Cover Page

Standard
1 15
page of

Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date

Rev Change Description Date - Orig

A Initial Version 7121/99

B Incorporate changes from CS406 class 1/13/99

[0 Tellabs Operations, Inc., 4951 Indiana Ave., Lisle IL 60532

(630) 378-8800

Standard

2 15

page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date

1. Introduction

Introduction The Unit Test Generator is a tool which helps software developers create and manage
unit test scripts.

Purpose The purpose of this document is to outline all of the requirements for the UTG. These
requirements will be used to design, implement, test and deliver a working incarnation
of the UTG.

Scope This document covers the requirements phase of the UTG'’s lifecycle.

Field of Application This document is written for the Tellabs software development groups, Dr. Aditya

Mathur and the students of the CS407 class at Purdue University.

Revision History

Revision | Date Revision Description

A 7/21/99 Initial Version

B 1/13/99 Incorporate any and all changes from the CS406 class.
Definitions

Term Definition

An area of memory where unit tests can be copied to and its
clipboard value will be maintained until a new item is copied to the
clipboard or the program is exited.

This is a commonly used name to refer to a person who

craft configures, provisions and maintains Tellabs and other
equipment.
A code block is an atomic piece of software which has exactly
code block

one entrance point and one exit point.

Acronyms and

Abbreviations
Term Definition
SWIT Software Integration Testing (Feature Level Testing)
RSIT Regression Software Testing (System Level Testing)
uT Unit Testing (Function Level Testing)
UTS A Unit Test Script

Standard

3 15
page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date
Term Definition
UTG The Unit Test Generator
Requirements When dealing with system requirements it is important to remember several key
Overview concepts:

» Requirements are driven by the product and not necessarily vice versa.
* Requirement change when it is most inconvenient.
* There are few wrong answers but some answers are more right than others.

* Requirements are very often a wish list.

Standard

4 15
page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date
2. The Unit Test Generator
Introduction One of the many facts of life in software development is that no code of reasonable

complexity will ever work perfectly the first time. For this reason testing is an
imperative and required step in any mature software lifecycle.

The TITAN 532L software development group has three separate testing phases.
Each phase is designed to test a different layer of software. The first phase of testing
is unit testing (UT). Its sole purpose is to test at the function level. Next comes the
software integration phase (SWIT). During this phase, tests are designed to isolate
and test a single feature. The final phase, regression software integration testing
(RSIT), is used to test the entire system.

Each set of tests has its own purpose. The UT phase hopes to find resource allocation
problems, memory leaks, array boundary overflows and other minor coding errors.

SWIT tests are designed around individual features. They may be executed to test a
new craft command, piece of hardware or a complex software algorithm. This phase
attempts to catch problems with the interactions between functions in a single feature
or sub-system. This testing is critical when testing the interface between software
features, various hardware components and the firmware which may control them.

RSIT tests are employed to test the entire system. It is necessary to make sure that
individual features work well together. Deadlock and starvation scenarios are most
often found at this level.

Unit Test Plan Creating a test plan at any level is a difficult and time consuming process but by far the
most tedious is the unit test plan.

Every function which is written for the 532L is required to have a unit test plan. This
plan must thoroughly test the code it was designed for. While it would be ideal to state
that a unit test plan must completely exercise a function it is not feasible. This would
require that each and every possible execution path of a function be tested. This is not
possible for any large piece of software.

Instead, each unit test plan must outline a means of making sure that every line of
code is executed. A more practical way of stating this is that every code block must be
executed at least one time during the course of the unit test.

Code Block While there is some disagreement on what a code block actually is, for the purposes
of the UTG, a code block is an atomic group of statements which have exactly one
entry point and exactly one exit point. Code blocks cannot be nested. A function call in
and of itself does not define a code block (but it is contained in a code block).

