begin;

notify all rule = while body end using b end;

end loop auralize;

end auralspec.

Example 2

An automobile contains a distributed microcontroller network. The software to control

this network and other automobile functions is to be tested and debugged. All calls to

29

functions gear change, oil check, and weak battery are to be auralized by playing suitable

sound patterns. The following LSL/C specification meets this auralization requirement.

begin auralspec

specmodule call auralize

var

gear change pattern, oil check pattern, battery weak pattern: pattern;

begin call auralize

gear change pattern:= “F2G2F2G2F2G2C1:qq”+ “C1:f”;

oil check pattern:= “F6G6:h”;

battery weak pattern:= “A2C2A2C2”;

notify all rule = function call: “gear change” using gear change pattern;

notify all rule = function call: “oil check” using oil check pattern;

notify all rule = function call: “battery weak” using battery weak pattern;

end call auralize;

end auralspec.

Example 3

A parallel program consists of a procedure MAIN which, after initialization, loads each of N

processors with a copy of program SOLVE. On each processor, SOLVE aids in the solution

of a partial differential equation using a discretization of a multidimensional input domain.

During execution SOLVE communicates with its neighboring processors by placing calls to

procedures nread (for read from a processor) and nwrite (for write to a processor). It is

desired to auralize this program so that calls to nread and nwrite are reported by suitable

sound patterns. Only calls that originate from even numbered processors are to be auralized.

The following LSL/C specification meets the above requirements.

begin auralspec

specmodule par processing

external even, processor num;

var

read pattern, write pattern: pattern;

begin par processing

read pattern:= “G5”;

write pattern:= “C4”;

30

notify all rule = function call: “nread” and even(processor num) using read pattern ;

notify all rule = function call: “nwrite” and even(processor num)using write pattern ;

end par processing;

end auralspec.

Example 4

An editor accepts commands for text editing. After having executed a command, a voice

message saying “Done” is to be generated. Assume that after receiving an edit command that

is to be voiced as above, the editor invokes a function named process command to process

the input command. The following LSL/C specification meets the above requirement.

begin auralspec

specmodule editor auralize

var

done voice: voice;

myfilename: file;

begin editor auralize

filename := “done-container.v”;

done voice:= filename;

notify all rule =function return: “process command” using done voice;

end editor auralize;

end auralspec.

Example 5

It is desired to auralize all labelled assignments in 10 files named file-1.c, file-2.c, and so on

through file-10.c. Assignments in the first of these files are to be notified by playing a C4,

the next by playing a D4, then by E4, and so on using successive notes in the C-major scale.

The following LSL/C specification meets this requirement.

begin auralspec

specmodule for loop

const

num of files = 10;

31

var

first note, next note: note;

next file: int;

filenames: array [1..num of files] of file;

specdef init file names();

begin init file names

filenames[1] := “file-1.c”; filenames[2] := “file-2.c”;

filenames[3] := “file-3.c”; filenames[4] := “file-4.c”;

filenames[5] := “file-5.c”; filenames[6] := “file-6.c”;

filenames[7] := “file-7.c”; filenames[8] := “file-8.c”;

filenames[9] := “file-9.c”; filenames[10] := “file-10.c”;

end init file names;

begin for loop

next file:=1; next note:=first note;

init file names();

for next file:=1 to num of files do

begin

notify selective label = this assign rule=assignment expression using next note

in filename = filenames[next file];

next note := nabove(next note, “C:major”);

end

end for loop;

end auralspec.

The above LSL/C specification uses an LSL function to insert all file names into an

array. The for loop then steps through each file name to specify the desired auralization.

Successive notes are obtained using a predefined function named nabove which takes a note

as an argument and returns the next note a full step above on a given scale.

Example 6

This example illustrates how dtrack can be used with VDAP (Value Dependent Aural

Pattern) to track arbitrary functions of program variables. Suppose that it is desired to

track the dynamic relationship between two variables named rock remain and dist remain.

rock remain represents the number of rockets remaining to be fired and dist remain the

remaining distance to be travelled. Each time a rocket is fired the count of remaining

rockets reduces by 1. The distance remaining to be travelled is updated by some process in

32

the program.

