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octave = octave;

if (_dtrack_events[1]) {
_lsl_heartbeat_nonote();
_1sl_play_3(1,octave,25,60);
}



if (_dtrack_events[1]) {
_lsl_heartbeat_nonote();
_1sl_play_3(1,i,25,6);

}

second = second;

if (_dtrack_events[1]) {
_lsl_heartbeat_nonote();
_1sl_play_3(1,second,25,14);
}

third = third;

if (_dtrack_events[1]) {
_lsl_heartbeat_nonote();
_1sl_play_3(1,third,25,21);
}

fourth = fourth;

if (_dtrack_events[1]) {
_lsl_heartbeat_nonote();
_1sl_play_3(1,fourth,25,29);
}

fifth = fifth;

if (_dtrack_events[1]) {
_lsl_heartbeat_nonote();
_1sl_play_3(1,fifth,25,36);
}

sixth = sixth;

if (_dtrack_events[1]) {
_lsl_heartbeat_nonote();
_1sl_play_3(1,sixth,25,43);
}

seventh = seventh;

if (_dtrack_events[1]) {
_lsl_heartbeat_nonote();
_1sl_play_3(1,seventh,25,52);
}
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D.4.1 The LSL Specification

begin auralspec
specmodule test
begin test

syncto mmabs q = 220;

dtrack i and second and third and fourth and fifth and sixth
and seventh and octave and rest
when rule = while_statement_enter
until rule = while_statement_exit
using Wbb_snd;

end test;
end auralspec.

D.4.2 The Decorated Source File

int _1sl_events[1024];
int _dtrack_events[1024];
_1sl_initialize()

{
setTempo (220) ;
}
_1s1_exit(i)
int 1i;
{
midiExit();
_exit(1i);
}
int i = (60);

int rest = 0;

int second = (60) + 2;
int third = (60) + 4;
int fourth = (60) + 5;
int fifth = (60) + 7;
int sixth (60) + 9;
int seventh = (60) + 11;
int octave = (60) + 12;



_1sl_exit(1);

D.3 The Melody Maker
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The melody maker defines directives which when tracked by LSL will create the

corresponding note of the scale. This section contains the source code, the specifica-

tion, and the instrumented source code.

D.4 The Source Code

#define LOW_VAL (60)

#define ROOT i=1

#define SECOND second = second
#define THIRD third = third
#define FOURTH fourth = fourth
#define FIFTH fifth = fifth
#define SIXTH sixth sixth
#define SEVENTH seventh = seventh
#define OCTAVE octave = octave
#define REST rest = rest

int i = LOW_VAL;

int rest = 0;

int second = LOW_VAL+2;
int third = LOW_VAL+4;
int fourth = LOW_VAL+5;
int fifth = LOW_VAL+7;
int sixth = LOW_VAL+9;
int seventh = LOW_VAL+11;
int octave = LOW_VAL+12;

main()

{

ROOT; SECOND; THIRD; FOURTH; FIFTH; SIXTH;

SEVENTH; OCTAVE;



int answer;

printf("Your guess: ");
scanf ("%d" ,&answer) ;
fgetc((&_iob[0]));
return answer;

}

void

finale()

{
fgetc((&_iob[0]));
_lsl_events[2] = 1;
if ( _1sl_events[2] ) {

_lsl_heartbeat_nonote();
_1sl_play_2(38,0,75,18);

}
_lsl_events[2] = 0;

}

void

generate_key()

{
time_t tloc;
srand ((int)time(&tloc));
key = rand() % 200;

}

void

you_lose()

{

_lsl_events[6] = 1;

if ( _1sl_events[6] ) {
_lsl_heartbeat_nonote();
_1sl_play_1(58,90,9);

}

_lsl_events[6] = 0;

printf(”Guess out of range. better luck next

time\n") ;
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else

_lsl_events[3] = 1;
if (( quit '=1 ) )

_lsl_events[1] = 0;
else

_lsl_events[1] = 1;

if ( _1sl_events[3] ) {
_lsl_heartbeat_nonote();
_1sl_play_1(20,45,17);

}

if ( _1sl_events[1] ) {
_lsl_heartbeat_nonote();
_1sl_play_2(38,1,45,17);

printf ("\n\nYou win\n Press return to stop applause.\n");
finale();

_lsl_events[5] = 1;
if ( _1sl_events[5] )
_dtrack_events[1]

]
o

else
_dtrack_events[1]
_lsl_events[5] = 0;

]
[N

}
void
welcome()
{
system("clear");
printf("Here’s a guessing game for you...\n\n");
}
void
show_menu()
{
printf ("Guess a number between %d and %d\n",1,200);
printf("To quit: guess a number outside this range.\n");
}
int

read_answer()

{
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void generate_key();
static int key = 0;

void
_1.mQ)
{
int guess;
int quit = 0;
int diff 0;
int musical_diff = 0;

_lsl_events[4] = 1;

if ( _1sl_events[4] )
_dtrack_events[1] = 1;

else _dtrack_events[1] = 0;

_lsl_events[4] = 0;

welcome();
generate_key () ;

while(1) A
show_menu() ;
guess = read_answer();

if(guess < 1 || guess > 200) {
you_lose();
}
else {
diff = abs(key - guess);
if (diff == 0) {
break;
t
musical_diff = 90 - diff;
if (_dtrack_events[1]) {
_lsl_heartbeat_nonote();
_1sl_play_3(17,musical_diff,41,59);

quit = 1;
if (( quit '=1 ) )
_1sl_events[3]

]
(@]



syncto

atrack

notify

dtrack

notify

end temp;
end auralspec.
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mm q=60;
when assertion = (quit != 1)
until rule = function_return:'"finale"
using Applause_snd;
assertion = (quit != 1) using Phone_snd;
musical_diff when rule = function_entry:'"main"

until rule = function_return:'"main"
using Flute2_snd;

rule = function_entry:'"you_lose" using Bird_snd;

D.2.3 The Decorated Source File

int _1sl_events[1024];
int _dtrack_events[1024];

_1sl_initialize()

{

setTempo (60) ;

_1s1_exit(i)
int 1i;

{
midiExit();
_exit(1i);

}

void _1_m();

void welcome();

void show_menu();
int read_answer();

void finale();
void you_lose()

3
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LOW_NUM, HIGH_NUM);
printf("To quit: guess a number outside this range.\n");

}

int read_answer()

{
int answer;
printf("Your guess: ");
scanf ("%d", &answer);
getchar();
return answver;

}

void finale()

{
getchar();

}

void generate_key()

{
time_t tloc;
srand((int)time(&tloc));
key = rand()} HIGH_NUM;

}

void you_lose()

{
printf("Guess out of range. better luck next time\n");
exit(1);

}

D.2.2 LSL Specification

begin auralspec
specmodule temp
begin temp
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void generate_key();
static int key=0;

void main()

{
int guess;
int quit=0;
int diff=0;
int musical_diff=0;
welcome() ;
generate_key () ;
while (1) {
show_menu() ;
guess = read_answer();
if (guess < LOW_NUM || guess > HIGH_NUM) {
you_lose();
t
else {
diff = abs(key - guess);
if (diff == 0) {
break;
}
musical_diff = HIGHEST_NOTE - diff;
b
}
quit = 1;
printf ("\n\nYou win\n Press return to stop applause.\n");
finale();
}
void welcome()
{
system("clear");
printf("Here’s a guessing game for you...\n\n");
}

void show_menu()
{

printf ("Guess a number between %d and %d\n",
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_lsl_events[4] = 1;

if ( _1sl_events[4] ) {
_lsl_heartbeat_nonote();
_1sl_play_1(2,9,12);

t

_lsl_events[4] = 0;

_lsl_events[2] = 1;

if ( _1sl_events[2] ) {
_lsl_heartbeat_nonote();
_1sl_play_1(6,10,2);

}

_lsl_events[2] = 0;

D.2  The Guessing Game

The guessing game prompts the user to guess a number within a certain range.
The user feedback will consist of aural queues. Below are listed the source file, the

specification, and the instrumented source file.

D.2.1 Original Source File

#include <stdio.h>
#include <math.h>
#include <sys/types.h>
#include <sys/time.h>

#define LOW_NUM 1
#define HIGH_NUM 200
#define HIGHEST_NOTE 90

void main();

void welcome();
void show_menu();
int read_answer();
void finale();
void you_lose();
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end temp;
end auralspec.

D.1.3 The Instrumented Source File

int _1sl_events[1024];
int _dtrack_events[1024];

_1sl_initialize()

{
setTempo (120) ;
}
_1s1_exit(i)
int 1i;
{
midiExit();
_exit(1);
}
_1.mQ)
{
int 1i;
i=0;

_lsl_events[1] = 1;

if ( _1sl_events[1] ) {
_lsl_heartbeat_nonote();
_1sl_play_1(5,7,2);

}

_lsl_events[1] = 0;

while(i < 10) {
_lsl_events[3] = 1;
if ( _1sl_events[3] ) {
_lsl_heartbeat_nonote();
_1sl_play_1(1,8,3);
}
_lsl_events[3] = 0;

printf ("The value of i = %d\n",i);
1=1+1;
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Appendix D: Sample Auralizations

Given in this appendix are the source files, the specification, and instrumented
source files for various programs discussed in the thesis. The instrumented files have
been reformatted to improve the readability. The instrumented source is not for-
matted for human reading. Here the include file expansions have been deleted and
the instrumented code has been tabbed appropriately. Otherwise the content of the

instrumented files is exactly as they were created by using IsICC.

D.1 The While Loop

D.1.1 Original Source File

main()
{
int 1i;
i=0;
while (i < 10) {
printf ("The value of i = %d\n",i);
1=1+1;
}
}

D.1.2 LSL Specification

begin auralspec
specmodule temp
begin temp

syncto mmabs q = 120;

notify rule = while_statement_enter using Wse_snd;
notify rule = while_statement_exit using Wsx_snd;
notify rule = while_body_begin using Wbb_snd;
notify rule = while_body_end using Wbe_snd;
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/**
*k ok These structures are just for compilation purposes.
*k ok They will need to be completed as the time arises.
%% /

struct global {
int 1i;

};

struct play {
int 1i;

};

struct assign {
int 1i;

};

struct loop {
int i;

};

struct if_command {
int 1i;

};

struct turn {
int 1i;

};

struct toggle {
int 1i;

};
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¥
struct pars {
int key; /* keywords to determine type of param */
struct tag *RHS; /* right hand side of the expression  */
¥
struct tag {
char *name; /* id name of tag */
int val; /* constant */
¥
VAL EE R

*kkkkkkx Synchronization Related Data Structures
Kokokokokok /

struct mmspec {

int mode; /* absolute of relative */
struct mmvalue *mmvalue; /* the metronome value */
};
struct mmvalue {
int duration; /* what note value gets tick */
int bpm; /* beats per minute */
};
JELTTE TS
*kxxkkkx Scope Related Data Structures
*okkkkk [

struct filelist {

char xfilename; /* string of the instance list */
struct filelist *next; /* pointer to next entry */
¥
struct functionlist {
char xfunctionname; /* string of the instance list */
struct functionlist *next; /* pointer to next entry */

};



struct instance {

char *string;
struct instance *next;
};
YELS
*okok Expression
*x [/

struct expression {

int unop;  /*
char *name; /*
int value; /*
int paren; /%
struct expression *apl; /*

s

/%x

koK

*% /

struct assertion {
struct variable *varlist;
char *cond;
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/* string of the instance list */

/* pointer to next entry

(from the rtime event)

TRUE or FALSE for-operator  */
id name of var in expression */
const value */
TRUE or FALSE for() id */
another parameter list */

assertion (from the assertion event)

/%
/%

the text rep of assertion

*/

List of variables in the assr*/

*/

*/

*/
*/
*/
*/
*/
*/

s

struct variable {
char *xstring; /* string of the instance list */
struct variable *next; /* pointer to next entry

s

VAL TR

*xkxkkk Sound related data structures

$okkokokok /

struct playlist {
int conj; /*x && / ||
int code; /* type of sound code
struct expression *data; /* all the forms data can come in
struct soundspec *PSP; /* another soundspec in parenthesis
struct playlist *next; /* pointer to next list record
struct pars *with; /* rtime with statement
struct Event *thread;/* thread back to event

*/



};

VLS

*kk syncto parameter list

*x [/

struct syncparlist {

int type; /*
int bufsize; /%
int noslow; /%
struct mmspec *mmspec; /*
struct syncparlist *next; /*
}s
JELTTETS
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the type of syn par */
playback buffer size */
playback mode */

mmspec */
next sync par in listx/

*kkkkkk Event Related Data Structures

koK kK kk /

struct eventkey {

char
char

*label;
*trip_name;

struct instance *instance_list;

struct expression *expression;
struct assertion *assertion;

struct eventkey *next,;

};

struct Elink {
int
int

number;
code;

struct eventkey  *data;

struct Elink
struct Elink
struct Elink
char

VLS
Kok ok
*x [/

*next;
*all_next;
*all_prev;
*name;

/*
/%
/%
/*
/%
/*

/%
/*
/*
/*
/%
/%
/%

label */
if event a trip, this is namex/

strings in an instance list */
rtime expression x/
assertion event */
next string in eventkey list */

event number */
code for type of notify x/
equation data of the event x/

pointer to next event record */
next event master event list */
previous event master e list */
the name of the event x/

Instance List (from SSE function event)
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JELTTETS

*kxkxkkx Specification Command Attributes
Kokokokokok /

/**
*okok Event Specifier

*x [/

struct Event {

int count; /* number of conjuncts */
struct Elink *1ink; /* event in the occurrence list */
struct Event *next; /* next event spec in ListOfEvents*/
s
/[ %x
*okok Scope Specifier
*% /

struct scopespec {
struct filelist *files;/* linked list of file names */

struct functionlist *functions;/* link list of function names */
};
VLS
*okok Sound Specifier

*x [/

struct soundspecq{

int count; /* number of sounds to auralize */
struct playlist *play; /* pointer to playlist info x/
struct soundspec *next; /* next in ListOfSounds */

s

/*x

*okk Dtrack ID list

*% /

struct didlist {

char *variable; /* dtrack identifier */
struct expression *initval; /* init expression */
char xcapture; /x id */
struct scopespec *scope; /* func or filename scopes */

struct didlist *next ; /* next identifier */



struct dtrack {
int
struct didlist
struct Event
struct scopespec
char
struct Event
char
struct scopespec
struct soundspec
struct scopespec
struct dtrack

};

[ *%
%ok ok atrack
*x [/

struct atrack {
struct Event
char
struct scopespec
struct Event
char
struct scopespec
struct soundspec
struct scopespec
struct atrack

};

/%xx
*xk syncto
*% /

struct sync{
int syncMode;

};

count; /*
*didlist; /*
*start; /%
xstart_scope; /%

*start_condition;/* the event condition

*term; /%
*term_condition;/*

*term_scope; /*
*sound; /%
*scope; /*
*next ; /%

*start; /%
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the number of dtrack */

dtrack id list
event list start

*/
*/

scope for start event*/

event list term

the event condition
scope for term event

sound spec list
func or file scope

pointer next dtrack

event list start

*/
*/
*/
*/
*/
*/
*/

*/

*start_condition;/* the event condition */

xstart_scope; /*
*term; /%
*term_condition;/*
*term_scope; /*
*sound ; /*
*scope; /*
*next ; /*

scope for start event*/

event list term

the event condition
scope for term event

sound to play
func or file scope

pointer next atrack

/* syncto program or mm */
struct syncparlist *syncParList;/* par list if sync mm */

*/
*/
*/
*/
*/
*/



struct toggle *toggle;
struct sync * sync;
struct classlist * classlist;
char * name;
struct spec * next;
s
VAL
*okok Specification Class Related Data Structures
*% /

struct classlist {
struct class *class;
struct classlist *next;

};

struct class {
char *name;
struct speclist *speclist;
struct class *next;

};

JELTTETS

*kkxxxk Specification Commands
*okokokokok /

/ %x
*okok notify

*x [/

struct notify {

int type;
char *label;
struct Event *event;
struct soundspec *sound;
struct scopespec *scope;
char *condition;
struct notify *next;

s

/[ %x

*okok dtrack

*x /[

/%
/*
/%
/*
/*
/%
/%

all / selective
labels

event list

sound spec list
func or file scopes
the event condition
pointer next notify

*/
*/
*/
*/
*/
*/
*/
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Appendix C: The Specification Database

C.1 Data Structures

/***********************************************************

Project : Project Listen
File : Occur.h

Date : January 12, 1994
Description

This file contains the data structure definition
for the 1sl specification data base.