Standard

5 15
page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date
3. Unit Test Script File
File Format Listed below are the different sections required in a Unit Test script. They are listed in
order of appearance.
Flle Header /************************ BEGIN *kkkkkkkkhkkhkkkkkkkkkkkk
This section is always the
beginning of the file : COPYRIGHT %G% %U% BY TELLABS OPERATIONS, INC.
* ALL RIGHTS RESERVED
* THIS DOCUMENT MAY NOT BE REPRODUCED WITHOUT
* THE WRITTEN PERMISSION OF TELLABS
* 4951 INDIANA AVENUE, LISLE, IL. 60532
*
*kkkkkkkkkkkkkkkkhkkhkkhkkhkhkkhkkhhkkhkkkhkkhkkhkkhkkhkkkhkkkhkkhkkkkkhkk
*
* Name: <filename>
* Type: Unit Test Script
* Qriginator: <Author>
* File: %M%
* Version: %1%
* Reference: <Reference Identifier>
* Description:
* Description

* *% *% * *% END * *% * *% *% * /

Block Definitions Block Definitions:
This section is optional

<Block number>: <start row> <start col> <end row> <end col>

Summary: Summary:
This section is automatically —===—====
generated by the UTG]_)

2.1)

2.2)
Optional Section Default Input:

This section can contain any
data. The data here is only an
example.

Continued on next page

Standard

6 15

page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date

3. Unit Test Script File (cont.)

Unit Tests

There will be from 1 to N unit
tests in a unit test script.

The test number reflects the
two different numbering
schemes (See Req. 7-9 on
page 12).

Footer
This must be the last section
in the unit test script.

Test [X | X.Y])

Summary:
<Test summary> - This will appear in the summary section.
Blocks: 64,65
Input:
<input>
Expected Output:
<output>
Status:
<Pass or Fail>
Date:

Signature:

Standard

7 15

page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date

4. UTG Core Functionality

Functional
Requirements

Legacy Scripts

Req. 4-5

Req. 4-1

Req. 4-2

Req. 4-3
Req. 4-4

Req. 4-5

Req. 4-6

Req. 4-7

Req. 4-8

The UTG must make the unit testing phase easier, more consistent and
more robust.

The UTG must be able to generate a complete list of code blocks from all
valid C files.

Given a C file, the UTG must be able to create a unit test script template.

The UTG must be able to read in existing unit test scripts which were
previously generated by the UTG.

The UTG should also be able to read most unit test scripts which were not
created by the UTG.

Given a UT and C file, the UTG must be able to determine if a unit test
script is out of date with the corresponding C file.

If a UT file and C file are out of sync then the UTG must inform the user.
The user may choose to ignore this condition otherwise the user should
provide a means of synchronizing the unit test and source code.

A Graphical User Interface is required to control the UTG.

Since a large number of unit test scripts already exist, the UTG must be able to read in
these scripts as well. These were written in a wide variety of formats and with different
levels of quality, so the UTG will not have to be able to read in all existing UTs. The UT
reader can key off of the file format provided (See “Unit Test Script File” on page 5.).

If an existing UT script cannot be parsed by the UTG then the user must be notified so
that the file can be reformatted. The user should be told which line(s) was affected as
well as the section it was trying to read it as.

Standard

8 15

page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date

5. Source Code Requirements

Source Code
Requirements

Preprocessor
Req. 5-1

Req. 5-1

Req. 5-2
Req. 5-3

Req. 5-4

Req. 5-5

Use of CPP to include header files, perform macro substitution and
evaluate pre-processor conditionals is not required.

The UTG must be able to parse both K&R C and ANSI C files.

If the UTG is unable to create a code block list due to compile errors, the
error must be returned to the user.

The user must be able to edit a unit test script if the corresponding C file is
not currently loaded or if it contains errors.

The UTG must generate statistics on code block usage inside a unit test
script. Total block usage and individual block usage statistics must be
kept.

While it would be more correct to compile the code with CPP, this will not be required.
It should be possible for the UTG to generate a code block list without the
pre-processor. In the minority of cases where CPP is required to generate the code
block list, an error may generated and displayed to the user.