It is desired to emit a continuous audible sound only while the remaining distance

(dist remain) is more than the critical distance (crit dist) and the number of remaining

rockets rock remain is less than the critical rocket count (crit rock). An LSL specification to

achieve the above auralization consists of two parts. One part is an LSL specification module

containing a dtrack command. This command specifies the use of a VDAP function named

crit dist track for tracking dist remain. The second part is the definition of a C function

named crit dist track which has embedded LSL commands. The entire LSL specification

module appears below.

begin auralspec

VDAP begin

crit dist track (int *distval, *rockval);

{/* This is a C function. distval is a pointer to

dist remain and rockval is a pointer to rock remain. */

if ((*distval > crit distance) && (*rockval < crit rock))

{ /* LSL:

begin

play grave note with inst=bass, mode=continuous, chan=4;

end

*/ }
else

{ /* LSL:

begin

turn off chan=4;

end

*/ }
}
VDAP end;

specmodule emergency sound

applyto filename = dist compute.c;

const

grave note = “G2”;

begin emergency sound

dtrack dist remain and rock remain using crit dist track (&dist remain, &rock remain);

end emergency sound;

end auralspec.

33

While processing the above LSL module, the LSL preprocessor adds calls to the C func-

tion crit dist track, together with the specified parameters, immediately after each program

statement that could possibly alter the value of dist remain or rock remain. The preproces-

sor also translates the LSL commands inside a VDAP to C code. The function so obtained

is placed in suitable file for compilation by the C compiler. The preprocessor does not check

for the correctness of the VDAP.

Example 7

A recursive function named factorial is to be auralized in such a way that each call to factorial

generates a note with pitch proportional to the depth of recursion. The first call to factorial

should generate C4; successive calls should generate one note higher in the C-major scale.

The return sequence from factorial should play the notes back in the opposite order. The

following LSL specification meets the above requirements.

begin auralspec

VDAP begin

fact enter ()

{ /* LSL:

begin

note to play = nabove (note to play, “C:major”);

play note to play

end;

*/ }
fact exit ()

{ /* LSL:

begin

note to play = nbelow (note to play,“C:major”);

play note to play;

end

*/ }
}
VDAP end;

specmodule fact auralize

var

note to play: note;

begin fact auralize

34

note to play:= “B3”; /* The next note is C4.*/

notify all rule = function entry: “factorial” using fact enter();

notify all rule = function return: “factorial” using fact exit();

end fact auralize;

end auralspec.

The above specification contains two VDAP functions, namely fact enter and fact exit.

Each call to and return from factorial results in, respectively, the execution of fact enter and

fact exit resulting in the desired playback.

6 LSL in a programming environment

LSL is designed to fulfill complex demands for program auralization. In a programming

environment, one may use LSL to auralize parts of a program during the testing and de-

bugging phase or auralize an application to meet auralization requirements stated at the

beginning of the development cycle. As shown in Figure 5, there are at least three different

ways a software developer could use LSL. An expert in the use of LSL could write an LSL

specification or add LSL commands to the program itself and preprocess the program as

shown in Figures 5(a) and (b). Alternately, as in Figure 5(c), a graphical interface could be

used to ease the task of specifying auralization. This interface accepts and translates user

commands to LSL specifications. Specifications so generated are internal to the interface

and hidden from a novice user.

LSL specification
LSL Preprocessor

Program
Compile/Link

Object code

LSL Library

Program
Compile/Link

Object code

LSL Library

Graphic interface
for specifying
auralization

LSL Preprocessor Compile/Link
Object code

LSL Library

Program with
LSL commands

(a)

(c)

(b)

Figure 5: Use of LSL in a programming environment.

35

The result of using any of the above methods is an object program instrumented with

calls to procedures from the LSL sound library. When the instrumented program is executed,

these calls generate sound data that is directed to a sound module 6 via MIDI. The sound

module output is sent through an amplifier to a speaker. Voice is sent via an audio processor

and amplifier to the speakers. Non-voice and voice data are mixed at the amplifier and played

through the same speakers. A user may organize the audio playback hardware differently.