¥ O K X X XK X X X X X X ¥ *

************************************************************/

JELTTETS

**kxkxx*x The Specification List Data Structure
Kokokokokok /

struct speclist {
struct spec *spec;
struct speclist *next;

};

struct spec {

int type;

struct global * global;
struct play * play;
struct notify * notify;
struct dtrack * dtrack;
struct atrack * atrack;
struct assign * assign;
struct loop * loop;
struct if_command * if_command;

struct turn *turn;



boardman> make public

creating /homes/boardman/lslpub

creating /homes/boardman/lslpub/1ib
/homes/boardman/1slpub/lib/midilib.a created
/homes/boardman/1slpub/lib/spec_db.a created
/homes/boardman/1slpub/1lib/1sl.proteus.snds created
/homes/boardman/1slpub/1lib/1sl.roland.snds created
creating /homes/boardman/lslpub/include
/homes/boardman/1lslpub/include/midi.h created
/homes/boardman/1lslpub/include/database.h created
/homes/boardman/lslpub/include/1lsl_values.h created
/homes/boardman/1slpub/include/spec_db.h created
/homes/boardman/1slpub/include/Occur.h created
/homes/boardman/1slpub/include/spec_spec.h created
/homes/boardman/1lslpub/include/spec_notify.h created
/homes/boardman/lslpub/include/spec_atrack.h created
/homes/boardman/1lslpub/include/spec_dtrack.h created
/homes/boardman/lslpub/include/spec_event.h created
/homes/boardman/1lslpub/include/spec_class.h created
/homes/boardman/lslpub/include/spec_sound.h created
/homes/boardman/1lslpub/include/spec_scope.h created
/homes/boardman/1lslpub/include/spec_sync.h created
/homes/boardman/1lslpub/include/spec_lib.h created
creating /homes/boardman/lslpub/bin
/homes/boardman/1slpub/bin/1s1CC created
/homes/boardman/1slpub/bin/1sl created
/homes/boardman/1slpub/bin/1sl_cpp created
/homes/boardman/lslpub/bin/listen created
/homes/boardman/lslpub/bin/panic created

boardman> make private
Deleted /homes/boardman/lslpub

Figure B.4 Results of Executing make public and make private Commands

150



boardman> make install
/homes/boardman/lsl/software/versionl/tools/1lsl installed
/homes/boardman/1sl/software/versionl/tools/1sl_cpp installed
/homes/boardman/lsl/software/versionl1/lib/midilib.a installed
/homes/boardman/1sl/software/versionl/lib/spec_db.a installed
/homes/boardman/lsl/software/versionl/tools/listen installed

boardman> make uninstall

listen software uninstalled

Figure B.3 Results of Executing make install and make uninstall
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#

# Before building modify the following lines as appropriate.

#
LSLDIR=/homes/boardman/lsl/software/versionl
TMP=/usr/tmp

PUBDIR=/homes/boardman/lslpub
PUBLIB=${PUBDIR}/1lib
PUBINCLUDE=${PUBDIR}/include
PUBBIN=${PUBDIR}/bin

SPECDIR=${INSTALLDIR}/1sl_spec
MIDIDIR=${INSTALLDIR}/1sl_midi
INSTRUMENTDIR=${INSTALLDIR}/1sl_inst
TOOLDIR=${INSTALLDIR}/tools
SHAREDIR=${INSTALLDIR}/1sl_share
CPPDIR=${INSTALLDIR}/1sl_cpp
LIBDIR=${INSTALLDIR}/1ib

Figure B.2 The Makefile Installation Variables
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4in

Figure B.1 Directory Structure and Component location for the Listen Software



@cd ${SPECDIR}; $(MAKE)

@cd ${CPPDIR};

$ (MAKE)

@cd ${SHAREDIR};$ (MAKE)

@cd ${TOOLDIR}; $(MAKE)

@cd ${GUIDIR};

$ (MAKE)

depend
depend
depend
depend

depend
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@cd ${MIDIDIR}; $(MAKE) checkin
@cd ${GUIDIR}; $(MAKE) checkin
@cd ${CPPDIR}; $(MAKE) checkin
@cd ${SPECDIR}; $(MAKE) checkin
@cd ${SHAREDIR};$(MAKE) checkin
@cd ${TOOLDIR}; $(MAKE) checkin
@cd ${LIBDIR}; $(MAKE) checkin
@ci -1 7akefile

e clean

Removes all generated files from the LSLDIR directories. This is done by chang-

ing directories and issuing a local make clean.

clean:
@cd ${INSTRUMENTDIR}; $(MAKE) clean
@cd ${MIDIDIR}; $(MAKE) clean
@cd ${CPPDIR}; $(MAKE) clean
@cd ${SPECDIR}; $(MAKE) clean
@cd ${SHAREDIR};$(MAKE) clean
@cd ${TOOLDIR}; $(MAKE) clean
@cd ${GUIDIR}; $(MAKE) clean
@cd ${LIBDIR}; $(MAKE) clean

e depend

Sets up the dependencies for the Isten environment makefiles. This is done by

changing directories and issuing a local make depend.

depend:
@cd ${INSTRUMENTDIR}; $(MAKE) depend
@cd ${MIDIDIR}; $(MAKE) depend
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in it’s source. This change is done automatically upon a make public by the use

of a sed script. The following script modifies the environment appropriately.

${PUBBIN}/1s1CC : ${TOOLDIR}/1s1CC ${PUBBIN}
@sed °/"INSTALLDIR/,$$d’ ${TOOLDIR}/1slCC > ${TMP}/1s1CC
@echo "INSTALLDIR=$(PUBDIR) #generated by makefile" >>${TMP}/1s1CC

@sed ’1,/"INSTALLDIR/4’ ${TOOLDIR}/1slCC >> ${TMP}/1s1CC

@sed ’/"DIRNAME/,$$d’ ${TMP}/1s1CC > $e
@echo "DIRNAME=/bin #generated by makefile" >> $@

@sed ’1,/"DIRNAME/4’ ${TMP}/1s1CC >> $e@

changes  INSTALLDIR=/homes/boardman/lsl/software/versionl
DIRNAME=/tools

to INSTALLDIR=/homes/boardman/lslpub #generated by makefile

DIRNAME=/bin #generated by makefile

installpublic

Equivalent behavior as issuing a make install and make public. This is useful
after making a change to Iisten which needs to be propagated to the public.
checkin

Checks in the current version of all source files. This is done by changing

directories and issuing a local make checkin.

checkin:

@cd ${INSTRUMENTDIR}; $(MAKE) checkin
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e PUBLIB, PUBINCLUDE, PUBBIN

Where the public versions of Isten software can be found and accessed by the

public. These are children of the LSLDIR.

The Makefile Commands

The following commands are available using the LSLDIR makefile:

e all

Brings all directory executables up to date. Each of the subdirectory makefiles

is executed to accomplish this task.

e install,uninstall

Make install copies directory executables into their local testing directories such
as lib and tool. If these happen to be libraries the command ranlib is executed
which converts each archive to a form that can be linked more rapidly. The
results of the make install and make uninstall commands are shown in Figure

B.3.

e public,private

Takes the currently installed software and copies it into the public directories.
This concept of public was designed to promote concurrent development of the
Iisten environment. By issuing a make private command the public installed
files are deleted. Results of the make public and make private commands are

shown in Figure B.4.

There are two technical aspects to the make public command that should be
recognized. First, directory creation is completely automated. Once the Iisten
environment variables have been set up appropriately, issuing a make public
command will create the public directories. Second, the IsICC script must be

modified so that it uses the public executables and not the private ones defined



142

e lib

Link libraries for external development. These include midi and the spec_db

libraries. The lib directory also contains the sound definition files for Listen.

B.2 The Make Environment

Each directory in the LSLDIR contains a makefile with a minimum of two com-
mands: clean and checkin. Make clean removes all generated files from the directory.

Make checkin checks in all modified sources using RCS. These make files can be run
locally or controlled by the Iisten makefile located in the LSLDIR. The LSLDIR

makefile is very flexible and operates as described below.

B.2.1 The Installation Environment

Variables are defined which make the installation of the Listen environment soft-
ware very flexible. These variables, as they appear in the current version, are shown

in Figure B.2. Below is a description of the variables and how they are used.

o TMP

Where the temporary files used by the makefile should be manipulated.

e LSLDIR

Where the source for the Ilsten environment is located.

e SPECDIR, MIDIDIR, INSTRUMENTDIR, TOOLDIR,
SHAREDIR, CPPDIR, LIBDIR, GUIDIR

Where the source versions of Listen software can be found and accessed by the

Iisten software developer. These are children of the LSLDIR.

e PUBDIR

Where the Isten environment should be installed for public usage.
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e tools

The only source in tools is IslCC. The IsICC script controls the compilation
process. After installation this directory also contains the most recent versions
of the decoration utility(Isl) as well as the C preprocessor(lsl_cpp).

e Isl_cpp

Source files related to the C preprocessor.

e Isl_midi
Source files related to the sound database, the MIDI sequencer, and the panic
command.

e Isl_spec

Source files related to the sl specification database. This includes the Isl parser
and data structure generation routines. The specification header files are in-

cluded in this directory.

The public software and executables are available in the PUBDIR. The directory

structure for PUBDIR is given below as well as in Figure B.1.
bin/ include/ 1ib/

e bin
Executables which make up Listen. These include Isl_cpp, lsl, panic, listen, and
the IsICC script.

e include

Header files that are necessary for external development to interface with the
midilib and the spec_db lib. These include function prototypes as well as data

structure definitions.



140

B.1 Directory Layout

Software for project Iisten is located in a directory called the LSLDIR. It is broken
down into logical components which promote flexible maintenance and modification
of Listen software. The directory structure and significant components are given in

Figure B.1. Below is a list of the directories and a description of their contents.

Makefile lib/ 1sl_gui/ 1sl_midi/ 1sl_spec/
RCS/ 1sl_cpp/ 1sl_inst/ 1sl_share/ tools/
e lib

The MIDI sound definition files. There is a sound definition file for each
MIDI device. At this writing there are two such files: Isl.proteus.snds and

Isl.roland.snds.

After the make install has been performed the lib contains the libraries midilib.a

and spec_db.a. These are the versions to which all Isten software should be
linked.

e Isl inst
Sources related to the instrumentation process. The instrumentation process
includes creating the C parse tree, decorating the parse tree, and recreating
instrumented source code.

o Isl gui
Contains the source files related to the development of the graphical user inter-
face to 1Isl.

o Isl_share

Header files which are likely to be used by software other than decoration and

specification routines. These files include filenames.h, Isl_values.h, and midi.h.
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Appendix B: The Listen Development Environment

The Listen environment was developed using the C programming language on the
UNIX operating system. The tools bison and flex were used to derive parsing and
scanning routines. The gcc compiler was used for compilation. Tools were used
which aid in the management of the Iisten software development environment. These
tools are definitely crucial to the development of the product because of the large size
of the software. Table B.1 gives the code size figures for the Project Listen. Note
that these figures are not to give an estimate of the work involved only the size of the
project as it relates to the complexity of maintenance. Some of the code was reused
or developed by other individuals. For example the Isl_cpp C preprocessor is used
from the ATAC project. The Isl_gui was written by a fellow student, Geoff Greene.
The line count was generate using the UNIX utility wc.

Table B.1 The Project Source Size

Makefiles 713
Scripts 212
Header Files 4353
Bison Files 1329
Flex Files 310
C Source 46266
H Total ‘ 53183 H

The tools include compiler construction, revision control, and compilation de-
pendency tools. A directory structure was derived which promotes development by
multiple developers. The make commands were developed to ease the installation and
maintenance of the Ilsten software.

This appendix describes how these tools were used and how the directory struc-
ture was derived to develop a flexible environment to promote development of Listen

products.



116.

118.

119.

120.

121.

123.

125.

127.

128.

129.

131.

133.

135.

138.

140.

scope-tagid-list

scope-tagid

dtrack-command

atrack-command

start-event-spec

term-event-spec

dtrack-id-list

dtrack-id
sync-command
sync-to-id

sync-par-list

sync-par
mmkeyword
mmspec

id-list

—

—

—

—
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scope-tagid-list, scope-tagid
| scope-tagid

string

dtrack dtrack-id-list start-event-spec term-event-spec

sound-specifier scope-specifier;

atrack start-eveni-spec term-event-spec

sound-specifier scope-specifier;

when event-specifier scope-specifier;

| €

until event-specifier scope-specifier;

| €

dtrack-id-list and dtrack-id
| dtrack-id

1- id scope-specifier
syncto sync-to-id,
program | sync-par-list

sync-par-list, sync-par

| sync-par
mmbkeyword | mmkeyword mmspec
mm | mmabs | mmrel

| 9 = const

id | id-list
| id



91.

95.

96.

98.

100.

104.

106.

107.

109.

111.

113.

114.

unnamed-command —

notify-command  —

event-specifier —
conneclor —
evenl —
instance-list —
instance —
sound-specifier —
scope-specifier —

tagged-scope-list — —

tagged-scope —

scope-tag —
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| id ::

notify-command
| dtrack-command
| atrack-command

| sync-command

notify event-specifier

sound-specifier scope-specifier;

event-specifier connector event

| event
and | or

rule = id
| rule = id:instance-list
| assertion = 1- condition

| (event-specifier)

instance-list && instance

| instance
string

using constant

| €

in tagged-scope-list

| €

tagged-scope-list and tagged-scope
| tagged-scope

scope-tag = scope-tagid-list

filename | func



136

A4 The Implemented Subset of the Grammar

The syntax of LSL is described below using a modified form of BNF[ASUS86].
Nonterminals are in italics, keywords in teletype font, and lexical symbols in bold

font. Alternates of a nonterminal are separated by the | symbol.

76. Isl-spec —  begin auralspec
spec-module-list

end auralspec.

77. spec-module-list ~ —  spec-module-list spec-module
78. | spec-module
80. spec-module —  specmodule id
begin id
spec-def-body
end id;
81. spec-def-list —  spec-def spec-def-list
| €
83. spec-def —  specdef
begin id
spec-def-body
end id;
84. spec-def-body —  spec-command spec-def-body

| spec-command

86. spec-command —  named-command

| unnamed-command
88. named-command —  name-tag-list unnamed-command

89. name-tag-list — id :: name-tag-list



10.

11.

12.

13.

14.
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. A file or function specified in a scope tag must exist for the program to be
auralized.
While monitoring an activity or data, tracking will terminate upon program

termination if the start event occurs after the terminating event.

An expression in a range-list must evaluate to an integer and must not contain
any variable names. Subscript expressions that evaluate to a value outside the

specified range are not allowed.

If both the initial value and the capture location are specified for a variable to
be tracked, LSL will attempt to satisfy both requirements. Thus, the variable
will be initialized at an appropriate point during program execution. Its value
will also be captured as specified. The value captured will override any previous

value of the variable.

The syntax of LSL allows for the naming of any command. However, only names
of notify, dtrack, and atrack correspond to classes. Naming of other com-
mands is permitted to allow referencing of commands while editing or reading

an LSL specification.

Use of toggle may give rise to ambiguities at run time. For example, if the
space key on the computer keyboard has been specified as a toggle source and the
executing program requests for input data, it is not clear if the space character
should be treated as a toggle request or input to the program. The user may
avoid such ambiguities by selecting a toggle source that will not be required as
input to the program. Alternately, the user may rely on the run time window

based monitor to input toggle requests.
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However, they do not alter the global values. Global values of such parame-
ters may be set using the set command within an LSL specification or in the

program.

. Identifiers declared within a specmodule M are global to M and may be used
by all specdefs declared within M. Identifiers declared within a specdef S are
local to S and may not be used by other specdefs or in any other specmodule.
Identifiers may be exported by an specmodule for use by any other module by
explicitly mentioning it in an export declaration. A module may use an iden-
tifier exported by another module by explicitly importing it using the import
declaration. All program variables used in an specdef or a specmodule body
must be specified as externals. Program identifiers, global to a VDAP defi-
nition, need not be declared. However, all such identifiers must be declared in

the context wherein VDAP will be placed and compiled by the C compiler.
. A VDAP specification must be a valid C function when using LSL/C.

. The formal and actual parameters must match in number and type between a

specification definition and its use.

. All matching begins and ends must match in the identifiers that follow the
corresponding keyword. Thus, for example, a begin gear which matches with
an end change will be flagged as a warning because gear and change do not

match.

. LSL has default values for various parameters such as metronome, channel, and

instrument.

. The expression in a relative timed event must evaluate to a positive integer or
else a run time warning is issued. A relative timed event is ignored if it occurs

after program execution terminates.



133

Table A.1 Language Dependent Terminals in LSL Grammar.

Terminal

Meaning

Example from C

l-condition

1-id

l-expression

I- function

l- actual-parameter-list

Conditional express-
ion which evaluates to true
or false.

Identifier

An expression that evaluates
to a value of type matching
the type of the left side of
the assignment in which it
appears.

A function invoked for track-

ing one or more variables.

List of actual parameters.

(x <y && p>q)

drag_icon

(min — val * 2)

Any C

function

definition.

int x, int *y
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7. Interpretation of a string is context dependent. Thus, for example, when as-
signed to a variable of type pattern, the string “.cmajor C5” denotes a sequence
of notes consisting of the value of the variable .cmajor followed by the note C5.
The same string when used in the context file = “.cmajor C5” denotes a file
name .cmajor C5. Notes enclosed in parentheses such as in “G3 (C4E4G4) C5”
are treated as forming a blocked chord. The string “hello” results in an invalid
assignment command when it appears on the right side of an assignment to a

variable of type pattern.

8. Ambiguity may arise while defining a note sequence such as in “cbb”. To avoid

this, the notes may be separated by at least one space character such as in “cb

b”.

9. The grammar above contains some terminals prefixed by lI-. Such terminals
denote language specific constructs. A complete list of such terminals appears
in Table A.1. These terminal symbols may be nonterminals or terminals in the
grammar of the language L of the auralized program. The LSL preprocessor
attempts to parse over the strings corresponding to such symbols. These strings

are parsed by the compiler for L.

A.3 Static Semantics

The following constraints apply to LSL specifications. These are not indicated by
the syntax.

1. All identifiers must be declared before use. Identifiers that belong to the aural-

ized program must appear as externals.

2. Local attribute values, such as metronome values, channels, etc. which are spec-

ified explicitly as attributes, take precedence over corresponding global values.



45.

48.
50.

d2.
33.

62.
63.
64.

66.
67.
63.
69.
70.

duration-expression —

op
key-sig

pre-defined

mode

user-defined
time-sig

beat-structure

filename
function-name
tagged-value-list
tagged-value
play-attribute-tag

| ptime = integer

duration-expression op simple-duration

| simple-duration

| ( duration-expression )

+ e
pre-defined

| user-defined
note:mode
major

| minor

| lydian

| ionian

| mixolydian
| dorian

| aeolian

| phrygian

| locrian

note-sequence
( q )

(beat-structure : int)

beat-structure + int

| int
chart

chart

tagged-value-list tagged-value
play-attribute-tag = constant

chan | play | inst | mm | mm mmspec

131



130

5. A keyword may not be used as an id. Upper and lower case are treated differ-

ently.

6. A constant can be an integer or a string. An integer is a sequence of digits. A
string is a sequence of characters enclosed within double quotes. As a constant
can be interpreted in a variety of ways in LSL, we provide below a complete

grammar for constants.

1. constant —  integer
| string
|time-sig
4. integer —  digitt
5. string —  “char-sequence”
6. char-sequence —  note-sequence
| key-sig
| file-name

| function-name
10. note-sequence —  (note | .id)*
| (note-sequence: attribute-sequence)

| (note-sequence)

14. note —  note-generic note-modifier

15. note-generic — cl|d|e|f|g|lalb|r|C|D|E|F|G|A|B|R
31. note-modifier —  flat-sharp* octave

32. flat-sharp — Dbl#

34. octave —  [0-8]

35. attribute-sequence —  attribute™
36. attribute —  duration tagged-value-list*
37. duration —  simple-duration

| ( duration-expression )

39. simple-duration ~— f|h|q|e]|s



129

| cfactor

224.  cfactor —  expression
| (condition)

| not cfactor

227.  addop e

229.  mulop — x|/

231.  unop - -

232.  relop - <|>|<=|=]>=|<>
238.  logop —  && ||

A2 Lexical Conventions
Using regular expressions|ASU86] we define the lexical elements of LSL.

1. Comments are enclosed inside /* and */. Comments may not appear within a

token. A comment within another comment is not allowed.
2. char denotes any ASCII character.
3. One or more spaces separates tokens. Spaces may not appear within tokens.

4. An id is a sequence of letters or digits with the first character being a letter.
The underscore (_) can be used in an identifier. Upper and lower case letters

are treated as being different in an id.

id — (= )letter ( letter | digit| - )*
letter —  [a-zA-Z)]
digit —  [0-9]



193.

195.

196.

198.

206.

207.

209.

210.

212.

214.

220.

222.

var-decl-list

var-type-list

id-list

type

array-declarator

range-list

range

ELPression

term

factor

condition

cterm
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| €

var-type-list ; var-decl-list
| var-type-list

id-list = type

id |, id-list

| id

int | note | pattern | voice | file | ksig | tsig
| array-declarator

array [ range-list | of type
range-list , range

| range

ELPrESSION . . ETPTESSION

expression addop term

| term

term mulop factor

| factor

( expression )

| unop factor

| id

| id(actual-par-list)

| id()

| const

condition relop cterm

| cterm

cterm logop cfactor



162.

166.

169.

170.

173.

175.

180.

181.

183.

185.

186.

188.

190.

