USING COMPUTER PROGRAMS AS
GENERATORS OF COMPOSITIONS

Aditya P. Mathur*
Department of Computer Science

Purdue University
W. Lafayette, IN 47907, USA

apm@cs.purdue.edu

June 25, 1996

Abstract

An approach to music composition that utilizes a computer program as a generator of music
is reported. This approach allows a composer to select a computer program P and develop a
mapping of static and dynamic events within the program to musical elements of the desired
composition; the musical elements being, for example, theme, pitch, and instrumentation. This
mapping is then specified formally using a language called the Listen Specification Language
(LSL). A compiler for LSL then compiles program P and the specification into object code.
When interpreted the object code generates MIDI data sent to a synthesizer which in turn
generates audio. The music so generated depends on the mapping and the input to the program.
The run-time system associated with LSL allows the composer to alter various characteristics
of the music interactively, i.e. during program interpretation. This approach has so far been
used to generate short works based on simple sort programs and compilers. The effect is often
pleasing and depends to a great degree on the mastery of the composer in determining a suitable

mapping.

1 Introduction

Music composition is a complex task making use of knowledge gathered by the composer from a
variety of experiences. Traditionally, it is the human composer who serves as the generator of the
composition. The composition itself has a variety of elements. At an abstract level there may be
an overall theme. At less abstract levels there are subthemes, instrumentation, melodies, rhythm,

and several others. Through a complex derivation process a composer creates and combines these

*This work was supported in part by NSF award CCR-9102331. All reports and programs referenced in this paper
may be obtained by writing to the author at the address given or sending a request via email.

elements into a single composition. The basis of the derivation process and the “object” that drives
the creation and combining of these elements is essentially a complex mental process.

Mostly out of curiosity, it was decided to investigate the use of computer programs as “objects”
that could be used to derive compositions. In this sense of the word “object”, a computer program
is treated as a generator of composition. A computer program, hereafter referred to as simply
“program”, is a statement of logic for solving a well specified problem. This statement itself is
always made in a language known as a programming language. The program is a static object
when written; it becomes a dynamic object when the logic it uses is interpreted. The interpretor’s
behavior is controlled by the logic of the program. The interpretor is known as a “computer”. The
behavior of the computer, while interpreting a program P, is commonly referred to as the behavior
of the program P itself. This research is about experimenting with ways to map static elements of
P and its behavioral patterns to the elements of music. Observations from such experiments might
lead to (a) improved understanding of the composition process, (b) new forms of music, (c¢) new
ways of generating music, and (d) other forms of human knowledge.

The remainder of this paper reports the status of this research. Specifically, Section 2 develops
an analogy between behavioral elements of programs and those of music. Section 3 provides an
overview of a language, named LSL, developed to specify a mapping between program behavior and
music. How one uses LSL and a system that incorporates LSL is described in Section 4. A summary

of this work and our conclusions so far appear in Section 5.

2 Programs and music

A program is considered to be a collection of functions that operate on data. The functions “call”
each other according to a pattern governed by the logic that interconnects them and the data input
to the program during its interpretation. A function is considered “active” when it is called by
another function and remains active until it terminates. A function that calls another function gets
“suspended”. Programs may be sequential or parallel. In sequential programs only one function
may be active at any instant in time; multiple functions may however be suspended. Parallel
programs allow multiple active functions at any time instant.

There are several, possibly infinite, ways of mapping static and dynamic elements of a program
to elements of music. Table 1 shows one mapping for a subset of all possible program elements;
an explanation of some entries of this table follows. One way to imagine the mapping between
programs and music is to consider each function in one to one correspondence with a symphonic
“track” or a distinct “instrument”. The execution of a function may correspond to the elaboration
of a theme. Thus, when a function is called, a theme is initiated and elaborated while the function
is active. The theme gets suspended when the corresponding function does. Access to data items
is mapped to accented tones or arpeggiations. Evaluations of expressions and conditions is mapped
to melodic motives. Assignment of values to variable data items is mapped to start or end of a

phrase.

Table 1: A sample mapping of program elements to the elements of music.

Element type Program element May be mapped to

Dynamic

Function call
Function execution
Suspended function
Data access

Array scan
Assignment
Expression evaluation
Condition evaluation

Function call pattern

Theme initiation or resumption
Theme elaboration

Theme in background or suspended
Accented note(s)

Arpeggiation

Start or end of a phrase

Melodic motive

Melodic motive

Rhythm

Static

Function name

Data name

Pitch or instrument

Pitch or instrument

Parts of the mapping in Table 1 are derived from what one might understand to be a “meaning”
of a function; the other parts are mostly arbitrary. Though a formal basis for reasoning and
specifying such a mapping is presented in the next section, it is this mapping which brings in the

element of creativity in using programs as generators of music.

3 Specification of program-music mapping

A formal basis for the program-music mapping, borrowed from previous work [2], is illustrated in
Figure 1. To design a language for specifying a variety of mappings, a quantification of two domains
is established. Let F be the domain of occurrences during the execution of any program. Function
call, function return, expression evaluation, are examples of such occurrences. Let S be the domain
of all possible sound patterns that may be associated with each element of E. Note sequences
“CAE4G4”, D3F!4A5” are sample sound patterns that may be articulated in a variety of ways. A
mapping from E to S is an association of sound patternsin S to occurrences in F. Such a mapping
is specified as a set of pairs (e,s) where e € E and s € §. The program-music mapping for any
program P is a set {(e1,s1),(e2,52),...,(€n,)}, where each (e;,s;),1 < i < n, is an association
of an occurrence to a sound pattern.