6.1 LSL editor

In principle it is possible to use any of the well known text editors, such as gnuemacs or vi

to edit an LSL specification. However, in several cases such editing may be inconvenient;

specially so for one not familiar with the piano keyboard or music terminology. For this

reason we propose a special editor, named LSLed, for preparing LSL specifications.

LSLed has features similar to those found in syntax-directed editors on personal com-

puters such as the Think C editor on the Macintosh [16] computer7. LSLed is most useful

when editing sound related commands. For example, suppose that variable named drag-icon

is declared to be of type pattern. We wish to assign a sound pattern to drag-icon. One way

to do so would be to type in the pattern using the notation described earlier in Section 4.1.

Thus, one may type in the following text:

drag-icon := “C2D2E2F2G2A2B2C3”;

We identify two problems with this approach. First, an individual may not be familiar with

the notation (e.g. one who asks the question: What is C2?) Second, one may be familiar

with the notation but would like to experiment with various sounds and just play the sound

pattern on an electronic keyboard instead of converting it to the textual notation. LSLed

helps overcome these problems.

During editing, LSLed could be in one of two modes: text and aural. When in text mode,

all input to LSLed is from the computer keyboard. When in aural mode, the source of

input could be MIDI via an electronic keyboard or the computer keyboard. When the above

assignment to variable drag icon is typed, LSLed expects input from the computer keyboard

until all characters up to and including the assignment (:=) operator have been typed. It

then adds a double quote to indicate the starting of a string and prompts the user to play

the pattern on the electronic keyboard. At this point the editor screen would display, among

other characters:

drag icon := “

6The LISTEN system currently uses Proteus/3 World from E-mu Systems as the sound module. The
Audiomedia II card from Digidesign is used for voice sampling and playback.

7Macintosh is a trademark of Apple Computer, Inc..

36

As the user plays the notes on a keyboard, the textual version of each note appears following

the double quotes. On completion, the user hits the return key indicating that the pattern

has terminated. To change any previously entered pattern, the user merely places the cursor

at the beginning of the pattern immediately following the double quotes, and repeats the

above process. Textual version may also be edited by switching LSLed to textual mode.

This may be useful for adding or altering note parameters such as, for example, duration or

play style. The above process can be used to enter other types of sound related constants

too. The advantage of this approach is clear when one considers the ease of data entry.

The duration of notes played on the keyboard is determined using various LSLed parameter

settings not described here.

LSLed also interprets commands in an LSL specification. For example, a play command

in an LSL specification can be interpreted to hear how the patterns specified in the command

will sound. Interpretation of more complex commands such as notify and dtrack are also

possible via the graphic interface as described in Section 7.

As LSL is a typed language, LSLed checks for any type mismatch. For example, if x is

of type note and one types:

x:= 4;

LSLed complains about the invalid type on the right side of the assignment.

Figure 6 shows how LSLed fits in a programming environment. It takes as input an

existing LSL specification file and creates an updated or a new file. LSLed obtains its input

from an electronic or a computer keyboard. LSL library routines are used for the input and

output of sound patterns. The program to be auralized is also an input to LSLed. This

enables LSLed to check for any interaction errors between the LSL specification and the

program. For example, if a notify command indicates that the events to be selected are

within function icon-operation, LSLed checks if such a function indeed exists in the program.

If not, then a warning is issued. In any case, checks such as these are also made during LSL

specification preprocessing.

7 An LSL implementation outline

An LSL implementation consists of four software components: (i) an LSL preprocessor,

(ii) an LSL editor, (iii) an LSL sound library, and (iv) an LSL graphic interface. Below we

outline the elements of the preprocessor, the library, and the graphic interface. The editor

has already been described above.

37

LSL specification

LSLed

Program to be

LSL Library

Electronic
keyboard

Computer
keyboard

auralized

file

Figure 6: LSLed in a programming environment.

7.1 LSL preprocessor

The task of the preprocessor is to instrument the program to be auralized with calls to sound

library procedures. The instrumentation is guided by the LSL specification. In the absence

of any specifications, the preprocessor may be required to process LSL commands embedded

within the program.