Standard

9 15
page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date
5. Source Code Requirements (cont.)
Code Block When the user is finished creating or editing a unit test script, it should be possible to
Statistics generate a code block usage report. This report will show the percentage of total

blocks used in the UT script as well as number of times each block is used in the
script. For instance, assume that there are 10 total code blocks. Block 1 is used 1
time, block 2 is used 2 times, block 3 and 4 are never used, and blocks 5 -10 are used
a total of 4 times. The report may look something like:

Table 5-1 Code Block Usage Report

Block Number Usage

1 1
2 2
3 0
4 0
S 4
6 4
7 4
8 4
9 4
10 4

Blook Usage: | %%

The above table layout is not necessarily the layout which should be used. The report
is required to have the following information: the source code filename and path, the
unit test filename and path, the current time and date and a table similar to the one
listed above. The user should have the ability to save this report to a file.

Standard

10 15
page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date

6. Graphical User Interface

GUI Functionality

Code Block Widget
Reg. 6-5

Req. 6-1 A graphical user interface must be provided with the UTG.
Req. 6-2 The graphical user interface must provide the following functionality:

* Open an existing unit test or C file.
» Generate a New unit test script
» Save a unit test script under the current filename if one exists. If there is
not currently a filename, the GUI must prompt the user for a name.
» Save the current file as a different file.
* Quit the UTG
Req. 6-3 The GUI must provide a text widget to display the entire contents of C file.

Req. 6-4 The GUI must provide a text widget to display the entire contents of a UT
file.

Req. 6-5 A Code Block Widget must be provided to display the contents of a C file
by code block.

Req. 6-6 A Unit Test Widget must be provided to display the contents of a UT file by
unit test.

Req. 6-7 The GUI must also provide the user with the standard text editing
capabilities: cut, copy, paste.

The code block widget will only display a list of code block definitions. Each code block
should be displayed on its own line and take the form:

B <block num>; (<start row> <start col>), (<end row> <end col>)

If the user clicks on a block definition in this widget and a C text widget is active the
text widget should warp to the beginning of the block definition. The first line of the
code block should be centered in the widget.

Continued on next page

Standard

11 15
page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date
6. Graphical User Interface (cont.)
Unit Test Widget The unit test widget will only display the number and title of each unit test found in a

Reg. 6-6 unit test script. Each unit test should be displayed on its own line and take the form:

UT <UT num>: Unit Test Tltle

If the user clicks on a unit test in this widget and a UT text widget is active, the text
widget should warp to the beginning of the unit test. The first line of the test should be
centered in the widget.

Text Editing In addition to the test editing features (See section 7. “Editing Requirements”.)
Req. 6-7 provided by the UTG, it must also provide an easy means of performing the standard
text editing commands, cut, copy and paste.

Standard

12 15
page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date

7. Editing Requirements

Editing

Test Level Editing

Req.
Req.
Req.
Req.
Req.
Req.
Obj.

7-1
7-2
7-3
7-4
7-5
7-6
7-7

Req. 7-1 The UTG shall provide the ability to insert a new test into an existing test
script.

Req. 7-2 The UTG shall support the ability to delete a test from an existing test
script.

Req. 7-3 The ability to copy a test shall be supported.
Req. 7-4 The ability to cut a test from a script shall be allowed.

Req. 7-5 The UTG shall provide the mechanism to paste a test which was either
cut or copied into an existing script.

Req. 7-6 The UTG shall provide the ability to undo one high level editing operation.
Obj. 7-7 The UTG should be able to undo up to 10 high level editing operations.
Req. 7-8 The UTG is responsible for numbering all tests.

Req. 7-9 Two levels of numbering are supported by the UTG.

Req. 7-10 The numbering scheme of a test can be changed by the user at any time.

Req. 7-11 The Summary section of a unit test script is automatically generated by
the UTG.

Req. 7-12 Three default I/O modes are supported by the UTG. Auto update mode,
manual update mode and no update mode.

The UTG will supply several high level editing features so that users are able to create
and edit unit tests with greater ease. When the user decides to inset a new test, a unit
test template should be inserted where at the current cursor position. This means that
a new test can be inserted between two existing tests, at the beginning of a script or at
the end of a script. In addition to being able to insert a new test, the user should be
able to delete an existing test.