191.

sync-par —
mmkeyword —
mmspec —

duration-expression —

duration-factor —

duration-attribute —

declarations —
applicability —
apply-list —
apply-decl —

const-declaration —

const-list —
const-val-pair —
var-declaration —

bufsize = const
| noslow
| mmkeyword

| mmkeyword mmspec
mm | mmabs | mmrel
duration-expression = const

duration-expression duration-factor
| duration-expression + duration-factor

| duration-factor

duration-attribute

| (duration-expression)
flhlqlels
applicability const-declaration var-declaration

apply-list

| €

apply-list; apply-decl
| apply-decl

applyto tagged-scope-list;

const const-list,

| €

const-val-pair const-list

| const-val-pair
id = constant ;

var var-decl-list;
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137.

139.

141.

142.

143.

145.

147.

148.

150.

151.

152.

154.

155.

157.

138.

160.

statement-body —

if-command —

if-then-command —
if-then-else-command>

specdef-use-command>

actual-par-list —
actual-par —
spec-par-list —

VDA P-call-comman>
turn-command —

on-off —

toggle-command  —

toggle-source —
sync-command —
sync-to-id —
sync-par-list —
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begin spec-def-body end

| spec-command,

if-then-command

| if-then-else-command
if condition then statement-body
if condition then statement-body else statement-body

id (actual-par-list);
|id ();
actual-par-list, actual-par

| actual-par

ETPTESSLON

id-list | €

l-id (1- actual-parameter-list);
turn on-off device-tag-list;

on

| off
toggle toggle-source = constant;

keyboard

| midi

syncto sync-to-id,
program

| sync-par-list
sync-par-list, sync-par

| sync-par



111.

term-event-spec

scope-specifier

113.

115.

117.

118.

120.

122.

125.

126.

128.

129.

131.

133.

134.

136.

ext-1d-list

dtrack-id-list

dtrack-id

intt-value

capture-specifier

mode-specifier
assign-command
selector
element-selector

expression-list

loop-command

for-loop

step-expression

while-loop
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until event-specifier

| €

ext-id-list , 1- id
| 1- id

dtrack-id-list and dtrack-id
| dtrack-id

1- id init-value capture-specifier scope-specifier

init = l- expression

| €

capture = id

| €

mode = continuous | mode = discrete | mode = sustain

selector := expression,
id | id[element-selector]
expression-list

expression-list , expression

| expression
for-loop | while-loop

for id := expression to expression step-expression

statement-body

step expression

| €

while condition do statement-body



91.

93.

94.

96.

98.

100.

101.

103.

105.

107.

108.

instance-list

instance

sound-specifier

scope-specifier

tagged-scope-list

tagged-scope
scope-tag

scope-tagid-list

scope-tagid

dtrack-command

atrack-command

scope-specifier;

109.

start-event-spec
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| instance = instance-list

| assertion = 1- condition

| rtime = expression after event
| (event-specifier)

| event (first)

instance-list && instance

| instance
string

using play-list

| €

in tagged-scope-list

| €

tagged-scope-list and tagged-scope
| tagged-scope

scope-tag = scope-tagid-list
filename | func

scope-tagid-list, scope-tagid
| scope-tagid

selector | string

dtrack dtrack-id-list start-event-spec term-event-spec

sound-specifier scope-specifier;

atrack start-event-spec term-event-spec sound-specifier

when event-specifier scope-specifier

| €



39.

62.

64.

65.

67.

69.

70.

72.

73.

76.

78.

80.

82.

84.

score-const-id

const-id

dotted-id

score-tag

device-tag-list

device-const-id
device-tag

notify-command

all-selective

label-parameter

label-list

event-specifier

connector

event

123

score-tag = const-id
| mm mmspec

| mode-specifier

constant

| dotted-id
id
keysig

| timesig

device-const-id , device-tag-list

| device-const-id
device-tag = const-id
chan | inst

notify all-selective label-parameter event-specifier

sound-specifier scope-specifier;
all | selective | €

label = label-list

| €

label-list, id

| id

event-specifier connector event
| event

and | or

rule = id

| rule = id:instance-list



39.
40.

42.

44.

45.

48.

54.

35.

57.

set-globals-command—

global-par-list

global-par

play-command

play-list

pattern-specifier

play-pars

tagged-list

tags

—
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| if-command

| specdef-use-command
| VDAP-call-command
| turn-command

| toggle-command

| sync-command

set global-par-list,
global-par-list, global-par
| global-par

score-const-id

| device-const-id

play play-list;
pattern-specifier || play-list

| pattern-specifier && play-list
| play-list

id

| constant

| specdef-use-command

| VDAP-call-command

| pattern-specifier play-pars
| ( play-list )

with tagged-list

tagged-list, tags
| tags
score-const-id

| device-const-id



13.

15.

17.

18.

19.

21.

23.

24.

26.

spec-def-list —
VDAP-list —
VDA P-spec —
spec-def —
spec-def-body —
spec-command —

named-command —

name-tag-list —

unnamed-command —
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spec-def spec-def-list

| €

VDA P-spec VDA P-list

| €

VDAP begin
I- function

VDAP end;

specdef id (spec-par-list)
declarations

begin id

spec-def-body

end id;

spec-command spec-def-body

| spec-command

named-command

| unnamed-command
name-tag-list unnamed-command

id :: name-tag-list

| id ::

set-globals-command
| play-command

| notify-command

| dtrack-command

| atrack-command

| assign-command

| loop-command
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Appendix A: The LSL Language

A.1 LSL Syntax Conventions

The syntax of LSL is described below using a modified form of BNF[ASUS86].
Nonterminals are in italics, keywords in teletype font, and lexical symbols in bold

font. Alternates of a nonterminal are separated by the | symbol.

1. [sl-spec —  begin auralspec
spec-module-list

end auralspec.

2. spec-module-list ~— —  spec-module-list spec-module
3. | spec-module
5. spec-module —  specmodule id

program-id-list
global-interaction-list
declarations
spec-def-list

VDA P-list

begin id
spec-def-body

end id;

6. program-id-list —  external ext-id-list;

| €

8. global-interaction-list>  global-interactions global-interaction-list

| €
10. global-interactions —  interact-id id-list;

11. interact-ud —  import | export
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may provide insight into program behavior. Based on initial experiences a
developer may determine what part of the code is executing, how the program

behaves on a given input, and narrow the search space when debugging.
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and data. The ASPEC is parsed generating the auralization database which contains
an internal representation of the ASPEC. A parse tree component is generated from
the source C code during the Iisten C parsing phase. Events from the auralization
database are located in the parse tree and instrumentation code is inserted. Instru-
mented C source code is generated from the decorated parse tree by a process known
as deparsing. The instrumented source code is compiled via a standard compiler and
instrumented executable code is created. Running the instrumented code generates
sound using MIDI (Musical Instrument Digital Interface) sound modules.

Several LSL specifications were created which provided initial insights into the
application and the needs regarding Listen. Listen has been successfully integrated
with an existing tool, PROTEUM, which is contributing to sound related research

in software testing.

6.2 Conclusions

The development and application of Iisten shows it is possible to produce a generic
auralization tool. The following observations are a result of creating auralization

specification with Listen.

1. The benefit of sound in a computing environment will be directly related to
the quality of the ASPEC. One must choose sound patterns which portray

appropriate information with respect to a given occurrence mapping.

2. With respect to debugging or analyzing behavior, it appears that a developer
must spend significant time becoming familiar with the sound of a system or
program. If this aural training period is not realized it appears a user gains
less information from the sound. This suggests that there is a training time or
sensitizing period that a developer must go through to gain the greatest benefit

from sound in a computing environment.

3. It may be possible to establish a general ASPEC which creates a distinctive

aural signature for a C program in an application domain. An aural signature
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6. SUMMARY AND CONCLUSIONS

6.1 Summary

Project Listen was established in January 1994 to develop a program auralization
environment applicable to sound in computing research. These research fields include,
but are not restricted to, aural debugging, program auralization, auditory display,
simulation, and sonification.

It appears that many current research efforts either provide specific tools for an ex-
periment or require programmers to manually locate and instrument program events.
This makes the experimentation process slow, tedious, and error prone. Listen sepa-
rates sound specification from the source code and automatically locates and instru-
ments a program events.

Listen Specification Language (LSL) is at the core of Iisten. LSL is a general
purpose mechanism to specify the auralization of programs. When the auralization
specification and the program source are processed, the specification mappings are
automatically located and instrumentation code is created to generate sound. LSL
was designed considering two idealized requirements: generality and language inde-
pendence. First, it should be possible to specify any auralization using LSL in terms
of program data, position, and time. Second, it should be possible to use LSL with the
commonly used programming languages such as C, C**  Ada, Pascal, and Fortran.

To demonstrate that LSL meets the generality requirements, a minimal defined
subset of LSL was defined and implemented for the C programming language. A
summary of the implemented auralization process with respect to LSL/C follows.

Using any text editor, a programmer creates an auralization specification (AS-
PEC) using LSL. The ASPEC defines the mapping of specified sounds to program

events. An event is located in the program occurrence space defined by time, position,
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graphic related information including additional windows on a display, points on a

graph, or lines in space, could be displayed to the user.



113

5.4.4 A Teaching Tool

Sound may help in understanding algorithm behavior. Listen will be used in the
upcoming year to experiment using sound in the teaching environment. A professor
will create ASPECS for classic introductory algorithms. The auralizations will be
used to an introduction to programming course. If the preliminary experience is

positive this may provoke more formal experimentation with LSL.

5.4.5 Software Testing

The question has been posed by the developers of PROTEUM if sound can be
used to aid in the task of classifying equivalent mutants. The equivalence problem
is commonly known to be an undecidable problem. In this context a mutant is live
and not know to be equivalent. If there is a significant difference between the mutant
and original aural signature, it is proposed that this may suggest the mutant could
be killed thus providing a classification.

Sound may also provide additional information in the data flow testing. Proposed
tools for experimentation include ATAC and OTHERNAME. The tool source could
be auralized in such a way that as a test case is executed, new coverage achieved by
that test case generates sound. A test case designer could determine attributes of the
test case using sound such as additional coverage obtained by the test case, at what
point in time does the coverage occur, and the total running time to obtain the new
coverage. This could be done visually but it is suggested the productivity of the test
case designer may increase. A designer might make immediate decisions about the

comparisons involving test case effectiveness.

5.4.6 Incorporating Graphic Mapping to Events

LSL is an event specification language. There is no inherent design that dictates
sound must be the response to a given occurrence. LSL could be modified in such a

way to support the graphic notification of events. Instead of sound being generated,
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To investigate these areas, a developer should create a general ASPEC that will
apply throughout the life of a project. After significant development time, the devel-

oper should be interviewed regarding their experience with sound.

5.4.3 System Monitoring

The concept of a program aural signature can be extended to that of a system.
In an environment requiring the monitoring of a complex system, sound may provide
additional information not obvious visually or statistically.

A plant manager from a manufacturing facility gave an interesting analogy to
the system monitoring problem. Often production line workers inform engineers that
there is a problem with a complex system before the computers recognize the prob-
lem. The experienced workers have become subconsciously conditioned to the aural
signature of the system. When the subconscious expectation regarding the aural sig-
nature of the system is not met, workers often have the ability to approximate the
location of specific problems.

An interesting experiment would be to auralize certain daemon activities such as
news, talk, and mail. An observer could listen to how these utilities are used. It is
obvious that this work could be done using scripts and statistical feedback, however,
monitoring could take place second hand while working on other projects. The ob-
server might only pay attention during certain aurally busy times. The monitoring
would not require their total attention because of the subconscious feedback. This is
a toy example but may provoke future experimentation.

Another interesting example would be to auralize system routines that usually
affect system performance. These routines may handle page faults, process swapping,
disk seeks, or similar processes. Possibly as subjects develop expectations of the envi-
ronment, they could detect and locate possible problem areas just as the production

line worker.
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5.3.4 Training Time

With respect to debugging or analyzing behavior, it appears that a developer must
spend significant time becoming familiar with the sound of a system or program. If
this aural training period is not realized it appears less information is gained from
the sound. For example, a developer on Project Listen had been working with a
given specification which contained a bug. Clearly when listening to the program
execute the trained developer was having expectations met or broken. When another
developer was asked to enter the debugging process they could make very little sense
of the sound being produced because they had not developed the specification and
the source.

This suggests that there is a training time or sensitizing period that a developer
must go through to gain the greatest benefit from sound in the computing environ-

ment.

5.4 Future Directions

5.4.1 Instrumenting Large Programs

The largest program that LSL has been applied to is the the UNIX sort routine.
The number of source lines computed using the UNIX utility we was approximately
921. It is desired to test LSL on programs exceeding 10,000 lines to determine the
overhead of the instrumentation and the reality of using LSL in real world software

development environments.

5.4.2  Program Signatures

It may be possible to establish a general ASPEC which creates a distinctive aural
signature for a C program in an application domain. An aural signature may provide
insight into program behavior. Based on initial experiences a developer may deter-
mine what part of the code is executing, how the program behaves on a given input,

and narrow the search space when debugging.
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5.3.1 Appropriate Sound Selection

The usefulness of sound in a computing environment will be directly related to the
quality of the ASPEC. One must choose sound patterns which portray appropriate
information with respect to a given the occurrence mapping. For example when
instrumenting the body of a loop it is more appropriate to use short percussive sounds
as they tend to be executed frequently. These percussive sounds seem less distracting
than a recurring instrument sound. Data tracking is best associated to sounds that
have distinct pitch. The relative difference between notes high in pitch is hard to
distinguish.

5.3.2 Aural Expectations

When working with an auralized program one begins to generate expectations
of the sound produced before program execution. Based on previous experience, one
subconsciously forms an expectation of the generated sound before throwing an object
into a garbage. The same appears to be true with respect to program auralization.
As the source code is changed, an internal expectation of the sound to be produced is
generated subconsciously. When the program is executed the expectations are either

met or broken.

5.3.3 Code Replay

As experience is gained with the auralization, a mental pointer is envisioned
traversing the code. After attending a musical, if a recording of the performance
is played, one tends to visualize the performance associated with the sounds. Ex-
perience has yielded a common result when listening to auralized programs. As a

program generates sound, a mental visualization of the code is generated.
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5.2 Integration with Existing Tools

Listen has been integrated with PROTEUM, (PROG)ram for (TE)sting using
(M)utation. PROTEUM [DJC93] is a mutation testing tool for C programs de-
veloped at ICMSC-SC of the University of Sao Paulo in Brazil. The authors have
recently collaborated with Project Listen to determine if sound can be used by test
case developers to aid in the recognition of equivalence mutants. The experiment is
discussed in Section 5.4.5.

The integration of LSL and PROTEUM required no tool source code modifica-
tions. PROTEUM contains an option to specify the compiler and command line

arguments to use during mutant compilation. An example usage appears below:

Compiler Preference: 1s1CC

Compiler Optiomns : proteum.lsl -o a.out

The test case developer has the ability to modify the PROTEUM ASPEC and
experiment creating an effective ASPEC for classifying live or equivalent mutants.
The collaborative work also hopes to auralize the actual PROTEUM source in
order to provide additional test related feedback to the test case developer.

This is an example of how LSL is (a) general enough to promote experimentation
of sound in computing environments and (b) separates the auralization process from

the coding.

5.3 Lessons Learned

In developing LSL, many positive and negative aspects of using sound in comput-
ing environments have been experienced. This section discusses the major observa-

tions of Project Listen. These observations are likely to provoke future research with

LSL.
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A sample program and ASPEC were derived to play a musical scale. The code
exploited the fact that the dtrack command generates sound when the value of a
variable could potentially change. Therefor when the dtrack specification command
is written to track the variable second, the occurrence of the source code second =
second generates a sound. The complete program and instrumented program are
given in Appendix D.

By creating the specification in figure 5.1.3 and initializing the variables in the
source appropriately, notes of the major scale are generated by referencing SECOND,
THIRD, and other preprocessor definitions. There is no immediate benefit observed

however new ideas for future auralization applications may be generated.

begin auralspec
specmodule test
begin test

syncto mmabs q = 220;
dtrack i and second and third and fourth and fifth and sixth

and seventh and octave and rest
using Flute_snd;

end test;
end auralspec.

Figure 5.3 An LSL Specification for the Music Maker.



begin auralspec
specmodule temp
begin temp

syncto

atrack

notify

dtrack

notify

end temp;
end auralspec.

mm q=60;

when assertion = (quit != 1)
until rule = function_return:'"finale"
using Applause_snd;

assertion = (quit !'= 1) using Phone_snd;
musical_diff when rule = function_entry:'"main"
until rule = function_return:'"main"

using Flute2_snd;

rule = function_entry:'you_lose" using Bird_snd;

Figure 5.2 The LSL Specification for the Guessing Game
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value difference of the guess and the random number. The greater the result, the lower

the pitch. As pitch increases the guess is closer to the generated random number.

The specification is given in Figure 5.2. The source code and the decorated source

code are given in Appendix D. This example demonstrates all possible decorations

as the defined by the minimal working subset of LSL specification commands given

in Section 2.4.

5.1.3 Making Music

As the specifications were being tested it was found that constructing a program

could generate a desired aural output. In other words, writing a program to generate

melodies.
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begin auralspec
specmodule temp
begin temp

syncto mmabs q = 120;

notify rule = while_statement_enter using Wse_snd;
notify rule = while_statement_exit using Wsx_snd;
notify rule = while_body_begin using Wbb_snd;

notify rule = while_body_end using Wbe_snd;

end temp;
end auralspec.

Figure 5.1 An LSL Specification for the Simple While
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5. APPLICATION AND EXPERIENCE WITH PROJECT LISTEN

Over the course of the project several LSL specifications were written and tested.
This section describes complete sample specifications, lessons learned, and future

directions for Project Listen.

5.1 Implementing Auralization Specifications

Experience was gained in the development and testing of LSL auralization spec-
ifications (ASPECS). The experience is discussed in Section 5.3. The sample au-
ralizations are given in this section. A complete listing of the original source and

instrumented source is given in Appendix D.

5.1.1 A Simple While Loop

Small ASPECS were initially used to test Iisten. A simple test case is that of a
while loop. This ASPEC, see Figure 5.1.1, demonstrates the basic functionality of
LSL. The source code consists of a simple while loop that performs 10 iterations. The
instrumented code generates a sound when the while loop is entered, at the beginning
of the iteration body, at the end of the iteration body, and at the end of the while loop.
It also serves as a test case for experimenting with different synchronization modes.

A complete listing of the source and the instrumentation are given in Appendix D.