The preprocessor takes an LSL specification and a program P as input and produces the

instrumented version PL of P . PL is then compiled and linked to the library routines using

the traditional C compiler and linker. This generates an object program with auralization

commands compiled in. The following steps provide a high level view of the sequence of

actions taken by the preprocessor to transform P into PL.

1. Parse each source file F that is input to the preprocessor. This results in a parse tree

T for source file F , whose nodes are typed. Using the type information, it is possible

to examine a node of T and determine what syntactic construct it represents.

During the construction of T , identify any LSL commands. Replace each command by

an appropriate call to a sound library procedure. This call now becomes a part of T .

2. Begin parsing the LSL specification if one has been supplied. If there is no LSL specifi-

cation then go to step 3. Otherwise, for each notify or dtrack command encountered,

say C, do the following:

(a) Traverse T and identify syntactic constructs that match the event specification

in C. To each syntactic construct S so identified, add an appropriate call to the

sound library procedure that will generate the sound specified in C. This step

updates T .

38

3. The updated parse tree, say T ′ contains new nodes that represent calls to sound library

function calls. Deparse T ′ by traversing it and generating a source file F ′.

4. Invoke the C compiler available in the environment with input F ′. This will result in

the object version of F ′.

5. Delete F ′.

In a UNIX environment, the above sequence of steps is initiated by the following com-

mand:

lp -spec aspec.l -file icons.c

Assuming that icons.c contains a function named main, the above command will result in a

file named a.out containing the executable auralized version of icons.c. The auralization will

be done using the LSL specifications contained in the file aspec.l. For programs spread over

several files, makefiles [10], and the make command can be used. The lp command can be

embedded in the makefile. For programs that need to be auralized, calls to the C compiler

may be replaced by calls to lp. Recall from Section 4 that applicability constraints may be

used to restrict the scope of LSL specifications within a source file.

The above algorithm may perform multiple passes over the parse tree. The number of

passes over the program parse tree T is equal to the number of times notify and dtrack

commands are encountered while interpreting an LSL specification. Development of a more

efficient single pass algorithm for auralization based on a given LSL specification is an open

problem. Further, the preprocessor may not always succeed in performing correct auraliza-

tion due to pointers and aliases. The problem can be resolved using labels or scope specifiers

in the LSL specification to inform the preprocessor where to look for an event or data item.

7.2 Graphic interface

A graphic interface is an integral part of an LSL environment. The interface enables one to

specify auralization requirements without having to learn LSL. When using this interface, a

user uses pull-down and pop-up menus that guide the development of specifications. These

specifications are transformed into LSL syntax by the interface and saved in a specification

file just as a user would do if LSL was used directly. Once the specification is complete, the

interface can be instructed to invoke the LSL preprocessor and the C compiler to instrument

and auralize a program. The interface also provides an environment for executing an aural-

ized program. Thus, after having compiled the program, it may be instructed to execute the

program under programmer’s control. This feature may be used to debug the program and

alter auralizations when necessary.

39

7.3 The LSL sound library

This is a library consisting of procedures that are responsible for sending appropriate data

to MIDI or other sound generation devices during program execution. The entire package to

manage the processing of notes received during program execution is a part of the library.

In addition, the library consists of several predefined functions callable from within an LSL

specification and a C program.

8 Summary

Research efforts in program auralization appear to be on the increase. We are not aware

of any general purpose method to specify program auralizations and a supporting tool to

auralize a program in accordance with the specifications. We have presented the syntax

and semantics of a language named LSL that provides a notation to specify a variety of

program auralizations. LSL is generic and needs to be adapted to the programming language

of an environment in which programs are expected to be auralized. A language specific

implementation of LSL serves as a tool to auralize programs. We have presented the design

of LSL/C, a C adaptation of LSL.

Writing LSL specifications could be a tedious task. To simplify the process, we have

proposed a syntax directed editor for LSL, named LSLed, and a graphic interface. LSLed

is useful while writing LSL specifications directly using LSL. The graphic interface is useful

for a novice to LSL. Whether one uses LSL directly or the graphic interface to specify

an auralization, the result is an LSL specification. This specification serves as the basis

for instrumenting the program to be auralized. The instrumentation consists of calls to

procedures from LSL sound library.