If the user decides to either cut or copy a test from a script then that test should be
copied into the clipboard. Copying a test is a non-destructive operation. Cutting a test
from a script copies it to the clipboard and then deletes it.

The user may also paste a test into a script. This operation should behave the same
as the insert operation with the exception that the test is taken from the clipboard.

Continued on next page

Standard

13 15
page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date

7. Editing Requirements (cont.)

Test Numbering
Req. 7-8
Req. 7-9
Req. 7-10

Test Summary
Req. 7-11

Default 1/0 Modes
Req. 7-12

The UTG supports two numbering schemes. The first one sets the test numbers as 1,
2, 3, etc.... The second numbering scheme sets the test numberas 1.1, 1.2, 1.3, etc....
The numbering scheme is determined on a per test basis. In other words the user can
have a numbering scheme such as: 1, 2, 3.1, 3.2, 4, 5. It is not valid to have the test
numbers 5, 5.1, 5.2. The numbering schemes cannot be mixed in this manor. The test
numbers will be 5, 6.1, 6.2 in this case. The default mode is 1, 2, 3,...

The user must be able to change the numbering scheme at any time.

The UTG is entirely responsible for numbering tests. Any time that the user does
something to alter the test numbering such as insert, delete or change the numbering
scheme of a test, the UTG must renumber all of the tests so that they maintain a
sequential order.

The Summary section of the unit test script must be entirely created by the UTG. This
section should be dynamically updated as the user is creating the script so that the
summary reflects the current state of the script. It is only necessary to update the
summary when the user finishes adding or changing the title. Not every time a new
character is typed.

When looking at a unit test script, one may notice that the Inputs and Outputs section
of a unit test does not change very much between tests. When creating a new test it is
often useful to have the Input and Output values default to those of the previous test.
The UTG shall have 3 modes to support this feature. They are 1) Auto Update, 2)
Manual Update and 3) Disable.

In auto update mode, the default 1/O values will change with every test. This means
that when | start test 2, the 1/O from test 1 are given to me. When | start test 3, the
values from test 2 are given to me. When | start test 4 | get test 3's I/O and so on...

In manual update mode, only update the defaults when the user clicks on this option.
For example, | create test 1 and next test 2. There are no default I/O from test 1
because | didn't click on update defaults. Now I click to update defaults so when |
write test 3 | get the defaults from test 2. When | write test 4, | get the defaults from
test 2 and so on.

Mode 3 disables this feature. In this case there will not be any default /0 values.

Standard

14 15
page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date
8. Merging
Requirements Req. 8-1 The UTG must be able to determine when the source code for a unit test
script is out of date with the UT script.
Obj. 8-2 The UTG should inform the user if (and what) tests need to be modified,
added or deleted.
Synchronization These requirements only deal with scenarios where the code block list from the unit

Req.8-1 test script and the source code file itself are available. If either of these things are not
Obj.8-2 agvailable then no merging needs to be done.

If the source file and code block list are available then the UTG must check to see if
the UT and source file are synchronized. If they are not then the user must be notified.
The user may choose to ignore this and continue editing the unit test script.

The UTG may provide the added intelligence of determining which code blocks have
been changed, added or deleted from the source code since the UT was originally
created. The user should be prompted with this information and provided with a
means of updating the UT.

Standard

15 15
page of
Unit Test Generator (UTG) Requirements B 1/13/2000
Subject File Code Rev. Effective Date

9. Environmental and Other Requirements

Miscellaneous

Languages

Req. 9-1 The UTG must be compileable and executable on Solaris Version 2.6.

Req. 9-2 The UTG must be written in languages which are freely available at
Tellabs.

The UTG may be developed using any freely available tools and languages which are
currently installed and supported at Tellabs (or can be installed relatively painlessly).
While almost any language may be used, C and Perl 5 are recommended as these
are already widely supported.