5.1.2  The Guessing Game

It was desired to construct a simple specification for demonstrating the complete
set of LSL specification commands. The program chosen was the classic guessing
game. The program generates a random number between a range and a guess is

supplied as input. The program then generates a note depending on the absolute



main(argc, argv, envp)
int argc;

char *argv[];

char *envpl[];

{
midiInit();
initMidiSoundDatabase();
initMidiPatches();
_lsl_initialize();
VLS
*ok ok Always call _1_m() with the standard arguments.
*ok ok It is okay even if user’s main() function
*okk does not have any formal parameters.
*x [/
_l_m(argc, argv, envp);
VLS
*okok Dummy loop to wait for midi device buffer
*okok to be flushed. Also resets midi before exiting.
*x [/
_1sl_exit(0);
}

Figure 4.19 The LSL Driver Routine
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extern int _lsl_events[1024];
extern int _dtrack_events[1024];

Figure 4.17 Initialization Routines Generated by Deparse without Main

Figure 4.18 An Example TNODE
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dtrack i _1lsl_events[1] = 1;
when rule = while_statement_enter if ( _1sl_events[1] )
until rule = while_statement_exit _dtrack_events[1] = 1;
else
_dtrack_events[1] = 0;

_1lsl_events[1] = 0;

while(i < 10) {
++1;

if (_dtrack_events[1])
_1sl_play_3(10,1)

-

_1lsl_events[2] = 1;
if ( _1sl_events[2] )
_dtrack_events[1]
else
_dtrack_events[1]
_lsl_events[2] = 0;

]
(@]

1]
[

Figure 4.15 A Dtrack Specification Command and Related Intrumentation Code

int _1sl_events[1024];
int _dtrack_events[1024];

_1sl_initialize()

{
setTempo (80) ;
}
_1s1_exit(i)
int 1i;
{
midiExit();
_exit(1i);
¥

Figure 4.16 Initialization Code Generated by Deparse with Main



atrack

when rule =

until rule

using Flute2_

while_statement_enter
while_statement_exit
snd;
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_1sl_events[0] = 1;

if (_1sl_events[0])
_1sl_play_2(10,1);

_1sl_events[0] = 0;

while (i < 10 ) {
i=1+1;

_1sl_events[1] = 1;

if (_1sl_events[1])
_1sl_play_2(10,0);

_1sl_events[1] = 0;

Figure 4.14 An Atrack Specification Command and Related Intrumentation Code
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the main program. The user defined main routine (_I.m()) is called. The Isl_exit()

routine cleans up the MIDI environment and calls exit().
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When a node is visited the before decoration data fields defined in the TNODE
structure are written to the source file.?> The children are recursively traversed writing
related text to the file. When the node is visited after the recursion has bottomed
out, decoration fields are written to the source file.

Consider the parse tree node given in Figure 4.18. Upon visiting the node the
before_on_flags, the before_condition, and the before off flags are written to the file.
If the text field were non null then the corresponding text would be written to the
file. When tree traversal recursion bottoms out, the after_on_flags, the after_condition,
and the after_off flags are written to the file. For the TNODE given in Figure 4.18 the

following code would be produced.

1s1\_events[1] 1;

1s1\_events[2] 1;
if (1sl_events[1]) 1sl_play_1(23);

1sl_events[1] = 0;

4.5 Compilation

The LSL library routines are linked to the instrumented code. These provide
access to the sound database, the runtime environment, and the MIDI routines. The
_sl_driver.o is also linked which initializes the environment, calls the instrumented

source main program, and then waits for the MIDI environment to terminate.

4.6 Execution

When a program is executed the LSL driver program initializes the environment.
The source for the driver routine is given in figure 4.19. The driver initializes the
MIDI environment and calls the LSL initialize routine. The initialization routine is

generated by the deparse phase and is located in the decorated source which contains

3For a description of the TNODE data, fields refer to Section 3.3.1.
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When a start or term event is located the appropriate code is inserted to turn
the dtrack variable on or off. The variables in the dtrack identifier list are located
using the assertion variable location algorithm described in Section 4.3.2.2. Aural-
ization code is inserted to evaluate the event specification condition and play the
corresponding sound if necessary. An example atrack specification and the generated
instrumented code are given in Figure 4.15.

Decoration refers to instrumenting the parse tree with code that will generate
sound. This sections describes preparing the parse tree for decoration, locating the

event specifications, and the decorating of event specifications.

4.4 Deparsing

The deparsing phase reconstructs source code from the decorated parse tree. De-
parsing constructs initialization code and reconstructs instrumented source code. This

section details the deparsing process.

4.4.1 Constructing Initialization Code

If the parse tree for the source code contains the main program, data structures
are defined, an initialization routine is generated, and the Isten specific exit routine
is generated. Figure 4.16 gives example source code for a parse tree which contains a
main program.

If the parse tree does not contain a main program the data structures are declared
as extern. Figure 4.17 gives example constructed code that does not contain a main

program.

4.4.2 Reconstructing Decorated Source Code

After initialization code has been output to the file for reconstruction, the deco-
rated source code is generated by a recursive deparse routine which walks the C parse

tree.
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4.3.3.4 The atrack Specification Instrumentation

An activity is a sequence of actions which begins at the occurrence of an event and
ends at the occurrence of a later event. Recall that LSL allows specification of tracking
activities using the atrack command. The appropriate play code for the atrack is
the lsl_play_2(int sound, int mode) procedure call. The sound is either turned on
or off depending on the value of mode. The mode is on if the event specification
condition occurs as part of a start event. The mode is off if the event specification
condition occurs as part of a terminating event. An example atrack specification

and the generated instrumented code are given in Figure 4.14.

4.3.3.5 The dtrack Specification Instrumentation

Recall the dtrack allows data dependent auralizations. The tracking of the data
occurs between the start event specifier and the end event specifier. The appropri-
ate play code that corresponds to the dtrack is the _Isl_play 3(int sound, int val)
procedure call.

The instrumentation of the dtrack introduces the _dtrack events data structure
which controls the tracking state depending on the starting and terminating event

specification conditions. One _dtrack events entry is allocated for each dtrack

specification.
notify _1lsl_events[0] = 1;
rule = while_statement_enter if (_1sl_events[0])
using Wse_snd; _1sl_play_1(23);

_1lsl_events[0] = 0;
while ( i < 10 ) {

i=1+1;

b

Figure 4.13 A Notify Specification Command and Related Intrumentation Code
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The target statement for the while_body_begin is the printf located in the while
loop body. The instrumentation corresponding to the specific syntactic entity in-

cludes:

1. The event is activated.

2. The specification event condition is evaluated and sound is generated appropri-

ately.

3. The event is deactivated.

The target statement for the assertion is the assignment to ¢ within the body of
the loop. For assertions, the decoration always occurs after the target statement.
An assertion event is active from the initial time the assertion is violated until the
assertion becomes valid again.

The instrumentation corresponding to the assertion includes:
1. The assertion is evaluated activating or deactivating the event.

2. The event specification condition is evaluated and sound is generated appropri-

ately.

3. Deactivating the event is accounted for in step 1.

4.3.3.3 The notify Specification Instrumentation

Recall that notify generates sound at the occurence of the event specifier. The
appropriate play code is the _Isl_play_1(int sound) procedure call. The sound is played
for a system defined duration and terminated. An example notify specification
and the generated instrumented code are given in Figure 4.13. Note that the event
specification condition always evaluates to true. An LSL optimizer could be written

to remove this statement.
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4.3.3.2 Decorating the Target Code Related to an Event

Once the event target code has been located, instrumentation takes place in a

three step process.

1. The event is activated by setting the appropriate _1s1_events entry to ON(1).

2. The event specification condition is evaluated to determine sound generation.

This step supports the boolean combination of events.

3. The event is deactivated by setting the appropriate -1s1_events entry to OFF(0).

The instrumentation related to the while_body_begin and assertion for a simple

while loop is shown in Figure 4.12 2.

while ( i < 10 ) {
_1lsl_events[0] = 1;
if (_1sl_events[0] && _lsl_events[1])
/** appropriate play code **/
printf("In the body of the loop\n");
_1sl_events[1] = 0;

i=d+ g
if (1 < 5)

_1sl_events[1] = 0;
else

_1lsl_events[1] = 1;

if (_1sl_events[0] && _lsl_events[1])
/** appropriate play code **/

Figure 4.12 Instrumentation Related to the Event Specification Condition

2The appropriate play code is detailed in Section 4.3.3.2.
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4.3.2.2 Locating the Assertion

An assertion is checked after the execution of a statement that can possible change
the value of one of the assertion variables. Currently the following locations are

decorated.

1. On the left hand side of an assignment.
2. An operand of the increment operator.

3. An operand of the decrement operator.

The statement that contains the expression variable becomes the target statement.

4.3.3 Decorating the Target Statement

Decoration refers to inserting instrumented source code to generate sound. Once
a target statement has been located it must be decorated. This section describes the
instrumented code associated with the decoration process. How instrumented code is

generated is described Section 4.4.

4.3.3.1 The Event Specification Condition

Each event defined in an event specifier is assigned to an entry in the _1s1_events
data structure. As an event specifier is parsed an event specification condition is built

with the corresponding event data structure. For example, given the event specifier
rule = while_body_begin and assertion = i < 5

the specific syntactic entity while_body_begin corresponds to _1s1_events[0] and the
assertion event corresponds to _1sl_events[l]. After parsing the event list, the event
specification condition contains “(_1sl_events[0] && _1sl_events[l])”. The event
specifier and the specification condition are stored in the specification list within the

spec database. The specification condition will be used by the decoration routines.



Figure 4.11 Parse Tree Target Statements Related to the Function Entities
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foo()

>>>
>>>

main()

>>>

int 1i;

/** function_entry sound *x*/

printf ("Here in function foo\n");
printf ("I printed this statement\n");
/** function_exit_sound *x*/

int 1i;

/** function_call sound *%*/
foo();

Figure 4.10 Source Code Target Statements Related to the Function Entities
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5. function_call,function_entry,function_return

The function related specific syntactic enties may include an instance list. This
instance list consists of a list of function names to which the rule applies. If no
instance list is supplied then the rule is applied to all functions within the given

command scope. An example of the instance list is shown below.

rule = function_entry:"foo" using Fne_snd;

For the function_call ,Jocate the statement node of type

GEN_EXPR-EXPR_LFCALLI or GEN_EXPR-EXPR_LFCALLQ. If an instance
list was provided check to see if the name of this function matches the one in
question. The containing statement then becomes the target statement. Note
that if two function calls exist on the same line the auralization will occur at

the same time. For instance if the code reads:

i = foo() + bar();

The statement given will be the target statement for both function_call:“foo”

and “bar”. This is the specified behavior for this implementation of LSL.

For the function_entry and function_return the node of type GEN_FUNC_SPEC
is located in the parse tree. The instance list is processed to determine if the
function located is a candidate for auralization. If so the GEN_.COMPSTMT
within the function is located. The first statment in the STMT_LIST is the

target for entry and the last statement is the target for exit.

If flow control encounters a return statement of exit call during the execution

of a procedure, the function_return may not be realized.

Figure 4.10 shows the text position of the target statements. A parse tree with
highlighted target nodes is given in Figure 4.11.



Figure 4.9 Parse Tree Target Statements Related to the If Statement Entities
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4. if_then part,if_else_part

Locate the statement node of type GEN_STMT-STMT_IF or GEN_STMT-
STMT_IF_ELSE. For if_then_part the statement that corresponds to the true
evaluation becomes the target statement. If this is a COMP_STMT then the

first statement in the statement list becomes the target.

For the if_else_part there are two different target statements depending on the
species. If the STMT_IF is processed then no corresponding else auralization is
created in this implementation. If the STMT_IF_ELSE is encountered then the
stmt that corresponds to the false evaluation becomes the target statement. If
this is a COMP_STMT then the first statement in the statement list becomes

the target.

Figure 4.8 shows the text position of the target statements. A sample parse

tree with highlighted target statements is given in Figure 4.9.

main()
{
int 1i;
i=0;
if (1 ==0) {
/** if_then_part instrumentation *x*/
>> printf ("The value of i = 0\n");
b
else {
/** if_else_part instrumentation **/
>> printf(The value of i != 0\n");
t
}

Figure 4.8 Source Code Target Statements Related to the If Statement Entities



Figure 4.7 Parse Tree Target Statements Related to the For Loop Entities
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main()
{
int 1i;
i=0;
/** for_loop_enter instrumentation *x*/
>>> for (1 = 0; 1 < 10; ++i) {
/* for_body_begin instrumentation *x*/
>>> printf ("The value of i = %d\n",i);
/* for_body_end instrumentation *x*/
}
/** for_loop_exit instrumentation **/
}

Figure 4.6 Source Code Target Statements Related to the For Loop Entities
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3. for_statement_enter.for statement_exit.for_body _begin,for_body_end

Locate the statement node of type GEN_STMT-STMT_FOR_* where * matches
any of the species values from the list:

e STMT_FOR_EEES, STMT_FOR_EEE_, STMT_FOR_EE_S

e STMT_FOR_EE__, STMT_FOR_E_ES, STMT_FOR_E_E_

e STMT_FOR_E_S, STMT_FOR_E___, STMT_FOR__EES

e STMT_FOR__EE_, STMT_FOR_E_S, STMT_FOR__E__

e STMT_FOR___ES, STMT_FOR__E_, STMT_FOR____S
The located node is the target statement for the for_statement_enter and the
for_statement_exit. For the for_body_begin and for_body_end the enclosed state-
ment is located. If GEN_STMT then the node is the target node in both in-
stances. If GEN_STMT-COMP _STMT then the first statement in the statement

list 1s the target statement for the for_body_begin and the last statement in the
statement list is the target for the while_body_end.

Figure 4.6 shows the text position of the target statements. A sample parse

tree is given in Figure 4.7.



Figure 4.5 Parse Tree Target Statements Related to the While Entities
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Locate the statement node of type GEN_STMT-STMT_WHILE. For the
while_statment_enter, and the while_statement_exit the located node is the tar-
get statement. For the while_body_begin and while_body _end the enclosed state-
ment is located. If the genus is GEN_STMT then the node is the target in both
instances. If the node is of type GEN_STMT-COMP_STMT the first statement
in the statement list is the target statement for the while_body_begin. The last
statement in the statement list is the target for the while_body_end.

Figure 4.4 shows the text position of the target statements. A sample parse

tree with highlighted target statements is given in Figure 4.5.

main()
{
int i;
1= 0;
>>> while (i < 10) {
/* while_body_begin instrumentation **/
>>> printf ("The value of i = %d\n",i);
>>> i=i+ 1;
/* while_body_end instrumentation **/
t
}

Figure 4.4 Source Code Target Statements Related to the While Entities
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main()
{
int 1i;
/** prog_begin instrumentation **/
>>> i=0;
>>> while (i < 10) {
printf ("The value of i = %d\n",i);
1=1+1;
}
/** prog_end instrumentation **/
}

Figure 4.3 Target Statements Related to the Program Entities

4.3.2.1 Locating the Specific Syntactic Entity

A specific syntactic entity is a syntax related code segment of a block structured
language. For example, while statment_enter corresponds to the while construct in
C. A traversal of the parse tree locates the specific syntactic entity the appropri-
ate GENUS-SPECIES combination. When looking for while_statment_enter, the
target statement is located with the GENUS-SPECIES combination GEN_STMT-
STMT_WHILE.

1. prog_begin, prog_end

Locate the function declaration node with text corresponding to the main
function. For prog_begin the target statement is determined by the first node
corresponding to the statement within the program body. The prog_end target
statement is determined by the node corresponding to the last statement in the

program body. Figure 4.3 shows the text position of the target statements.

2. while_statment_enter,while_statement_exit, while_body_begin, while_body_end
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4.2 C Parsing

The C parser, reused from ATAC, generates a C parse tree. After completion of
parsing a parse tree with nodes of type TNODE, which represent the parsing rules, is

generated. This parse tree component is used as input to the decoration phase.

4.3 Decoration

4.3.1 Preparing the Parse Tree

Two parse tree manipulations must be performed before decoration can begin.
The main node is renamed so that it may be called by the LSL driver program at
runtime. This is accomplished by traversing the parse tree searching for the TNODE
which relates to the main function name. It is renamed to _1.m.

To guarantee that the all MIDI notes are played before the program exits, all
programmer calls to exit() or _exit() must be changed to _Isl_exit. This is accomplished
by traversing the parse tree searching all function call TNODE which relate to the exit
calls. The node text is renamed to sl_exit(). The LSL exit routine is part of the
LSL library.

4.3.2 Locating Events

When an auralization is parsed the specifications are stored in the specification
database. It is neccessary to instrument event specifiers provided by the specification
database in the related code. An event list is obtained from the specification database
relating to a given specification. Each of the events is located in the parse tree and
decorated appropriately. The located source statement position in the parse tree
is defined as the target statement. This section describes how to locate the target

statement for the specific syntactic entities and the assertions.
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notify_command

{
$$=saveNotifySpec($1);
}
dtrack_command
{
$$=saveDtrackSpec($1);
¥
atrack_command
{
$$=saveAtrackSpec($1);
}
sync_command
{
$$=saveSyncSpec($1);
b

Figure 4.1 Example Specification Parsing of the unnamed_command

mmkeyword

$$

saveMmAbsolute();

$$

saveMmRelative();

$$ = saveMmAbsolute();

Figure 4.2 Example Specification Parsing of the mmkeyword
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4. DETAILED PROCESSING PHASE ARCHITECTURE

4.1 LSL Specification Parsing

The auralization specification (ASPEC) is parsed by the LSL parser. The parser,
developed using bison and flex!, interfaces with the specification database component
to build the spec_db.

A routine LSLzzparse( filename) is provided in lsl_spec/main.c which will parse
the ASPEC stored in filename. When parsing is complete the specification data
structure is built and ready for use. The parse routine is called by the decoration
routines as well as the GUI. The integration process is given below. For a complete
description of the grammar refer to Appendix A. For a complete description of the
specification database refer to Section 3.2.

Figure 4.1 gives the parsing rules related to the unnamed_command non-terminal.
The specification database routines are driven by the parsing rules. For example,
when processing a notify, a specification data structure is generated by the reduction
of the not: fy_command nonterminal. When the reduction is complete the routine
saveNotifySpec() inserts the constructed notify structure into the specification list.
Similar specification database routines are constructed for each parsing rule related
to a specification command.

Figure 4.2 shows the parsing rules related to the reduction of the mmkeyword
nonterminal. The reduction of the rule calls the specification database routines gen-
erating the related data structures. In this instance, a routine is called to save the

metronome mode into the synchronization command structure.

IBison and flex are parser construction tools.
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Figure 3.30 The Sound Selection Window






Figure 3.29 The Relative Timed Event Interface Screen
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Sound specification currently supports the selection of a sound from a list of
given sounds. This occurs when the drag and drop is placed or the sound pattern
specification is chosen by the sound pattern specification button from the specification
command window. Figure 3.30 depicts the selection process. In the example a list of
sounds is provided for the user to choose from. The user can listen to any of these
sounds by clicking the play button. When the desired sound is located the user clicks

ok to associate the sound with the related specification command.

3.5.3 Future Releases

Additional features can be added to the GUI. These include, but are not limited

to:

1. A full featured music editor.
2. A sound library generation tool.
3. A library of VDAP’s and sounds

4. An integrated graphic runtime environment which supports the dynamic mod-
ification of ASPECS. These attributes include the state of an specification and

the given sound attributes such as sound type, level, and pan.






Figure 3.28 The Assertion Interface Screen

Figure 3.28 gives and example of the assertion event window. An event named
stze_spec_met has been created. The assertion is located in the text window. When-
ever this assertion fails the event becomes true. Tools are available to assist in the
creation of the assertion including the variable list and the graphical expression key-
pad.