The implementation of various parts of the LSL environment is currently underway as

part of the LISTEN project. Once different components of this environment are available

and integrated we will be sufficiently equipped to conduct experiments with the use of

auralization in various program development activities. The tools are also expected to help

other researchers in the area of program auralization.

Acknowledgements

Ronnie Martin spent many painful hours reviewing the first draft of this report. The idea

of using time in LSL is due to the guitarist, humorist, and computer scientist, Professor

Vernon Rego. The most wonderful teachers Verna Abe and Helen Brown taught the sec-

ond author the rudiments of music notation and theory that shaped parts of LSL design.

40

Will Montgomery and Neil Herzinger answered endless MIDI related questions. Our thanks

go to all these individuals.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley Publishing Company, Reading, MA, 1986.

[2] A. L. Ambler and M. M. Burnett. Influence of visual technology on the evolution of

language environments. IEEE Computer, 22(10):9–22, 1989.

[3] Apple Computer, Inc. Inside Macintosh, Volume VI. Addison-Wesley Publishing Com-

pany, Reading, MA, 1992.

[4] M. H. Brown and J. Hershberger. Color and sound in algorithm animation. Computer,

25(12):52–63, December 1992.

[5] Digidesign, Inc. Sound designer II: User’s Guide, 1992.

[6] A. D. N. Edwards. Soundtrack: An auditory interface for blind users. Human-Computer

Interaction, 4(1):45–66, 1989.

[7] J. M. Francioni and J. A. Jackson. Breaking the silence: Auralization of parallel program

behavior. Technical Report TR 92-5-1, Computer Science Department, University of

Southwestern Louisiana,, 1992.

[8] W. W. Gaver. Using sound in computer interfaces. Human-Computer Interaction,

2:167–177, 1986.

[9] W. W. Gaver. The sonicfinder: An interface that uses auditory icons. Human-Computer

Interaction, 4(1):67–94, 1989.

[10] Computer Systems Research Group. UNIX User’s Reference Manual (URM). USENIX

Association, 4 1986.

[11] R. Kamel, K. Emami, and R. Eckert. Px: Supporting voice in workstations. IEEE

Computer, 23(8):73–80, 1990.

[12] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall,

Englewood Cliffs, NJ, 1988.

41

[13] P. S. Langston. Little languages for music. Computing Systems, 3(2):193–282, Spring

1990.

[14] L. F. Ludwig, N. Pincever, and M. Cohen. Extending the notion of a window system

to audio. IEEE Computer, 23(8):66–72, 1990.

[15] R. Sethi. Programming Languages: Concepts and Constructs. Addison-Wesley Publish-

ing Company, Reading, MA, 1989.

[16] Symantec. Think C User Manual, chapter The Editor. Symantec Corporation, Cuper-

tino, CA, 1991.

[17] T. Thompson. Keynote - a language and extensible graphic editor for music. Computing

Systems, 3(2):331–358, Spring 1990.

[18] E. S. Yeung. Pattern recognition by audio representation of multivariate analytical data.

Analytical Chemistry, 52(7):1120–1123, June 1980.

42

9 LSL Syntax Conventions

The syntax of LSL is described below using a modified form of BNF[1]. Nonterminals are

in italics, keywords in teletype font, and lexical symbols in bold font. Alternates of a

nonterminal are separated by the | symbol.

1. lsl-spec → begin auralspec

spec-module-list

end auralspec.

2. spec-module-list → spec-module-list spec-module

3. | spec-module

5. spec-module → specmodule id

program-id-list

global-interaction-list

declarations

spec-def-list

VDAP-list

begin id

spec-def-body

end id;

6. program-id-list → external ext-id-list;

| ε

8. global-interaction-list→ global-interactions global-interaction-list

| ε

10. global-interactions → interact-id id-list;

11. interact-id → import | export

13. spec-def-list → spec-def spec-def-list

| ε

15. VDAP-list → VDAP-spec VDAP-list

| ε

17. VDAP-spec → VDAP begin

l- function

VDAP end;