Note that the above specification is static. It merely states “what” sounds are to be emitted

when P behaves in a certain way; the sounds emitted when P is interpreted depends on the sequence

Occurrence space Sound pattern space

Figure 1: A domain based view of program-music mapping.

begin auralspec
specmodule paper-example
begin paper-example

syncto mmabs q = 120;

notify rule = prog_begin using Begin_snd;
notify rule = prog_end using End_snd;

notify rule = for_body_begin
using Sticks_snd
in func = ‘‘bubble_sort’’ and func = ‘‘selection_sort’’;

dtrack temp
when rule = function_entry:’’exchange’’
until rule = function_return:’’exchange’’
using Flute2_snd;

end paper-example;
end auralspec.

Figure 2: Sample program-music mapping for a “selection sort” program.

of occurrences during one interpretation of P. This sequence may differ from one interpretation to
another due to variations in input data.

An illustrative program-music mapping is shown in Figure 2. This mapping, reported earlier
in [1], specifies how the behavior of a program to sort numbers is to be mapped to sound. The
program itself is found in [1]. The music related commands begin from the fourth command in the
figure. The syncto command specifies that the music is to be played with 120 quarter notes per
minute. Each notify command specifies the sound to be generated when an event occurs. For
example, the first notify command specifies that the start of program execution is to be mapped
to the Begin_snd which is a predefined sound for the Roland SC-55 synthesizer. The dtrack
command specifies that changes to the value of the data item named temp are to be mapped to the

Flute2_snd which is another predefined sound for the same synthesizer.

Arbitrary patterns of notes are used to specify a sound such as Flute2_snd in the above example.
A pattern contains a note sequence, instrument on which it is to be played, and how the notes within
the pattern are to be played. One may specify arbitrary chordal patterns to be played once when
an event occurs or continuously until a pause command is issued during interpretation. Multiple
continuously played patterns form a theme and may be interrupted or resumed during program

interpretation.

4 Using Listen

To generate music from a program, a system named Listen has been developed. Using Listen

one may follow the steps given below to map a program P to music.[3]

1. Develop a mapping from P to the elements of music. Create a formal specification 5 of this

mapping in LSL.
2. Use Listen to compile! P and § into an interpretable program P’.

3. Interpret P’ on a computer.? During program interpretation the events and activities in P are

mapped to sound data played through a MIDI device such as the Roland SC-55 synthesizer.

During the interpretation of P’ the listener is able to control the mapping specified as 5. Thus,
for example, a theme may be turned “off” or “on” at will. This allows a listener flexibility to
experiment with the composition generated by the program. Listen allows the tempo to be set
statically through an LSL command. The tempo can be altered during program interpretation.

Examples of music generated by using the Listen system are found in [1, 3].

5 Summary and conclusions

An approach to the generation of music from computer programs is described. A language named
LSL has been developed to specify the mapping between the elements of a program and music. A
system, named Listen, that compiles arbitrary C programs and an LSL specification, has been
developed. Experiments carried out so far have been mostly trivial in nature. Relatively small
computer programs have been mapped to music. Music so generated is sometimes exciting enough
for the listener to begin dancing; on other occassions it is meaningless and appears to be random
noise. A key to the generation of “pleasing” music when using Listen is the LSL specification; of
course what is pleasing to one may not be so for others. By varying the specifications and the data

input to the program a wealth of compositions may be obtained.

!Compilation of a program is its transformation from a high level langunage in which it is written, such as C, to a
low level language which a computer understands.

?The current Listen system operates on any Sun Sparc computer under the Solaris operating system. It is
available upon request from the author.1

Listen 3.0 system was originally developed for application in another area of Computer Science,

> The system has several limitations when considered for program-

namely “program debugging.’
music mapping. An enhanced version, Listen 4.0, is currently under development. Once available
the system will allow experimentation with large programs that are perhaps capable of generating

larger musical works such as symphonies.

References

[1] D. Boardman, “LISTEN: An Environment for Program Auralization,” Master’s Thesis, De-
partment of Computer Science, Purdue University, W. Lafayette, IN 47907, August 1994.

[2] D. Boardman and A. P. Mathur, “Preliminary Report on Design Rationale, Syntax, and
Semantics of LSL: A Specification Language for Program Awuralization,” Technical Report,
SERC-TR-143-P, August 1993, available from Software Engineering Research Center, Depart-
ment of Computer Science, Purdue University, W’ Lafayette, IN 47907.

[3] D. Boardman, G. Greene, V. Khandelwal, and A. P. Mathur, “ LISTEN: A Tool to Investi-
gate the Use of Sound for the Analysis of Program Behavior,” Proceedings of the Nineleenth
Annual International Computer Software & Applications Conference (COMPSAC’95), IEEE
Computer Society Press, August 9-11, 1995, Dallas, Texas, pp 184-193.

Acknowledgements

Thanks to my teachers Verna Abe and Helen Brown who introduced me to the formal elements of
music and encouraged my enthusiasm for pursuing it in new directions. Thanks also to Dave Board-
man, Vivek Khandelwal, Geoff Greene, Nate Nystrom, and Howard Chen for the endless hours they
put into the development of Listen 3.0; they have created a system that allows unlimited and ex-

citing experimentation in music composition using computer programs as generators.