Figure 3.29 gives an example of the relative timed event. The user has created an
event named time_expired. Thirty seconds after the activation of the event named
event( the event time_expired becomes true. A list of variables and expression keypad

is available to assist in the creation of relative time expressions.
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Figure 3.27 The Specific Syntactic Entity Interface Screen

Figure 3.27 gives an example of specific syntactic entity event window. An event
named event0 which corresponds to a function entry has been created. The category
category column lists the entities available. Here the category functions, which
provides the event specifier list shown, has been selected. Choosing the function
category also generates the choose function scrollable window. All of the functions
available in the source code are listed. If a function is not chosen from the list all

functions are applicable.






Figure 3.26 The General Syntactic Entity Interface Screen
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Figure 3.25 The dtrack Related Graphical User Interface Screen

Event specification takes place graphically by naming and specifying the attributes
corresponding to the four event types supported by LSL. These events include the






Figure 3.24 The atrack Related Graphical User Interface Screen






Figure 3.23 The notify Related Graphical User Interface Screen
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Figure 3.22 The Main Screen of the Graphical User Interface
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the user to configure the environment. These attributes include the compiler prefer-
ences, the execution preferences, and the definition of path names to the required LSL
routines. The project menu allows the user to set up which source files are currently
being auralized. The sound menu contains sound related manipulation routines. The
MIDI menu contains options which set up the MIDI device environment. The VDAP
menu is currently not implemented but will eventually support value dependent au-
ralization pattern creation and modification. Across the bottom of the screen are
buttons which relate to commonly issued commands in the GUIL.

The text area shown in the figure is a fully functional text editor. This editor is
different in that it allows the dropping of graphic icons into the text for auralization
purposes. The icons which can be dragged and dropped are located to the right of
the text entry area. The icons include the note, metronome, time signature, key
signature, and the lightbulbs which modify the auralization state of specification
classes. Currently the note is the only drag and drop icon available.

The drag and drop note allows the mapping of the location to sound Users may
find immediate benefit by using Iisten as an application providing aural breakpoints.

The auralization window depicted in Figures 3.23, 3.24, and 3.25 allows the user to
generate LSL specification commands such as the notify,dtrack,and atrack. Each
of the three screens provides the ability to name the specification and designate class

membership.
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3.5.1 Interface Design Goals

In order to make the LSL language accessible to a large audience, a graphical user
interface has been provided which allows the user to create auralizations by point and
click methods.

When designing the user interface, the following criteria was specified:

1. The GUI shall use interface application standards

The GUI should use an interface similar to existing programs when possible.
This includes attributes such as opening a file, quitting the application, and cut

and paste functionality.

2. The GUI shall be graphically informative

LSL is a specification language only, it should be possible to provide the user
with the information regarding the ASPEC. By graphically looking at the pro-
gram text, it should be possible to quickly understand what auralization has

been specified for that section of text.

3. The GUI shall provide an intelligent assistant

The program should be able to assist the user in creating a specification. For
example if the user highlights the word while, the interface should present the

user with specification choices available to that section of text.

4. The GUI shall support both musical and non musical interfaces

Not all LSL users are going to have the same degree of familiarity with either
reading music or with MIDI. Design should facilitate numerical oriented sound

specification as well as note oriented.

3.5.2 The Interface

Figure 3.22 shows the main screen of the Iisten graphical user interface. The

menubar consists of the familiar file and edit menus. The preferences menu allows
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sl_play_3(int sound, int value) is called to generate sound related to the dtrack.
It controls sound production by calling the Isl MIDI routine playNote() with the
appropriate MIDI note and MIDI channel. The value of the note is determined

by the play routine argument value.

As of this writing, data tracking supports type integer with value between 0
and 127. The default mapping is to map value to the MIDI note. If the bounds

are exceeded the boundary values are used.

After the channel and note have been determined the function call to
playNote(chan,value,velocity,duration) is made. The velocity is always 127 and

the duration is always a quarternote.

3.4.6 Summary

Musical Instrument Digital Interface, or MIDI, is a communication standard de-
veloped by the manufacturers of electronic musical instruments. It was determined
to use external MIDI compatable sound devices for Listen because it provides the
flexability, documentation, performance, and tools required. In order to use MIDI
driver routines were developed which act as a music sequencer. An interface to de-
veloped MIDI routines hides details for future Iisten developers. In the future it
may be desirable to use on board DSP technologies so that no additional hardware

is required.

3.5 The Graphical User Interface

Even though the graphical user interface(GUI) is not depicted in the component-
phase diagram it is discussed in this section of the component chapter ®. This section

describes the design and initial implementation results of the Iisten GUL

8The GUI design was implemented by Geoff Greene as an independent study course at Purdue
University.
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have been sent, it is necessary to send an all notes off message to the on line MIDI
devices. A command is available in the Listen environment which will turn all MIDI
notes off. The command is panic.

The source consists of calling the midilnit() routine described in Section 3.4.3.4
above and then immediately exiting. Upon midiExit() the all_notes_off() command

is sent to the MIDI device.

3.4.5 The LSL Library

The LSL library routines are inserted into the instrumented source code to gen-
erate the sound associated to a specification. Routines are related to the notify,
dtrack, and the atrack commands.

The routines are enumerated below. Each routine determines the correct channel

and note associated to the given sound by querying the sound database.

1. The notify Related Play Routine

Isl_play_1(int sound) is called to generate the sound related to activation of
a notify. The routine generates sound by calling the LSL MIDI routine
playnote(int chan,int note,int velocity,int duration). The velocity is always
passed as the maximum 127 and the duration is always passed as a quarter-

note.

2. The atrack Related Play Routine

Isl_play_2(int sound, int mode) is called to generate sound related to the atrack.
It controls sound production by calling the LSL MIDI routines noteOn() and
noteOff() depending on the value of mode. If the atrack starting event specifier
occurs, Isl_play_2() is called with mode ON which triggers the activation of the
sound. Upon the terminating event specifier, Isl_play_2() is called with mode

OFF which terminates the production of sound.

3. The dtrack Related Play Routine
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e playNote

playNote(channel, note, velocity, duration)

int channel, note, velocity, duration;

Playnote takes the information regarding a note and construct the appropriate
MIDI command. This allows the programmer to have no prior knowledge of the
details of MIDI byte formats. The validity of the fields are checked and passed

on to the MIDI driver with the appropriate duration.

e noteOn and noteOff

noteOn(channel, note, velocity)

int channel, note, velocity;

int noteO0ff (channel, note, velocity)

int channel, note, velocity;

These routines interface with the MIDI driver. No duration is specified so only

the note on or note off message is passed to the MIDI driver.

3.4.4 The Panic Command

Due to possible abnormal termination, a program may not terminate all notes

generated by a given instrumentation. Since many of the note off messages may not

Figure 3.21 The MIDI Queue
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3.4.3.3 The MIDI Queue

Figure 3.21 depicts the MIDI queue. The queue is a linked list of mdbox structures
in sorted order using the tv_sec timestamp as the primary key. The tv_usec or

microseconds is used to break collisions. The list is maintained dynamically.

3.4.3.4 An Interface to the MIDI Driver

The following interface allows Listen developers to interface to the MIDI queue
without understanding the complexity of the data structures and algorithms. The

routines promote information hiding and abstraction.
e midilnit
usage: void midiInit(void)

Allows a programmer to initialize the MIDI environment. This includes initial-

izing the interval timer and opening the device.
o midiExit
usage: void midiExit(void)

When a programmer calls midiExit() the routine waits for the MIDI queue to

empty. Then the corresponding device is closed.

struct mdbox

{
struct timeval ts;
char comm[MAX_COMMAND_LENGTH] ;
struct mdbox *next;

};

Figure 3.20 The MIDI Queue Data Structure Definition
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Upon program termination, the program waits for the MIDI event queue to process
all of the pending data. When this occurs the serial port is closed and the MIDI related
portion of LSL is complete.

The following sections describe the components which make up the MIDI driver.

3.4.3.1 The Sequencer Interrupt Handler

An interval timer is set up when the user program is executed. This is accom-
plished by using the UNIX interval timer. The setitimer() call is used to set the
interval timer to the appropriate number of seconds and microseconds. When the
timer expires it is reloaded or reset to the appropriate timer value.

Every 1000 microseconds the handler is called. If the MIDI event queue is empty,
the handler immediately returns. If the handler continues, the current time of day is
stored into a current time variable. The handler then traverses the MIDI event queue
writing out all MIDI commands which have a time stamp less than or equal to the
current timestamp.

Since the handler is called so frequently it is crucial that minimal time be spent in
processing the list. Several routines were unrolled directly into the handler code and
a modification to the data structure was made. The MidiOut routine was unrolled so
that the device was accessed directly eliminating the overhead of several procedure
calls. By placing the number of midibytes in the first byte of the MIDI command the
need to call strlen() to calculate the number of bytes was eliminated which improved

processing time significantly.

3.4.3.2 The MIDI Box Data Structure

The data structure contains a timestamp, MIDI commands, and a next pointer.
The command array contains a series of MIDI bytes to be written at the given times-
tamp. The first byte, comm]0], is the number of midibytes in the command. This was
created so that strlen would not need to be called thus eliminating crucial overhead

time related to the handler. The structure is given in figure 3.20.
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cheaper and easier to use, better solutions may become viable. This would allow
Isten distribution without the costly addition of sound producing devices.
Figure 3.19 shows the Iisten hardware environment consisting of a Sun workstation

connected to the Emu Proteus 111 World and the Roland SC-55 via a Mediator MS-124

interface.

Figure 3.19 The Isten Hardware Environment

3.4.3 The MIDI Driver

When an instrumented program is executed, the executable calls to midilnit()
which opens the serial port at the appropriate baudrate (38400) and initializes the
interval timer.

During execution of instrumented code, calls to the LSL library are encountered
which generate MIDI data. This data is passed to the LSL MIDI sequencer. The
sequencer affixes a time stamp to the MIDI data and inserts it appropriately into the
MIDI event queue. This queue is ordered by increasing timestamp value.

As the instrumented program continues execution signals are generated every 1000
microseconds. A handler is entered which determines if any MIDI events in the queue

need to be written to the corresponding device.
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3.4 MIDI Data

Sounds are determined in Listen by MIDI parameters. MIDI messages are gener-
ated during the execution of an instrumented program. These events are sequenced in
a MIDI queue and output to the MIDI device. A programmer interface to the MIDI
sequencer that hides details regarding MIDI data structures. This section describes

the use in Iisten.

3.4.1 What is MIDI

Musical Instrument Digital Interface, or MIDI, is a communication standard, de-
veloped and adopted by the manufacturers of electronic musical instruments. MIDI
makes it possible to connect various musical instruments and sound processing devices
to a computer.

MIDI is a serial communication bus similar to the RS 232 or SCSI bus. The
MIDI signal is a serial voltage transmission, standardized at the rate of 31,250 bits
per second. A MIDI cable is a shielded, twisted pair cable with a 5 pin DIN plug at
either end.

MIDI messages are comprised of bytes encoded to define the type of message being
sent and the related data. The information can express a range of information includ-

ing which key on a synthesizer was pressed to the simulation of an entire multitrack

recording studio[DS88|.

3.4.2 MIDI and the Listen

It was determined to use external MIDI compatable sound devices for the sound
production in Iisten. Even though on chip signal processing is becoming widely used
and less expensive, it does not currently provide the flexability required by the Project
Listen. The sound production capabilities of MIDI devices have been proven in years

of use in the professional music field. In the future as DSP technology becomes



Figure 3.18 A Parse Tree Example for a Simple Program.
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#define GEN_COMPSTMT 33
#define  COMPSTMT_DCL_STMTS O /* { INDATA_DCLS STMT_LIST } */

#define  COMPSTMT_STMTS 1 /x { STMT_LIST } */
#define  COMPSTMT_DCL 2 /* { INDATA_DCLS } */
#define  COMPSTMT_EMPTY 3/« {7} */
#define GEN_STMT 34

#define  STMT_EXPR 0 /* EXPR ; */
#define  STMT_EMPTY 1 /*x */
#define  STMT_COMPSTMT 2 /* COMPSTMT */
#define  STMT_IF_ELSE 3 /% if ( EXPR ) STMT else STMT */
#define  STMT_IF 4 /x if ( EXPR ) STMT */
#define  STMT_WHILE 5 /* while ( EXPR ) STMT */
#define STMT_DO 6 /* do STMT while ( EXPR ) ; */
#define  STMT_FOR_EEES 7 /* for(EXPR;EXPR;EXPR) STMT  */
#define GEN_EXPR 36

#define EXPR_QCOLON 0 /* EXPR ? EXPR : EXPR */
#define  EXPR_COMMA 1 /*x EXPR , EXPR */
#define EXPR_BINOP 2 /+* EXPR BINOP EXPR */
#define  EXPR_UNOP 3 /* UNOP EXPR */
#define EXPR_INCOP 4 /* EXPR INCOP */
#define GEN_BINOP 40

#define BINOP_PLUS 0 /x + */
#define  BINOP_MINUS 1 /% - */
#define  BINOP_MUL 2 [*x % */
#define  BINOP_DIV 3 /x / */
#define  BINOP_MOD 4 [/x 9, */

Figure 3.17 Sample genus and species values for the TNODE.
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Statement nodes within a statement list are ordered similarly to function nodes
within a function list. A statement list consists of statments which are children to the
node of genus type GEN_STMT _LIST. The node of genus type GEN_STMT_LIST
has a down pointer which points to the last statement in the statement list. The over
pointer from the this last statement node points to the first statement. By accessing
the over pointer of the down node from the GEN_STMT_LIST one gets the first
statement of the statement list. One can traverse the statement list by traversing the
over pointer until the parent down pointer equals the current node address. This is

shown in figure 3.16

Figure 3.16 The TNODE Ordering in a Statement List

3.3.2  Summary

A parse tree, generated by ATAC consisting of nodes of type TNODE, is used by
Isten. The TNODE has a genus and species which represents the parse rule used
to generate that node. The nodes are linked into the tree by up, down, and over
pointers. There are also pointers added by Project Listen that facilitate decoration
strings. The tree is manipulated by the decoration phase and is used to reconstruct

the source C code by the deparse process.



GEN_STRING N
"Calliung foo" GEN_STRING GEN_STRING
"From main" In foo'

37

Figure 3.14 Multiple Function Parse Tree Structure

Figure 3.15 Sample Parse Tree of a Multiple Function Program.
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The genus and species fields contain values that describe which parser rule
generated the node. All of the possible values for the genus and species are given
in a file Isl_inst/tree.h. Sample values are given in figure 3.17.

The up, down, and over pointers are used for connecting the nodes of the parse
tree. The up pointer points to the node corresponding to the production that created
the node. The down pointer points to the first resolution of the production. The
srcpos field is used to store the position in the source of the related production
which is used when reporting errors. The text field is non NULL if the production
relates to a rule which produces source code. Figure 3.18 gives the parse tree for a
simple C program.

The parse tree diagrams should be read according to the following rules with

respect to the fields of the TNODE data structure.
1. If a down down pointer is not given it is NULL.
2. If an over pointer is not given then:

e if there is only one node at the current level it points to itself.

o if there are multiple nodes at the same level it points to the first (or

leftmost) node at that level.

3. The up pointer points to the node above the leftmost child at that level. For
example in figure 3.18 the node of genus type GEN_FUNC_SPEC has an up
pointer to the node of genus type GEN_FUNCTION.

4. If no text value is given between <> then it is NULL.

The parse tree is rooted by the GEN_MODULE TNODE. Functions of the program
are represented by GEN_MODULE_ITEMS. A node is created for each functions in
the source. An example of the function list is given in Figure 3.14. A sample parse

tree for a multiple function program is shown in Figure 3.15.



typedef struct tnode {

int genus;
int species;
int error;
SRCPOS srcpos[2]; /* LEFT_SRCPOS, RIGHT_SRCPOS */
struct tnode *up;
struct tnode *down;
struct tnode *over;
char *text;
union {
struct symlist *symtab;
struct sym *sym;
struct {
short blkno;
short tempno;
struct valtype *type;
} hook;

} sym;
} TNODE;

Figure 3.13 The TNODE Data Structure
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3.3 The Parse Tree

The parse tree is built during the C parsing phase which was adapted from the
ATAC project developed at Bellcore[HL90]. The parse tree consists of nodes which
represent the grammar rule productions of the C source code. This parse tree is
decorated by the LSL decoration routines to created the instrumented program. This
section provides the background and understanding of the parse tree required to

develop the Listen decoration utilities.

3.3.1 The Data Structure

Each node of the parse tree is of structure type TNODE. The fields of interest to
Lsten include genus, species, srcpos, up, down, over, and text. Figure 3.12 gives
a graphic representation of the TNODE data structure. Figure 3.13 gives the TNODE

structure definition.

Figure 3.12 A Sample TNODE from the Parse Tree.



/**********************************************************

struct Elink *saveEvent(int type,
char *syn_entity,
struct instance *instance_list)

Takes the information and creates an event structure.
This event structure is then returned to the caller.