43

18. spec-def → specdef id (spec-par-list)

declarations

begin id

spec-def-body

end id;

19. spec-def-body → spec-command spec-def-body

| spec-command

21. spec-command → named-command

| unnamed-command

23. named-command → name-tag-list unnamed-command

24. name-tag-list → id :: name-tag-list

| id ::

26. unnamed-command→ set-globals-command

| play-command

| notify-command

| dtrack-command

| atrack-command

| assign-command

| loop-command

| if-command

| specdef-use-command

| VDAP-call-command

| turn-command

| toggle-command

| sync-command

39. set-globals-command→ set global-par-list;

40. global-par-list → global-par-list, global-par

| global-par

42. global-par → score-const-id

| device-const-id

44. play-command → play play-list;

45. play-list → pattern-specifier ‖ play-list

44

| pattern-specifier && play-list

| play-list

48. pattern-specifier → id

| constant

| specdef-use-command

| VDAP-call-command

| pattern-specifier play-pars

| (play-list)

54. play-pars → with tagged-list

55. tagged-list → tagged-list, tags

| tags

57. tags → score-const-id

| device-const-id

59. score-const-id → score-tag = const-id

| mm mmspec

| mode-specifier

62. const-id → constant

| dotted-id

64. dotted-id → .id

65. score-tag → keysig

| timesig

67. device-tag-list → device-const-id , device-tag-list

| device-const-id

69. device-const-id → device-tag = const-id

70. device-tag → chan | inst

72. notify-command → notify all-selective label-parameter event-specifier

sound-specifier scope-specifier;

73. all-selective → all | selective | ε

76. label-parameter → label = label-list

| ε

45

78. label-list → label-list, id

| id

80. event-specifier → event-specifier connector event

| event

82. connector → and | or

84. event → rule = id

| rule = id:instance-list

| instance = instance-list

| assertion = l- condition

| rtime = expression after event

| (event-specifier)

| event (first)

91. instance-list → instance-list && instance

| instance

93. instance → string

94. sound-specifier → using play-list

| ε

96. scope-specifier → in tagged-scope-list

| ε

98. tagged-scope-list → tagged-scope-list and tagged-scope

| tagged-scope

100. tagged-scope → scope-tag = scope-tagid-list

101. scope-tag → filename | func

103. scope-tagid-list → scope-tagid-list, scope-tagid

| scope-tagid

105. scope-tagid → selector | string

107. dtrack-command → dtrack dtrack-id-list start-event-spec term-event-spec

sound-specifier scope-specifier;

108. atrack-command → atrack start-event-spec term-event-spec sound-specifier

scope-specifier;

46

109. start-event-spec → when event-specifier scope-specifier

| ε

111. term-event-spec → until event-specifier

scope-specifier

| ε

113. ext-id-list → ext-id-list , l- id

| l- id

115. dtrack-id-list → dtrack-id-list and dtrack-id

| dtrack-id

117. dtrack-id → l- id init-value capture-specifier scope-specifier

118. init-value → init = l- expression

| ε

120. capture-specifier → capture = id

| ε

122. mode-specifier → mode = continuous | mode = discrete | mode = sustain

125. assign-command → selector := expression;

126. selector → id | id[element-selector]

128. element-selector → expression-list

129. expression-list → expression-list , expression

| expression

131. loop-command → for-loop | while-loop

133. for-loop → for id := expression to expression step-expression

statement-body

134. step-expression → step expression

| ε

136. while-loop → while condition do statement-body

137. statement-body → begin spec-def-body end

| spec-command;

139. if-command → if-then-command

47

| if-then-else-command

141. if-then-command → if condition then statement-body

142. if-then-else-command→ if condition then statement-body else statement-body

143. specdef-use-command→ id (actual-par-list);

| id ();

145. actual-par-list → actual-par-list, actual-par

| actual-par

147. actual-par → expression

148. spec-par-list → id-list | ε

150. VDAP-call-command→ l- id (l- actual-parameter-list);

151. turn-command → turn on-off device-tag-list;

152. on-off → on

| off

154. toggle-command → toggle toggle-source = constant;

155. toggle-source → keyboard

| midi

157. sync-command → syncto sync-to-id;

158. sync-to-id → program

| sync-par-list

160. sync-par-list → sync-par-list, sync-par

| sync-par

162. sync-par → bufsize = const

| noslow
| mmkeyword

| mmkeyword mmspec

166. mmkeyword → mm | mmabs | mmrel

169. mmspec → duration-expression = const

170. duration-expression→ duration-expression duration-factor

| duration-expression + duration-factor

48

| duration-factor

173. duration-factor → duration-attribute

| (duration-expression)

175. duration-attribute → f | h | q | e | s

180. declarations → applicability const-declaration var-declaration

181. applicability → apply-list

| ε

183. apply-list → apply-list; apply-decl

| apply-decl

185. apply-decl → applyto tagged-scope-list;

186. const-declaration → const const-list;

| ε

188. const-list → const-val-pair const-list

| const-val-pair

190. const-val-pair → id = constant ;

191. var-declaration → var var-decl-list;

| ε

193. var-decl-list → var-type-list ; var-decl-list

| var-type-list

195. var-type-list → id-list : type

196. id-list → id , id-list

| id

198. type → int | note | pattern | voice | file | ksig | tsig
| array-declarator

206. array-declarator → array [range-list] of type

207. range-list → range-list , range

| range

209. range → expression .. expression

210. expression → expression addop term

49

| term

212. term → term mulop factor

| factor

214. factor → (expression)

| unop factor

| id
| id(actual-par-list)

| id()

| const

220. condition → condition relop cterm

| cterm

222. cterm → cterm logop cfactor

| cfactor

224. cfactor → expression

| (condition)

| not cfactor

227. addop → + | −

229. mulop → ∗ | /

231. unop → −

232. relop → < | > | <= | = | >= | <>

238. logop → && | ‖

10 Lexical Conventions

Using regular expressions[1] we define the lexical elements of LSL.

1. Comments are enclosed inside /* and */. Comments may not appear within a token.

A comment within another comment is not allowed.

2. char denotes any ASCII character.

3. One or more spaces separates tokens. Spaces may not appear within tokens.

50

4. An id is a sequence of letters or digits with the first character being a letter. The

underscore () can be used in an identifier. Upper and lower case letters are treated as

being different in an id.

id → ()∗letter (letter | digit |)∗

letter → [a-zA-Z]

digit → [0-9]

5. A keyword may not be used as an id. Upper and lower case are treated differently.

6. A constant can be an integer or a string. An integer is a sequence of digits. A string is a

sequence of characters enclosed within double quotes. As a constant can be interpreted

in a variety of ways in LSL, we provide below a complete grammar for constants.

1. constant → integer

| string

|time-sig

4. integer → digit+

5. string → “char-sequence”

6. char-sequence → note-sequence

| key-sig

| file-name

| function-name

10. note-sequence → (note | .id)+

| (note-sequence: attribute-sequence)

| (note-sequence)

14. note → note-generic note-modifier

15. note-generic → c | d | e | f | g | a | b | r | C | D | E | F | G | A | B | R
31. note-modifier → flat-sharp∗ octave

32. flat-sharp → b | #
34. octave → [0-8]

35. attribute-sequence → attribute+

36. attribute → duration tagged-value-list∗

37. duration → simple-duration

| (duration-expression)

39. simple-duration → f | h | q | e | s
| ptime = integer

51

45. duration-expression→ duration-expression op simple-duration

| simple-duration

| (duration-expression)

48. op → + | ε

50. key-sig → pre-defined

| user-defined

52. pre-defined → note:mode

53. mode → major

| minor
| lydian
| ionian
| mixolydian
| dorian
| aeolian
| phrygian
| locrian

62. user-defined → (note-sequence)

63. time-sig → (beat-structure : int)

64. beat-structure → beat-structure + int

| int
66. filename → char+

67. function-name → char+

68. tagged-value-list → tagged-value-list tagged-value

69. tagged-value → play-attribute-tag = constant

70. play-attribute-tag → chan | play | inst | mm | mm mmspec

7. Interpretation of a string is context dependent. Thus, for example, when assigned

to a variable of type pattern, the string “.cmajor C5” denotes a sequence of notes

consisting of the value of the variable .cmajor followed by the note C5. The same

string when used in the context file = “.cmajor C5” denotes a file name .cmajor C5.