Valid Input Values

type
RULE_ID_EVENT
RULE_ID_INST_EVENT
TRIP_EVENT
syn_entity

non null character string

instance_list
list created by

returns

¥ OX X X X XK X X X XK X X K K X X X X X ¥ ¥ ¥ ¥

pointer to Elink structure

*

sk sk ok ok ok ok o o ok ok ok sk ok sk ok ok ok o o ok ok sk sk ok ok ok ok ok o o ok ok sk sk ok sk ok ok ok sk o ok ok sk sk ok sk ok ok ok ok o ok k ok /
[ 3Kk sk ok o o ok ok ok sk sk sk ok ok ok ok o o ok ok sk sk ok sk ok o ok sk o ok ok ok sk sk sk ok sk ok ok o o ok ok ok sk sk sk ok ok ok ok o o ok ok
struct Event *saveEventSpec(struct Elink *el)

saves an event specification

returns
struct event

**********************************************************/

Figure 3.11 Sample Specification Database Modification Routines
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[ ks ks sk ok o ok sk o o ok sk sk ok s ok sk ok o ok sk o s ok sk sk o sk ok sk sk o s sk sk o s ok sk sk ok o sk sk ok sk ok sk sk
int getEventType()

Gives the type of the event that is currently
being processed

returns

RULE_ID_EVENT

RULE_ID_INST_EVENT

TRIP_EVENT
sk ok 3 ok ok 3k ok 3k ok e ok s ok s ok sk 3k ok ke ok s ok 3k ok 3k ok 3k ok ok s ok 3k ok 3k ok 3k sk ok 3k ok ok sk ok sk ok sk ok ok k ok sk ok sk ok sk ok
/] K3k 3K 3k sk ok sk sk ke sk s ok s sk sk sk ok sk ok s ok sk ok 3k ok 3k ok e ok sk ok 3k ok 3k sk ok 3 ok k ok s ok sk ok sk sk ok 3k ok k ok s ok sk ok ok ok

¥ ¥ X ¥ X ¥ X ¥ *

*
* int getSpecSynEntityType()

%

* Gives the type of the specific syntactic entity.
%

* returns

* SSE_EMPTY SSE_BEGIN SSE_END
* SSE_VAR SSE_AEX SSE_CEX
* SSE_IST SSE_IBB SSE_IBE
* SSE_WSE SSE_WSX SSE_DOW
* SSE_FRE SSE_FRX SSE_WBB
* SSE_WBE SSE_FBB SSE_FBE
* SSE_DBB SSE_DBE SSE_JMP
* SSE_CST SSE_BST SSE_RST
* SSE_GST SSE_SST SSE_IFS
* SSE_ITP SSE_IEP SSE_SWS
* SSE_SBB SSE_SBE SSE_FNC
* SSE_FNE SSE_FNR

***********************************************************/

Figure 3.10 Sample Specification Database Value Query Routines



/**********************************************************

int getFirstSpec()
Position at the first specification in the speclist.
returns

SPEC_OK if possible
SPEC_END wupon failure

¥ X X X X X X X ¥ *

***********************************************************/
/**********************************************************

int getNextSpec()
Position at the next specification

returns

SPEC_OK 1if another spec was available

SPEC_END if the last one of the list
sk ok sk o ok sk ok ok o sk e ok K o sk ok K ok oK ok K ok ok sk sk ok sk s sk sk ok sk ok sk s ok K o ok ok ok ok ok ok sk ok ook ok ok /
/] 3K 3k sk sk sk ok sk ok sk sk sk sk ok sk s sk sk ok sk sk sk s ok K s sk s ok sk ok sk s sk sk ok sk sk sk s ok sk sk sk s ok sk ok ok sk ok ok sk ok ok

¥ X X X X ¥ *

int getSpecType()
Find out what kind of spec is at the current position

returns
GLOBAL_SPECTYPE PLAY_SPECTYPE NOTIFY_SPECTYPE
ATRACK_SPECTYPE DTRACK_SPECTYPE ASSIGN_SPECTYPE
LOOP_SPECTYPE IF_SPECTYPE TURN_SPECTYPE
TOGGLE_SPECTYPE SYNC_SPECTYPE ERROR_SPECTYPE

¥ X X X X X X ¥ ¥ ¥

***********************************************************/

Figure 3.9 Sample Specification Database Traversal Routines
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Similar data structures are defined for all of the implemented LSL parsing non-
terminals. The discussion of each structure is to detailed for this document. The

complete data structure is given in Appendix C.

3.2.2 The Database Related Routines

In order to promote the Ilsten object oriented design methodology, routines were
developed which manipulate, traverse, and access the specification data structure.
This hides the implementation details from the Iisten developer. The routines are
located in the Isl_spec directory” and are linked to developed code using the spec_db.a
library.

Routines which traverse the speclist are given in Figure 3.2.2. To traverse the list
a developer first calls getFirstSpec() which initializes to the begining of the list. The
routine getSpecType() is called to determine the type of the specification command.
The process is repeated calling getNextSpec() until it returns the value SPEC_END
which signifies the termination of the list. Similar traversal routines are provided for
all specification database list structures.

Routines which obtain information from the specification database are available.
The routine getSpecType() was an example of a routine which returns a data value.
Figure 3.2.2 shows some example data retrieving routines. The return values are
defined in the file Isl_share/lIsl_values.h.

Example routines which save and build the specification database structure are

given in Figure 3.2.2 gives an example of such routines.

3.2.3 Summary

The specification database is an internal representation of the ASPEC. A data
structure is defined for each non-terminal in LSL. Routines are provided which support
object oriented design methodologies. These routines save, build, modify, and retrieve

information regarding the specification database.

“See Appendix B for a directory structure layout of Project Listen.
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Figure 3.8 gives a graphical representation of the structure related to the dtrack
specification command. The count field contains an increasing number which assigns
the dtrack to an entry in the _dtrack events. This is used for activating and
deactivating tracking. ©. The start and term fields point to the event lists which
determine when the tracking of the variables given in the didlist is to occur. The
start_condition, start_scope, term_condition, and term_scope are defined as in the
atrack start and term related fields. The sound field points to the corresponding

sound. The scope field has the value of the related scope specifier and the next pointer

points to the next dtrack specification command in the speclist.

Figure 3.8 A Graphical Representation of the dtrack Related Data Structure

5Information related to the _dtrack_events construction can be found in Section 4.3.3.5



Figure 3.7 A Graphical Representation of the atrack Related Data Structure
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notify rule = while_statement_enter && assertion = i < 10

using Drum_snd
The event specification condition would contain
" 1sl_events[0] && _1lsl_events[1]"

The scope field has the value of the related scope specifier and the next pointer

points to the next notify specification command in the speclist.

Figure 3.6 A Graphical Representation of the notify Related Data Structure

Figure 3.7 gives a graphical representation of the structure related to the atrack
specification command. The start field points to the eventlist which corresponds to
the event specifier related to the given atrack. The start_condition is constructed
by the LSL parser in a similar manner to the notify event specification condition
discussed previously. start_scope defines the scope in which the starting events should
be located. The term field points to the eventlist which corresponds to the terminat-
ing event specifier realated to the given atrack. The term_condition is constructed
similar to the start_condition. The term_scope defines the scope in which the termi-
nating events should be located. The sound field points to the corresponding sound.
The scope field has the value of the related scope specifier and the next pointer points

to the next atrack specification command in the speclist.
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3.2 The Specification Database

The specification database is an internal representation of an LSL specification.
The data structure promotes the object oriented design principles of Iisten. This
section describes the data structure and the developed interface to access the data

structures.

3.2.1 The Data Structure

The main structure of the specification data base is the speclist. The speclist is a
list of the specification commands related to an auralization specification (ASPEC).
Each node of the speclist is of a type corresponding to the specification command. Fig-
ure 3.5 gives an example specification list which consists of notify, dtrack, atrack,

and syncto specification commands.

Figure 3.5 The Specification List Data Structure

The data items referenced by the speclist are of the related specification command
structure type. Figure 3.6 gives a graphical representation of the structure related to
the notify. The type field represents the all or selective attribute of the notify. The
label field is a non null character string label when the notify is of type selective.
The event field points to the list of events associated with the notify event specifier.
The sound field points to the corresponding sound specifier. The condition field is a
text string built by the LSL parser which contains the event specification condition.

® For example, given the specification

5Construction of the boolean event condition is described in Section 4.3.3.1.



45

It is possible to identify specific constructs of a C program by labeling. A label
is placed inside a comment by using the keyword label as the first keyword starting
with a letter immediately following the comment start delimiter. Thus, for example,
/* label=here, onemore */ provides two labels here and onemore for possible use by
the LSL preprocessor. The following example shows how to label the beginning and

end of a loop.

while (¢ = getchar()!=eof)
{
/*label=special loop This is an LSL label for the beginning of loop body. */
++ngc;

/*label=special loop This is an LSL label for the end of loop body. */

}

3.1.3 Definition of the Minimal Working Subset

A subset of LSL was chosen which would provide the flexability desired by Project
Listen but limit the amount of implementation details. This subset was defined in

section 2.4. The implemented grammar is given in Appendix A.4.

3.1.4  Summary

The syntax and semantics of a language named LSL provides a notation to specify
a variety of program auralizations. LSL is generic and needs to be adapted to the
programming language of an environment in which programs are expected to be
auralized. A language specific implementation of LSL serves as a tool to auralize

programs. This project uses LSL/C, a C adaptation of LSL.
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class named data_related consists of data items a, b,¢, p, and ¢q. Yet another class
named special consists of data items p and gq.

The notion of a class can be used to model abstraction during program aural-
ization. For example, consider the auralization of tractor control software. The
programmer may like to group all the events into two classes. One class consists
of events that correspond to engine control. Another class consists of events that
correspond to the control of paraphernalia attached to the tractor, e.g. a seeding
device. By simply using the event specification mechanism of LSL there is no way
to explicitly incorporate these classes into an LSL specification. The mechanism of
naming a command, as described above, however, does provide a convenient means
for defining classes.

Once defined, classes of events can be accessed at an abstract level using their
names. For example, during the execution of an auralized program, it is possible
to interact with the LSL run-time system and turn off the auralization of all events
within a class. It is also possible to request LSL a comprehensive list of classes and
their individual elements. Thus the use of classes enables a user to interact with an
auralized program in terms of “high level” occurrences, e.g. events, instead of dealing

with syntax based definitions.

3.1.2.11 Embedding LSL Commands

LSL commands can be embedded in C programs inside comments. The LSL
preprocessor recognizes an LSL command embedding if the first token beginning with
a letter immediately following the comment begin delimiter (/*) is LSL:. Immediately
following the delimiter, a sequence of LSL commands can be placed enclosed within
the begin and end delimiters. The LSL commands so embedded are translated to
C code by the LSL preprocessor. LSL commands such as play and notify get
translated into calls to library functions. Other LSL commands, such as assignments

and dtrack commands get translated into more complex C code.
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3.1.2.10 Event, Data, and Activity classes

An event class? consists of one or more events. A notify command specifies one
or more events which may occur at several positions inside a program and several
times during program execution. Events specified in one or more notify commands
constitute an event class. Similarly, a data classis a collection of one or more variables.
A dtrack command specifies one or more variables to be tracked. Variables specified
in one or more dtrack commands constitute a data class. An activity class is defined
similarly with respect to activities specified in one or more atrack commands. A
class that consists of at least two elements of different types, e.g. event and activity,
or event and data, or data and activity, is known as a mized class.

It is possible for a user to define each of the above classes in an LSL specification.
This is done by naming one or more notify, dtrack, and atrack commands. Any

of these three commands can be named using the following syntax:
id;:idg:n. L id,, rcommand

where each subscripted id above denotes a name and command denotes any event,
data, or activity specification command. Multiple commands can share a name. Each
id, when used as the name of a command, is treated as the name of a class. The class
so named consists of events, data, or activities specified in the commands named by
id. One command can be assigned multiple names. This makes it easy to define

classes that are not disjoint. Consider the following example.

function related::notify rule=function_call;
function related::notify rule=function_return;
data_related::dtrack a and b and c;

special::data_related::dtrack p and q;

The above three commands have been named to identify three classes. Class func-

tion_related consists of events that correspond to function calls and return. Another

4Classes defined in this section have no intentional relationship with the notion of classes in C++
and object oriented programming literature.
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toggle note from the MIDI keyboard and the toggle key from the computer keyboard.
When specified, id denotes the name of a class (defined below) of events, activities,
and data items to be affected by this command.

During program execution, the auralization state can be toggled using the source
specified in the command. For example, if the middle C on a MIDI keyboard is the
toggle source, tapping the middle C once, after program execution begins, turns the
sound off. Tapping it again turns it on. Input from the toggle source is processed
only when an auralized event occurs. When such an event occurs, an LSL library
routine is invoked to check for a pending toggle request. If a request is pending, the
auralization state is switched to OFF if it is ON, or to ON if it is OFF.

A program may contain both turn and toggle commands. A turn might change
the auralization state to off only to be switched back to on by a toggle. This is
certainly one useful scenario. Note that whereas turn commands are placed into the
code prior to compilation and do not provide the user any control after compilation,
the toggle command permits dynamic changes to the auralization state. The toggle
default in LSL is the space bar on the computer keyboard. Thus, even when no
toggle is specified in a program, auralization state may be toggled using the space
bar.

Regardless of the auralization state, note values are generated and sent to the
library routine responsible for playback. It is this library routine that decides, based
on the current auralization state, if the received notes are to be played or not. In
the metronome sync mode, all notes emitted are buffered in a special playback buffer
maintained by the library routine. The buffered notes are removed from the buffer
when their turn comes for playback. This is determined by the current metronome
setting. When playback resumes due to a toggle or a turn changing the auralization
state to on, the notes are played back in accordance with the metronome setting. In
program sync mode, notes received by the library routine are discarded if playback

is turned off.
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while <condition> do <spec_sequence>>;

The semantics of each of the above commands are similar to that of the for and while
statements in Pascal. All expressions in a for command must evaluate to integers.
A <spec_sequence> is a sequence of zero or more LSL specification commands.

Conditional commands are provided in LSL for selectively specifying an auraliza-
tion. The syntax of a conditional command appears below. Its semantics are similar
to that of the if statement in Pascal.

if <condition> then <spec_sequence> {else <spec_sequence>}

3.1.2.9 Controlling Auralization State

During execution, an auralized program can be in one of two auralization states:
ON or OFF. In the ON state any sound data resulting from the occurrence of an
auralized event is sent to the sound processor. In the OFF state any such sound data
is suppressed. LSL provides two commands to dynamically alter the auralization
state. These are the turn and the toggle commands. These commands have no
effect when placed inside an LSL specification. They may affect the auralization
state when placed inside the auralized program.

Using turn is one way to switch sounds on or off. turn on switches the sound
on and turn off switches it off. The command may be placed anywhere inside the
auralized program. Upon the start of program execution, the auralization state is ON.
The turn command takes effect immediately after it is executed. Sound channels can
be switched off selectively by specifying the channel number as in turn off chan=4;
switches off any sound on channel 4.

Another way to turn the sound on or off is with the toggle command. The syntax

of toggle is given below.
toggle {id} <toggle-source> = constant

where <toggle-source> could be the MIDI or computer keyboard indicated, respec-

tively, by the keywords midi and keysig. The constant is a string containing the
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metronome. The syncto command is used for setting the synchronization mode. The
syntax of syncto is:

syncto <sync-to>
The <sync-to> parameter can be program or mm for synchronization with, respec-
tively, program execution or a global metronome. Multiple syncto commands may
be placed in an LSL specification to alter the synchronization mode.

In the metronome mode, a buffer holds the notes generated by the executing
program. When this buffer is full and the program attempts to send a note for
playback, the playback routine does not return control to the program until the
received note can be buffered. This may slow down program execution. To avoid
this situation in metronome mode, one may use the noslow parameter such as in the
command syncto mm g=120, noslow. When the noslow parameter has been specified,
playback routine discards notes that are received when the buffer is full. This could
cause some events or data tracking to pass by unauralized. The size of the playback
buffer can be controlled by setting the bufsize parameter such as in syncto mm=120,

bufsize=1000 which specifies a buffer size that will hold at least 1000 notes.?

3.1.2.8 Assignments, Loops, and Conditionals
An assignment command has the general syntax shown below.
identifier {<subscript_list>}:= <expression>;

where identifier is the name of a variable. Expression is any valid expression that
evaluates to the type of the identifier on the left of the assignment. <subscript_list>
is a list of subscripts used for selecting array elements if the identifier denotes an
array. Loops can be formulated in an LSL specification using the for and while

constructs. Syntax of these two constructs is given below.

for <for_index> := <init_expression> to <final_expression>

{step <step_eXpression>} <spec_sequence>

3Each note belonging to a chord counts as one note.
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Time is measured in system dependent ticks; each tick being the smallest unit by
which time could be incremented. Thus, any expression using time can be used as
a timed event. As an example, suppose that the em gear_change function must be
invoked in a program in less than 60 seconds after the program execution begins.
It is desired to playback variable bad_program if this condition is not satisfied. The

following notify illustrates how to write this specification in LSL.

notify rule = function_call: gear_change and assertion=time < sectotick(60)

using bad_program mode = discrete;

In the above example, sectotick is an LSL predefined function to convert seconds to
ticks. Notice that the expression time > sectotick(60) is a valid way to specify an
event as described earlier while discussing the syntax of notify.

It is often required to specify time relative to the occurrence of some event. This

can be done in LSL using relative timed events as shown below.
rtime = <expression> after <event-specifier>
Consider the use of this mechanism in the following example for tracking an event.

dtrack when (rtime = sectotick(30)) after rule = function_call: missile_launch

until rule= function_return: target_hit using missile_in_motion;

The above dtrack can be read as “Begin tracking 30 seconds after the function
missile_launch has been called and terminate tracking when the function target_hit
returns. The tracking sound is defined by the LSL variable missile_in_motion. Thus,
using a combination of time and rtime, one may specify a variety of timed events

for auralization.

3.1.2.7 Playback Synchronization

Synchronization mode controls the playback of notes during program execution.
There are two such modes: program or metronome. In the program mode, playback is

synchronized to the program. In the metronome mode it is synchronized to a global
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Figure 3.4 Sample Activity Patterns Specifiable in LSL.

is omitted. If both the start and terminating events are omitted then the entire
program execution is tracked. In continuous mode, an activity begins whenever the
starting event occurs and terminates at the terminating event. In the discrete mode,
an activity occurs as above but does not resume. Using the start and terminating

events one may specify a variety of activity tracking patterns as shown in Figure 3.4.

3.1.2.6 Timed Events

LSL provides a powerful mechanism to auralize timed events. time is a special

variable in LSL which denotes the time spent from the start of program execution.
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1. dtrack speed; will track variable speed using an initial value of 0 and default

sound parameters such as note pitch and volume.
2. dtrack crash init=false; will track crash assuming an initial value of false.

3. dtrack x capture=x_reset; will track = after capturing its initial value at the

assignment labeled by the LSL label z_reset

4. dtrack mouse and color using color_-mouse_melody (&mouseval, &colorval)
; will track variables mouse and color using a user defined function named

color_mouse_melody with two parameters.

5. dtrack speed when speed>65 until x<65 mode=continuous; will begin track-
ing speed whenever its value exceeds 65 and will stop tracking it immediately
after its value becomes equal to or less than 65. Tracking will resume if the
start event occurs again. The discreet mode can be used to avoid resumption

of tracking of speed.

3.1.2.5 Activity Monitoring

An activity is a sequence of actions between two events. An activity begins at
the occurrence of an event and ends at occurrence of a later event. As mentioned
earlier, start and termination of program execution are considered as events. LSL
allows specification of tracking arbitrary activities using the atrack command given

below.

atrack { when <event-specifier> } { until <event-specifier> }

<sound-specifier> {<mode-specifier>}

<event-specifier>, <sound-specifier>, and <mode-specifier> have the same meaning
as in the dtrack command. Tracking begins when the event specified immediately
following when occurs (start event) and stops when the event specified following until
occurs (terminating event). If the start event is omitted, tracking begins at the start

of program execution. Tracking ends at program termination if the terminating event
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dependent auralization, LSL provides the dtrack command. The syntax of dtrack

appears below.

dtrack <track-id-list> <sound-specifier> {<mode-specifier>}

{<start-event-spec>} {<term-event-spec>}

Using dtrack, one or more variables can be tracked. For the variable to be tracked,
an initial value can optionally be specified using the init keyword. The type of the
initial value must match that of the variable to be tracked. The initial value may also
be captured immediately after the execution of an assignment labeled using an LSL
label.

As in notify, a <sound-specifier> specifies the sound to be used while track-
ing the variables. Here we introduce another method for specifying sounds which
is particularly useful in conjunction with the dtrack command. A sound pattern
whose characteristics depend on program generated data will be referred to as a
Value Dependent Aural Pattern and abbreviated as VDAP. The using clause in the
<sound-specifier> specifies the name of the function, say f, that emits a VDAP based
on variables being tracked. f is a language dependent function containing LSL com-
mands for auralization. Thus, in LSL/C, f is a valid C function interspersed with
LSL commands. f is executed after each assignment to the variable being tracked.

Tracking may be carried out in continuous or discrete mode. In continuous mode,
tracking begins at the start of program execution, unless specified otherwise. A note
pattern is emitted continuously until there is a change in the value of the variable
being monitored. When the value changes, a newly computed note pattern is emitted
continuously. In discrete mode, a note pattern is emitted once whenever the tracked
variable changes its value. In discrete mode tracking begins the first time the tracked
variable changes its value after program execution.

Tracking can also be controlled using <start-event> and <term-event>. Start
and terminating events are specified, respectively, using the when and until clauses.

A few examples of dtrack use appear below.



Table 3.5 Keywords and Codes for LSL event specifiers in C.

35

Category Event specifier Code! | Event specifier Codel

Program start start end end

Expression | variable var assignment_expression | aex
conditional_expression | cex

[teration iteration_statement ist iteration_body_begin | ibb
iteration_body_end ibe while_statement_enter | wse
while_statement_exit | wsx do_while dow
for_statement_enter fre for_statement _exit frx
while_body_begin whb while_body_end whe
for_body _begin fbb for_body_end fhe
do_while_body_begin | dbb do_while_body_end dbe

Jump jump_statement jmp continue_statement cst
break_statement bst return_statement rst
goto_statement gst

Selection selection_statement sst if_statement ist
if_then_part itp if_else_part iep
switch_statement sst switch_body_begin sbb
switch_body_end she

Functions | function_call fnc function_entry fne
function_return for

T Event specifiers and their abbreviated codes can be used interchange-
ably to specify a rule in a notify statement.
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Example 2 is the same as Example 1 except that the event selection is selective.
Thus, any loop body labeled by special_loop will be auralized. Any syntactic entity
can be labeled in the program being auralized by placing an LSL label command in
front of that entity as described in Section 3.1.2.11.

Example 3 specifies the execution of the statements ++count and search(z) as
the events. When any of these two events occur, count_or_search is played. However,
these events are to be recognized only inside functions search and report.

Example 4 above specifies an event which occurs whenever the condition
(x<y || p=q) is not satisfied. Note that this condition is based on variables in the
program being auralized. When this condition is not satisfied, assertion_failed is to be
played. Example 5 shows how to specify the auralization of all conditional expressions
that occur in file myfile.c only when condition odd(z) is not satisfied.

The all and selective tags can restrict any event selection. Multiple labels are

used within one notify command as in the following.

notify selective label = loop_1, loop_2 rule=while_loop_body_begin using
body_begin;
notify selective label = special_loop rule= while_loop_body_end

using body_end;

The above notify commands specify the same type of events as in Example 2 except
that loop body begins and ends that contain any one of the two labels loop_1 and

loop_2 will be selected for auralization.

3.1.2.4 Data Tracking

Event notification consists of specifying one or more events and reporting them
aurally during program execution. There are applications wherein changes to values
of variables need to be monitored. It is certainly possible to specify assignments to
such variables as events and then report the execution of these assignments aurally.

Such reporting is, however, independent of the data being assigned. To obtain data
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The scope of a notify may be restricted using the <scope-specifier>. In LSL/C,
the scope can be restricted to one or more functions or files. For example, if an
assertion is to be checked only inside function sort, one may suitably restrict the
scope to that function. Labels can be used in conjunction with scope restrictions to
specify arbitrarily small regions in a program.

The sound specifier is a variable name, constant, or a function call that specifies
the intended auralization of the selected events. Sample notify commands appear

below.

1. notify all rule=while_loop_body_begin using body_begin;

notify all rule= while_loop_body_end using body_end;

2. notify selective label = special_loop rule=while loop_body_begin using

body_begin;

notify selective label = special loop rule=while loop_body_end

using body_end;

3. notify all instance= “+-+count” and “search(x)” using count_or_search in

func = “search”, “report”;
4. notify all assertion = (x<y || p>q) using assertion_failed;

5. notify all rule = conditional_expression and assertion = odd(x) using

cond_sound in filename = “myfile.c”;

Example 1 above specifies two event types, namely the beginning and end of a
while-loop body using two general purpose syntactic specifiers. It also indicates that
all positions in the program where such events could occur are to be auralized. Thus,
a C program auralized using the above notify will generate the sound corresponding
to the variables body_begin and body_end, respectively, whenever the beginning and

end of a while-loop body are executed.
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time as described earlier. For example, in an automobile simulator, events such as gear
change, speed set, resume cruise, and oil check may be candidates for auralization.
Suppose that the occurrence of these events is indicated by calls to procedures that
correspond to the simulation of an activity such as gear change. 1t is these procedure
calls that serve as event indicators to LSL. Thus, for example, such a call to the
gear_change procedure could be mapped to sound using an LSL specification.

Event specification is achieved by the notify command. notify is a generic
command and can be adapted to a variety of procedural languages. In examples
below we assume that programs being auralized have been coded in C. The syntax of

notify appears below:

notify {<all-selective>} {<label-parameter>} <event-specifier>

{<sound specifier>} <scope-specifier>}

<all-selective> specifies which subset of events selected by a notify are to be aural-
ized. Possible event codes are all and selective. If selective is used, one or more
labels must be specified to indicate which events are to be selected. <event-specifier>
specifies one or more events to be notified aurally.

There are five ways to specify an event. One may specify a general syntactic entity,
a special syntactic entity, an assertion, a relative timed event, and any combination of
the above four. Relative timed events are discussed in Section 3.1.2.6; other methods
are described below. Table 3.5 lists all event codes in LSL/C. For example, while-
statement-enter is an event specifier; the corresponding event occurs once each time
a while statement is executed. The start and termination of program execution serve
as events.

The expression (z < y) serves as a special syntactic entity. The associated event
occurs whenever the expression (x<y) is executed. An assertion such as (z + y) >
(p+q) also specifies an event which occurs whenever the assertion evaluates to false. If
e; and ey are two events specified using any of the above approaches, then (e; and ey)

and (e; or ey) are also events.
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an array can be accessed by subscripting. Thus tclef_staff [k+1] refers to the (k+1)th

element of tclef_staff which is of type pattern.

const

scoresize = 25;

var

tclef_staff: array [l..scoresize| of pattern;

3.1.2.2 Sound Pattern Specification

The play command is used to specify what sounds are to be generated when some
part of a program is executed. The general syntax? of play is:

play <playlist>
where <playlist> is a list consisting of one or more notes and patterns specified using
constants, variables, and function calls. Key and time signatures are some of the
parameters that may be specified. Elements of <playlist> can be separated by a
comma (,) or a parallel (||) sign. An example of play command appears below.

play (loop_background || (func_call, no_parameters)) with mm q =120, inst =
“piano”;
The above play when executed will play the sound associated with the variable
loop_background together with a sequence of sounds denoted by the variables func_call
and no_parameters. Default key and time signatures will be used. The metronome
will be set to play 120 quarter notes per minute and the notes will be played using a

piano sound.

3.1.2.3 Event Notification

A useful characteristic of LSL is its ability to specify events to be auralized. A
programmer may formulate an event to be auralized in terms of the application.

However, such a specification is translated in terms of program position, data, and

2Syntactic entities are enclosed in < and >. Optional entities are enclosed in { and }. For a
complete syntax of LSL see Appendix.



Table 3.4 Default Values of Run Time Parameters.

Play mode

Pitch

Item Default value
Metronome q=120
Key signature C major
Time signature | (4:4)
Channel 1
Instrument code | 1
Note duration q

discrete for notify
discrete for dtrack
continuous for atrack

“0477

30
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Table 3.3 Sample Note Values using LSL duration attributes.

Note value Attribute
combinations

Quarter note q or hh
Eight note hq
Sixteenth note hhq or qq
Thirty second note | hhhq
Sixtyfourth note hhhhq or ss
Dotted half note h+q
Dotted quarter note | g+hq
Dotted eihgth note | hq+hhq

“F4:q” denotes a quarter note whose duration will be determined by the time signa-
ture and the metronome value. The duration attributes can be multiplied or added
to get dotted quarter note, and other fractions of note values. For example, (hq)
read as half of quarter denotes an eight note, (hhq) read as half of half of a quarter
denotes a sixteenth note. Table 3.3 lists sample note values and the corresponding
attribute combinations. Various rests could be obtained using the attribute combi-
nations shown in Table 3.3 with the letter R. For example, “R:(hq+hhq)” denotes a
dotted eight rest.

Duration can be specified for a chord by a single duration attribute. For example,
“(C4E4G4):q” denotes a chord consisting of three quarter notes. Notes and chords
for which the duration is not specified explicitly, as in “E4”, are played for a duration

determined by implementation dependent default durations (See Table 3.4 for various
defaults.).
Type Constructor

Values of primitive types can be combined together into an array. The following

sequence declares an array of measures, each measure being a pattern. Elements of
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Table 3.2 Attributes in LSL.

Code | Applicability | Description

f Note Indicates a full note .

h Note Indicates a half note.

q Note Indicates quarter note.
e Note Indicates eight note.

s Note Indicates sixteenth note.

chan | Note, pattern | Specifies the MIDIT channel on which to play.

play | Note Indicates one or more play styles.

inst | Note, pattern | Specifies which instrument is to play.

mm Pattern Metronome setting. This is applicable only to patterns.
Notes not part of a pattern are played for a duration de-
termined by global metronome setting. A metronome
setting specified for a pattern takes priority over any
global setting only while this pattern is played.

ptime | Note, pattern | Specifies the exact time in seconds to play the note or a
pattern.

T MIDI is an acronym for Musical Instrument Digital Interface.

constant and can be assigned to a variable of type voice. Voice can be used in note
patterns by specifying variables of type voice.

Variables must be declared before use. The following declaration declares
body_begin and body_end to be of type note, loop_begin, loop_end, and measure to

be of type pattern.

var
body_begin, body_end: note;

loop_begin, loop_end, measure: pattern;

Note and Rest Values

Attributes aid in specifying various properties of notes and patterns. Perhaps the

most common attribute of a note or a chord sequence is its duration. For example,



Table 3.1 Primitive Types in LSL.
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Keyword

Sample values

Description

int
note

tsig

ksig

pattern

voice

file

—20 or 76
LCE4b77

(3:8) or (3+2+2:4)

“Eb:minor”

“(CDEF# G A B)

“G3E3C4”

i

“done-voice.v”

Set of integers.

Set of notes; not all of these may be played
back in a particular implementation. A
subset of the notes is labeled starting at
A0 and going up to C8 as found on an 88-
key piano keyboard. These 88 notes corre-
spond to integer values of 0 to 87. &R&A
rest is treated as a silent note with dura-
tion specified by a duration attribute.

Set of pairs of values denoting a time sig-
nature. The first element in the pair spec-
ifies the beat structure i.e. the number of
beats per measure. The second element
is the note value that corresponds to one
beat. The beat structure could be complex
as explained in the text.

Set of k-tuples of pitch values. The set
may be specified using abbreviations such
as Eb:minor to indicate the key of Eb mi-
nor or by enumerating all pitches regard-
less of their specific position on a keyboard
as in the example.

Set of note and/or chord patterns consist-
ing of zero or more notes or chords.

Set of digitized voice patterns. A variable
of this type can be set to point to a mem-
ory or disk file containing a digitized voice
pattern.

Set of file names. File extensions are in-
terpreted. .c is for C program files, .v for
digitized voice files.

f Any digitized sound in a suitable format.
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in computer programs, values of type note and pattern could be played back during
the execution of an auralized program.

The set of key signatures constitutes the type ksig. Pre- or user-defined functions
are used to manipulate values of type ksig. Constants of type ksig are enclosed inside
double quotes and can be assigned to variables of the same type. A key signature
could be predefined or user defined. A predefined key signature consists of two parts:
a key name and a modifier. Examples of key names are Eb (denoting E flat) and
C# (denoting C sharp). Modifiers could be major, minor (same as harmonic minor),
lydian, ionian (same as major), mixolydian, dorian, aeolian, phrygian, and locrian.
Thus, for example, “C#:minor” and “E:phrygian” are valid key signatures. A user
defined key signature is any enumeration of notes. For example, “C D Eb G A” is a
key signature of a pentatonic scale.

The set of time signatures constitutes the type tsig. Constants of type tsig
are enclosed within parentheses. A time signature consists of two parts: the beat
structure and the note that takes one beat. For example, (4:4) is a simple time
signature indicating 4 beats to a measure with a quarter note of one beat in duration.
A more complex time signature is (3+2+2:8) which indicates a beat structure of
34242 with an eighth note taking one beat. A beat structure such as 34242 indicates
that the first measure is of 3 beats in duration, followed by two measures each of 2
beats duration, followed by a measure of 3 beats and so on. Time signatures can be
assigned to variables of the same type and manipulated by functions.

Type file is the set of file names. A filename is specified by enclosing the name
within double quotes. Thus, “your_name_please.v” can serve as a file name. The use
of file names is illustrated through LSL examples below. Note that we use a string
of characters enclosed within double quotes in a variety of contexts. It is the context
that unambiguously determines the type of a string.

A special type voice has been included to play digitized voice during program

execution. Voice will be stored as a sample in a file. It is this sample that becomes a



begin auralspec
specmodule myprog_auralize

/* This module contains specifications to auralize myprog procedure.
/* Applicability constraints, if any, come here.
/* Declarations for variables global and external to this module .

specdef specdef_1 (parameters);
/* Declarations of parameters, local variables, and functions. */
begin specdef_1

end spec specdef_1;

spec-def spec_def 2 (parameters);
/* Declarations of parameters, local variables, and functions. */
begin specdef_2

end specdef_2;

specdef specdef_n (parameters);
/* Declarations of parameters, local variables, and functions. */
begin specdef_n

end specdef_ n;
begin myprog_auralize;

/* Specifications for module myprog_auralize. */

end myprog_auralize;

/* Other module specifications. */

end auralspec.

Figure 3.3 Structure of an LSL Specification Containing One Module..

"/
"/
"/
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by the module name such as spec_module_1, spec_module_2, and so on in this exam-
ple. A module header is followed by applicability constraints which specify parts of
the program to which the specifications are to be applied. Then come declarations of
variables used in this module followed by zero or more specification definitions such as
spec_def_1, spec_def 2, and so on. Global variables are shared between various mod-
ules. Variables and specification definitions to be exported (imported) are listed in
the export (import) declaration. Variables declared in the program being auralized

can also be used inside LSL specifications. These are known as external variables.

3.1.2.1 Constants, Variables, and Types

LSL is a typed language. It contains constants, variables, and types just as sev-
eral other languages do. An identifier name is a sequence of one or more characters
consisting of upper or lower case letters, digits, and the underscore (). The first
character in an identifier must be a letter or an underscore. Upper and lower case let-
ters are treated as being different. Variables and constants can be assigned arbitrary
names. Values likely to arise during program auralization are grouped together into
primitive types. Table 3.1 lists the primitive types available in LSL. Values of type
note and pattern are enclosed in quotes to distinguish them from variable names. A
note is specified by indicating its pitch e.g. “E4b” indicates E-flat above the middle C
on a piano keyboard. Attributes listed in Table 3.2 can be added to a note separated
by a colon (:). A pattern is a sequence of notes and voices' played in the specified
sequence. A sequence of notes within a pattern can be enclosed in parentheses to
indicate a blocked chord also referred to as a chord pattern. A variable name can be
used within a pattern by preceding it with a dot. For example, if the identifier cmajor
denotes a chord pattern, then p:= “.cmajor E5” denotes a pattern consisting of the

value of emajor followed by the note E5. Just as values could be printed or displayed

!Data of type “voice” refers to digitized sound. Thus, for example, both digitized voice and
digitized guitar sound are characterized as voice data.
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3.1.1.3 Sound Space Characterization

The sound space is characterized by sound patterns comprised of notes, durations,
play styles, and instruments. Notes of arbitrary durations can be combined to form
sound patterns. Each note can be associated with one of several play styles and with
an arbitrary instrument. For example, a note can be played staccato on a piano with
a specified volume. Combining notes in various ways gives rise to a domain consisting
of an infinity of sound patterns. Digitized sound, such as human voice, is considered

a sound pattern.

3.1.1.4 Programming Language Independence

The second requirement stated above is significant as LSL should be usable by
programmers regardless of their preference for one or the other programming lan-
guage. Adherence to this requirement has produced a language which in the strict
sense should be considered as a meta-language. One can therefore adapt LSL to spe-
cific programming languages. However, in the implementation for this research the

C language is implemented [KR88].

3.1.2 Features and Syntax of LSL

The features of LSL are reviewed next. Details of LSL syntax and semantics ap-
pear in Appendix A. An LSL program is known as a specification. Each specification
is composed of one or more specification modules. Each specification module is com-
posed of zero or more specification definitions and one main specification. A spec-
ification module, a specification definition, and a main specification are analogous
to, respectively, a module, a procedure, and a module body in a Modula-2[Set89]
program. As an example of LSL specification structure consider the specification
listed in Figure 3.3. It begins with begin auralspec and ends with end auralspec.

Each module begins with a header identified by the specmodule keyword followed



Figure 3.2 Occurrence Space Characterization in LSL.
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are realized for all executions of P. An implementation of L for programs in a given
programming language P L is said to be correct if each ASPEC, written in L, for any

program P, written in PL is realized.

3.1.1.2  Occurrence Space Characterization

Ideally, it should be possible to specify any auralization. To do so, the space of
all possible occurrences that might arise during program execution must be defined.
Towards this end a three-dimensional space using the orthogonal notions of position,
data, and time are selected. Position refers to any identifiable point in a program. For
example, in a C program, beginning of a function call, end of a function return, start
of a while-loop, start of a while-loop body, and start of a condition, are all positions.
In general, an identifiable point is any point in the program at which an executable
syntactic entity begins or ends. This implies that a position cannot be in the middle
of an identifier or a constant. In terms of a parse tree for a given program, any node
of the parse tree denotes a position. For example, the subscripted dot (e;) denotes
seven possible positions in the following assignment: e; Xe; = 03X o, + 053 05 /07 2.

Data in a program refers to constants allowed in the language of the program being
auralized and the values of program variables. A data relationship is an expression
consisting of constants, variables, and function calls. Time refers to the execution
time of the program. It is measured in units dependent on the system responsible for
the execution of the auralized program. In a heterogeneous system, time is measured
in units agreed upon by all elements of the system.

As shown in Figure 3.2, a three dimensional space is used for specifying occurrences
in LSL. Two kinds of occurrences are distinguished: events and activities. LSL allows
an arbitrary combination of data relationships, positions, and time to specify an event

or an activity associated with program execution.
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Figure 3.1 A Domain Based View of Program Auralization

3.1.1.1 ASPECs and Realizations

To be able to design a language that can specify all possible auralizations, a quan-
tification of two domains is established. Let £ be the domain of all those occurrences
during the execution of any program that one may wish to auralize. The nature
of such occurrences is discussed below. Let S be the domain of all possible sound
patterns that may be associated with each element of £. A mapping from £ to S
is an association of sound patterns in S to occurrences in K. Such a mapping is
specified as a set of pairs (e,s) where e € E and s € S. The term program auraliza-
tion for a given program P refers to the set {(ey, s1),(€2,52),...,(€en,$,)}, where each
(e:,8:),1 <7 < nisan association of an occurrence to a sound pattern. A language L
for program auralization is a notation to specify any such mapping for any program.
A mapping specified using L is referred to as auralization specification abbreviated as
ASPEC. Specifications are always written with reference to a given, though arbitrary,
program in some programming language. Figure 3.1 illustrates this view of program
auralization. Note that an ASPEC is a many-to-many mapping.