Notes enclosed in parentheses such as in “G3 (C4E4G4) C5” are treated as forming a

blocked chord. The string “hello” results in an invalid assignment command when it

appears on the right side of an assignment to a variable of type pattern.

8. Ambiguity may arise while defining a note sequence such as in “cbb”. To avoid this,

the notes may be separated by at least one space character such as in “cb b”.

52

Table 7: Language Dependent Terminals in LSL Grammar.

Terminal Meaning Example from C

l-condition Conditional expression
which evaluates to true or
false.

(x < y && p > q)

l-id Identifier drag icon

l-expression An expression that evaluates
to a value of type matching
the type of the left side of
the assignment in which it
appears.

(min− val ∗ 2)

l- function A function invoked for track-
ing one or more variables.

Any C function defi-
nition.

l- actual-parameter-list List of actual parameters. int x, int * y

9. The grammar above contains some terminals prefixed by l-. Such terminals denote

language specific constructs. A complete list of such terminals appears in Table 7.

These terminal symbols may be nonterminals or terminals in the grammar of the

language L of the auralized program. The LSL preprocessor attempts to parse over

the strings corresponding to such symbols. These strings are parsed by the compiler

for L.

11 Static Semantics

The following constraints apply to LSL specifications. These are not indicated by the syntax.

1. All identifiers must be declared before use. Identifiers that belong to the auralized

program must appear as externals.

2. Local attribute values, such as metronome values, channels, etc. which are specified

explicitly as attributes, take precedence over corresponding global values. However,

they do not alter the global values. Global values of such parameters may be set using

the set command within an LSL specification or in the program.

3. Identifiers declared within a specmodule M are global to M and may be used by all

specdefs declared within M . Identifiers declared within a specdef S are local to S

53

and may not be used by other specdefs or in any other specmodule. Identifiers may

be exported by an specmodule for use by any other module by explicitly mentioning

it in an export declaration. A module may use an identifier exported by another

module by explicitly importing it using the import declaration. All program variables

used in an specdef or a specmodule body must be specified as externals. Program

identifiers, global to a VDAP definition, need not be declared. However, all such

identifiers must be declared in the context wherein VDAP will be placed and compiled

by the C compiler.

4. A VDAP specification must be a valid C function when using LSL/C.

5. The formal and actual parameters must match in number and type between a specifi-

cation definition and its use.

6. All matching begins and ends must match in the identifiers that follow the correspond-

ing keyword. Thus, for example, a begin gear which matches with an end change will

be flagged as a warning because gear and change do not match.

7. LSL has default values for various parameters such as metronome, channel, and instru-

ment.

8. The expression in a relative timed event must evaluate to a positive integer or else a

run time warning is issued. A relative timed event is ignored if it occurs after program

execution terminates.

9. A file or function specified in a scope tag must exist for the program to be auralized.

10. While monitoring an activity or data, tracking will terminate upon program termina-

tion if the start event occurs after the terminating event.

11. An expression in a range-list must evaluate to an integer and must not contain any

variable names. Subscript expressions that evaluate to a value outside the specified

range are not allowed.

12. If both the initial value and the capture location are specified for a variable to be

tracked, LSL will attempt to satisfy both requirements. Thus, the variable will be

initialized at an appropriate point during program execution. Its value will also be

captured as specified. The value captured will override any previous value of the

variable.

54

13. The syntax of LSL allows for the naming of any command. However, only names of

notify, dtrack, and atrack correspond to classes. Naming of other commands is per-

mitted to allow referencing of commands while editing or reading an LSL specification.

14. Use of toggle may give rise to ambiguities at run time. For example, if the space

key on the computer keyboard has been specified as a toggle source and the executing

program requests for input data, it is not clear if the space character should be treated

as a toggle request or input to the program. The user may avoid such ambiguities by

selecting a toggle source that will not be required as input to the program. Alternately,

the user may rely on the run time window based monitor to input toggle requests.

55