Let (e,s) be an element of an ASPEC for program P. During the execution of P
if each occurrence e is identified by a sound pattern s, it is said that the pair (e, s)

has been realized. An ASPEC for program P is considered realized if all its elements
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3. DETAILED COMPONENT ARCHITECTURE

3.1 The Lsten Specification Language

A language has been designed that simplifies the task of specifying which occur-
rences during program execution are to be auralized and how. The language is named
Listen Specification Language, abbreviated as LSL.

LSL fulfills the need for a general purpose mechanism to specify the auralization
of programs. In the absence of such a mechanism, auralization is done by editing the
source code and adding calls to library procedures that generate sound.

Music specification languages have been developed before. Note the pioneering
work in the design of languages for music [Lan90, Tho90]. The main purpose of these

languages was to specify music. They do not fill the mapping criteria required.

3.1.1 Basic Definitions and LSL Requirements

Based on the perceived need for a specification language, the following idealized

requirements for LS were established.

1. Generality: It should be possible to specify any auralization using LSL.

2. Language independence: It should be possible to use LSL with the commonly

used programming languages such as C, C**, Ada, Pascal, and Fortran.

Below the basic terms are defined and concepts that help formalize the above
goals are introduced. The formalization brings reality to the above requirements.

LSL satisfies the requirements with respect to this formalization.



_1_m()

int 1 = 0;

_lsl_events[1] = 1;

if ( _1sl_events[1] ) {
_lsl_heartbeat_nonote();
_1sl_play_1(5);

}

_lsl_events[1] = 0;

while(i < 10) {
_lsl_events[3] = 1;
if ( _1sl_events[3] ) {
_lsl_heartbeat_nonote();
_1sl_play_1(1);
b
_lsl_events[3] = 0;

printf ("The value of i = %d\n",i);
1=1+1;

_lsl_events[4] = 1;

if ( _1sl_events[4] ) {
_lsl_heartbeat_nonote();
_1sl_play_1(2);

}

_lsl_events[4] = 0;

_lsl_events[2] = 1;

if ( _1sl_events[2] ) {
_lsl_heartbeat_nonote();
_1sl_play_1(6);

}

_lsl_events[2] = 0;

Figure 2.9 Sample Decorated Source File

18
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3. The specific syntactic entity and the assertion event types.

4. Boolean event evaluation such as (eventl&&event2) and

(eventl&&(event2||event3)) for the purpose of event specification.
5. Predefined sounds for specification mapping.

6. Specification command scopes to limit the decoration with respect to file or

function.

This minimal working set was implemented by Project Listen to begin investi-
gation into the use of sound in computing environments. The complete grammar

associated with the minimal working set is given in Appendix A.4.



16

Figure 2.8 The Project Listen Hardware Environment

2.3.8  Summary

During the transformation process many components are generated and used to
create the final instrumented executable. The auralization specification (ASPEC)
is constructed using the LSL language. The auralization database is an internal
representation of the ASPEC. A parse tree is generated from the C source code and
after decoration becomes a decorated parse tree. Deparsing of the decorated parse
tree results in the decorated source file. The source file is compiled generating an

instrumented executable which generates MIDI data upon execution.

2.4  Establishing a Minimal Working Subset for Implementation

Given the generality of LSL, it is necessary to chose a working subset will (1)
minimize the amount of implementation and (2) provide enough power to demonstrate
the feasability of the method. The following aspects are implemented in the minimal

working subset:

1. All three auralization commands notify, dtrack, and atrack

2. The synchronization command (syncto) to synchronize the playback to the

program or a metronome.
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3. LSL Initialization routines.

A sample of decorated C source code is given in Figure 2.9. The complete example

including the original source and specification are given in Appendix D.

2.3.6 The Executable

The instrumented executable component contains the compiled decorated sources
linked to Isten libraries. The Iisten libraries handle interaction with the specification
database, setting up the MIDI environment, and initializing the program event state.

Figure 2.7 depicts the components of the executable.

Figure 2.7 Architecture of the Executable Component

2.3.7 MIDI Data

Musical Instrument Digital Interface, or MIDI, is a communication standard, de-
veloped and adopted by the manufacturers of electronic musical instruments which
makes it possible to connect various musical instruments and sound processing devices
to a computer[DS88]. MIDI data is generated and sent to a MIDI device to produce
sound. The MIDI devices currently used for Iisten include the Roland SC-55 and the
Emu Proteus III World. Figure 2.8 depicts the Project Listen MIDI environment.
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2.3.4 The Decorated Parse Tree

Each TNODE of genus type GEN_STMT has the potential of being decorated. To
facilitate decoration the TNODE data structure has additional fields that contain event
conditions and flags. After completion of the decoration phase the parse tree is con-
sidered decorated. This decorated parse tree has the additional fields constructed
according to the mapping specification. Figure 2.6 depicts a decorated TNODE struc-

ture. A detailed description of the decorated parse tree is given in section 3.3.

Figure 2.6 A Sample TNODE from the Parse Tree.

2.3.5 The Decorated Source Code

A component of the deparse phase is the decorated source file. The file contains

instrumented source which performs the following:
1. Playback of specified sounds.

2. Triggering and tracking of events.



Figure 2.5 Parse Tree Structure for a Simple Program.
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extern
extern
extern
extern
extern

extern
extern
extern
extern
extern

int
int
int
int
int

struct
struct
struct
struct
struct

Figure 2.4

getEventType() ;
getNextEvent () ;
getFirstSpec();
getNextSpec() ;
getSpecType() ;
Elink *saveEvent () ;
spec xsaveSpec() ;
spec xsaveNotifySpec() ;
spec xsaveAtrackSpec() ;
spec xsaveDtrackSpec() ;

Sample Interface Routines to the Specification Data Structure.

12
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2.3.2 The Auralization Database

The auralization database is created by the LSL specification parsing routines.
It is interrogated by the Iisten decoration routines, Iisten graphical user interface,
and the Dsten runtime environment. The auralization database consists of a data
structure and routines to manipulate that data structure. A detailed explanation of
the data structure is given in section 3.2.

The database consists of specifications linked together where each specification in
the list is of type notify,dtrack, atrack, or any specification command. Depending
on the type of command, the appropriate information is stored specifying the scope,
the sound, and the related event specification information.

An interface to this data structure has been developed using object oriented de-
sign principles [GJM91] promoting data abstraction, information hiding, and code
modularity. By providing this interface developers need not concern themselves with
the details of the data structure. Routines are provided which get the first speci-
fication, get the specification type, get the next specification, save an event, save a
specification, etc. Figure 2.4 shows some of operations provided for the data structure.

The data structure and it’s interface routines are located in a specification library

that can be linked to LSL related software.

2.3.3 The Parse Tree

The parse tree is generated by the C parsing phase which was reused and modified
from the ATAC project at Bellcore??. Nodes of the parse tree, TNODEs, are of a given
genus and species which describe the parser rule generated at this node. A sample
parse tree depicting the TNODE structure for a simple program is given in Figure 2.5.
The sample parse tree is rooted by a node with genus GEN_MODULE. The child
of this node is of genus type GEN_-MODULE_ITEM and species DECL_ITEM. A

detailed description of the parse tree is given in section 3.3.
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/*************************************************************

File : guessing.lsl
Description

This specification defines a sound mapping which
gives the user an aural response when trying
to guess a number.

¥ ¥ X X ¥ ¥ ¥

sk sk ok ok ok ok ok o o ok ok sk sk ok ok o ok ok o ok ook sk sk sk sk o ok ok ok o ok ok sk sk sk sk ok ok sk o ke ok sk ok sk sk sk ok ok sk sk ok ok kok /
begin auralspec

specmodule guessing_game

begin guessing_game

/** When they get the right answer play a bell *x/
notify assertion = (quit != 1) using Phone_snd;
/*x After the user guesses correct play applause **/

atrack when assertion = (quit != 1)
until rule = function_return:"finale"
using Applause_snd;
/*
** play the sound corresponding to the difference
** after a guess has been made

*/

dtrack musical_diff
when rule = prog_begin
until rule prog_end
using Flute2_snd;

end guessing_game;
end auralspec.

Figure 2.3 A Sample LSL Specification.



1. atrack when assertion = (x<y || p>q)

until rule=while_statement_exit using Fill_snd;

2. atrack when rule=while_statment_enter

until rule= while statement_exit using Flute_snd;

In (1) the Fill_snd is emitted when the assertion is violated until a while statement
is exited. Example (2) results in a Flute_snd being played for the duration of all while
loops.

Playback synchronization controls the playback of sounds during program execu-
tion. The syncto command is used for setting the synchronization mode. There are
two synchronization modes: program or metronome. In the program mode, playback
is synchronized to the program. In the metronome mode playback is synchronized to
a global metronome.

A complete sample specification is shown in Figure 2.3.



timed event, and any combination of the above four. Events are described in detail
in Section 4.3.

Mapping of an event to sound is achieved by the use of the notify command.
The notify command specifies the event, the scope of the event, and the sound to

which this event is mapped. Examples of the notify are given below:
1. notify rule=while_body_begin using Wbb_snd;
2. notify assertion = (x<y || p>q) using Failure_snd,;

In (1) while_body_begin denotes a syntactic entity and Wbb_snd denotes a pre-
defined sound for the while_body_begin. In (2) a predefined failure sound is emitted
when the assertion is violated.

There are applications wherein changes to values of variables need to be monitored.
To obtain data dependent auralization, LSL provides the dtrack command. The
dtrack command specifies the variables to be tracked, when to start tracking, when
to terminate tracking, and the sound to be used during tracking. Examples of the

dtrack command are given below:

1. dtrack speed using Speed_snd;

2. dtrack speed when rule=while_statment_enter

until rule= while statement_exit using Speed_snd;

In (1) the source code variable speed is tracked using the predefined Speed_sound.
In (2) the variable speed is tracked only within a while loop construct.

An activity is a sequence of actions between two events. An activity begins at
the occurrence of an event and ends at occurrence of a later event. LSL allows
specification of tracking arbitrary activities using the atrack command. The atrack
command specifies when to start generating sound, when to terminate generating
sound, and what sound to generate. Examples of the atrack command are given

below:



6. Compilation

The instrumented source code is compiled via a standard complier and an in-

strumented executable is created.

7. Execution

The instrumented executable is run and MIDI ! information is output to the
appropriate device to generate the sound. Section 3.4.1 midi describes midi in

detail.

2.3 High Level Component Descriptions

During the transformation process components are manipulated to obtain an in-
strumented executable. This sections describes each of the generated components.

Detailed explanations of each component can be found in Chapter 3.

2.3.1 The LSL Specification

ASPECS are written in the Listen Specification Language (LSL) described in
Section 3.1. For a complete and detailed description of the LSL language refer to the
the technical report [BM93]. Additional literature is also available regarding the LSL
language [BM294].

Each specification is composed of one or more specification modules. LSL is a
typed language which consists of constants, variables, and types. LSL attributes aid
in specifying various properties of notes and patterns which make up sound specifi-
cations. A useful characteristic of LSL is its ability to specify events to be auralized.
A programmer may formulate an event in terms of program position, data, and time
as described earlier. Events can be specified in five ways. One may specify events in

terms of a general syntactic entity, a special syntactic entity, an assertion, a relative

IMIDI is an acronym for Musical Instrument Digital Interface. It is a serial interface to connect
computers and musical instruments



source code. Compilation compiles the decorated source code and links to Iisten
libraries. Execution generates the MIDI data which generates sound.

Enumerated below are summary descriptions of and components produced by the
Lsten processing phases. These are presented in order of execution. Details regarding

each of the process phases appear in Chapter 4.

1. Editing

Using any text editor, the source code and the LSL specification components

are generated.

2. LSL parsing

The ASPEC is parsed generating the auralization and sound database com-
ponents. The auralization database contains an internal representation of the

specification. The sound database contains all of the sounds available to Isten.

3. C parsing

A parse tree component is generated from the source C code. Code reuse
was utilized from the ATAC project at Bellcore. A part of ATAC [HL90] was

modified to serve as a preprocessor.

4. Decoration

Given the parse tree and the auralization database, decoration occurs. Events
from the auralization database are located in the parse tree and the tree dec-
orated appropriately. Decoration involves inserting C code to generate sound

into the parse tree.

5. Deparse

The instrumented C source code is produced by a process known as depars-
ing. Deparsing involves traversing the parse tree thereby reconstructing the

instrumented C source code.



event is located in the program occurrence space defined by time, position, and data.
Figure 2.2 depicts this relationship. A detailed explanation of the language and

occurrence space is given in Section 3.1.

Figure 2.2 Occurrence Space Characterization of LSL Events

2.2 High Level Process Phase Descriptions

The Processing phases control the transformation of source code and related spec-
ification to instrumented executable. The program source and LSL specification com-
ponents are provided as input to the process which is controlled by the IsICC script.
These files are editing using any text editor. LSL preprocessing parses a specification
and generates the auralization and sound databases. C preprocessing generates a
source code parse tree. Decoration instruments the specification events within the

parse tree. Deparse takes as input the decorated parse tree and generates decorated
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2. LISTEN: A HIGH LEVEL SYSTEM DESCRIPTION

2.1 The Listen Environment

Developed as a general purpose environment, Iisten provides automated code in-
strumentation to investigate the use of sound in computing environments. The Iisten
software components and processes are shown in Figure 2.1. Certain data structures,
files, and data interfaces are defined as software components. The processing phase
performs transformations on the given components. The source file and specification

components are provided to IslCC which drives the transformation process.

Figure 2.1 A High Level Component-Phase View of Listen Architecture

A programmer creates an auralization specification (ASPEC) using LSL (Listen

Specification Language). The ASPEC maps specified program events to sound. An



to provide a general purpose tool that is applicable in several fields of research related
to sound in computing environments.

Many of the tools developed so far require programmers to manually locate and
decorate program events. This makes the experimentation process slow and tedious.
It is a goal of Project Listen to separate the sound specification from the source code

and automatically perform the location and decoration of program events.

1.3 Organization

The architecture of Listen is discussed in Chapters 2,3, and 4. This architecture
discussion is presented in terms of software components and processing phases which
manipulate these components. A high level description of Listen is given in Chapter
2. A detailed description of Ilsten components appear in Chapter 3. The process-
ing phases are detailed in Chapter 4. Application and experiences with Listen are
presented in Chapter 5. Finally Chapter 6 presents the summary and conclusions of

Project Listen.



Francioni and Jackson propose that sound offers an alternative form of investiga-
tion to simply using multiple graphical and textual views for studying the behavior
or a program. They found general sound to be effective in depicting certain patterns
and timing information related to the behavior of programs [F.J92].

Edwards suggests that audio can be used to develop computer human interfaces for
blind users. The introduction of complex displays have rendered useless the speech
generated interfaces. He suggests representing a mouse based interface by musical
tones and synthetic speech to assist visually impaired computer users [Edw89].

Brown and Hershberger developed a tool Zeus for algorithm animation. They
added sound capabilities into the application and had positive preliminary experi-
ences using audio in algorithm animations for reinforcing visuals, conveying patterns,
replacing visuals, and signaling exceptional conditions. They believe people can hear
relations in data that are never seen or displayed. Because sound is intrinsically time
dependent, it is very effective for displaying dynamic phenomena, such as running
algorithms [BH92].

A common statement in much of the research regarding aural computing environ-
ments is the need for additional research and toolkits. Applications that realize the
full potential of sound will require the ability to make fairly complex manipulations
of sound and an imaginative use of sound effects [Gav89]. This will require the use
of several new tools or environments. Blattner [Bla94] states that the increased ca-
pability to reproduce sounds and the development of toolkits to generate sound have
stimulated new research efforts in nonspeech audio.

The tools developed have been specifically tailored for a special area of investi-
gation. For example, Infosound was developed to create and store musical sequences
and special sound effects and to associate these sounds to events in an application
program. However it was not developed as a general purpose tool and thus the sound
mappings had to be customized for each program [FJ92]. Zeus supports sound in
algorithm animations only [BH92]. LogoMedia [DBO93] supports research into pro-

gram behavior and aural debugging for Logo programs. It is a goal of Project Listen



1. INTRODUCTION

1.1 Definition

It is desired to develop an environment that is applicable in several fields of re-
search related to sound computing. The environment should provide an automated
mechanism for mapping program events to sound. The Listen environment has been
developed to meet these requirements. This thesis describes the underlying rationale,

architecture of, and experience with the Listen environment .

1.2 Related Work

Research into computing environments which use sound has been increasing in
the last several years. Some areas of interest include auditory display, aural debug-
ging, program auralization, and data sonificiation. Forums for discussion are being
organized as well. In 1993 an Association of Computing Machinary Special Interest
Group on Sound (or ACM SIGSOUND) was established to discuss issues related to
sound in the computing[IEE94]. The International Conference on Auditory Display
was established to address related issues.

As the sound production software and hardware becomes increasingly available,
developers are begining to use complex sounds to convey more information than
just an interrupt beep[Gav86]. William Gaver proposes the use of Auditory Icons
to provide a natural way of representing dimensional data as well as conceptual ob-
jects. Sounds might provide information about the status of background processes,
the number of links in a networked environment, and other factors of the computer

environment [Gav89].

Tn this thesis the term Isten refers to a complete environment for program auralization.
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ABSTRACT

Boardman, David Bradley. MS, Purdue University, August 1994. Listen: An Envi-
ronment for Program Auralization. Major Professor: Aditya P. Mathur.

The use of sound in computing environments is a growing field of research. Project
Listen contributes to the field by providing a generic programming environment
(Listen) that is applicable in several areas of research. These include aural debugging,
program auralization, auditory display, simulation, and sonification. Ilsten separates
the sound specification from the source code and automatically locoates and instru-
ments program events. The language LSL ((L)isten (S)pecification (L)anguage) has
been designed and implemented to support the desired generality and automation cri-
teria. Specifications written in LSL and included in the program to be auralized are
preprocessed by an LSL preprocessor. The preprocessed program when compiled and
executed generates MIDI or voice data sent through a MIDI interface to a synthesizer
module, or via audio channels, to an audio processor, which transforms the notes or
voice into audible sound. LSL has the generality to specify auralization of a variety of
occurrences during program execution. It derives its broad applicability from its few
generic elements that when adapted to any procedural programming language, such
as C, Ct*, or Ada, enable the writing and use of LSL specifications for auralizing
sequential, parallel, or object oriented programs in that language. This thesis details
the design of the Project Listen environment and demonstrates the feasibility through

the implementation of a minimal working subset of the environment.
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