	1. Introduction
	Introduction
	Purpose
	Scope
	Field of Application
	Revision History
	Revision
	Date
	Revision Description

	Definitions
	Term
	Definition

	Acronyms and Abbreviations
	Term
	Definition

	Requirements Overview

	2. The Unit Test Generator
	Introduction
	Unit Test Plan
	Code Block

	3. Unit Test Script File
	File Format
	File Header This section is always the beginning of the file
	Block Definitions This section is optional
	Summary: This section is automatically generated by the UTG
	Optional Section This section can contain any data. The data here is only an example.

	3. Unit Test Script File (cont.)
	Unit Tests There will be from 1 to N unit tests in a unit test script. The test number reflects t...
	Footer This must be the last section in the unit test script.
	4. UTG Core Functionality
	Functional Requirements
	Req. 4-1 The UTG must make the unit testing phase easier, more consistent and more robust.
	Req. 4-2 The UTG must be able to generate a complete list of code blocks from all valid C files.
	Req. 4-3 Given a C file, the UTG must be able to create a unit test script template.
	Req. 4-4 The UTG must be able to read in existing unit test scripts which were previously generat...
	Req. 4-5 The UTG should also be able to read most unit test scripts which were not created by the...
	Req. 4-6 Given a UT and C file, the UTG must be able to determine if a unit test script is out of...
	Req. 4-7 If a UT file and C file are out of sync then the UTG must inform the user. The user may ...
	Req. 4-8 A Graphical User Interface is required to control the UTG.

	Legacy Scripts Req. 4-5

	5. Source Code Requirements
	Source Code Requirements
	Req. 5-1 Use of CPP to include header files, perform macro substitution and evaluate pre-processo...
	Req. 5-2 The UTG must be able to parse both K&R C and ANSI C files.
	Req. 5-3 If the UTG is unable to create a code block list due to compile errors, the error must b...
	Req. 5-4 The user must be able to edit a unit test script if the corresponding C file is not curr...
	Req. 5-5 The UTG must generate statistics on code block usage inside a unit test script. Total bl...

	Preprocessor Req. 5-1

	5. Source Code Requirements (cont.)
	Code Block Statistics
	Table 5-1 Code Block Usage Report

	6. Graphical User Interface
	GUI Functionality
	Req. 6-1 A graphical user interface must be provided with the UTG.
	Req. 6-2 The graphical user interface must provide the following functionality:
	Req. 6-3 The GUI must provide a text widget to display the entire contents of C file.
	Req. 6-4 The GUI must provide a text widget to display the entire contents of a UT file.
	Req. 6-5 A Code Block Widget must be provided to display the contents of a C file by code block.
	Req. 6-6 A Unit Test Widget must be provided to display the contents of a UT file by unit test.
	Req. 6-7 The GUI must also provide the user with the standard text editing capabilities: cut, cop...

	Code Block Widget Req. 6-5

	6. Graphical User Interface (cont.)
	Unit Test Widget Req. 6-6
	Text Editing Req. 6-7
	7. Editing Requirements
	Editing
	Req. 7-1 The UTG shall provide the ability to insert a new test into an existing test script.
	Req. 7-2 The UTG shall support the ability to delete a test from an existing test script.
	Req. 7-3 The ability to copy a test shall be supported.
	Req. 7-4 The ability to cut a test from a script shall be allowed.
	Req. 7-5 The UTG shall provide the mechanism to paste a test which was either cut or copied into ...
	Req. 7-6 The UTG shall provide the ability to undo one high level editing operation.
	Obj. 7-7 The UTG should be able to undo up to 10 high level editing operations.
	Req. 7-8 The UTG is responsible for numbering all tests.
	Req. 7-9 Two levels of numbering are supported by the UTG.
	Req. 7-10 The numbering scheme of a test can be changed by the user at any time.
	Req. 7-11 The Summary section of a unit test script is automatically generated by the UTG.
	Req. 7-12 Three default I/O modes are supported by the UTG. Auto update mode, manual update mode ...

	Test Level Editing Req. 7-1 Req. 7-2 Req. 7-3 Req. 7-4 Req. 7-5 Req. 7-6 Obj. 7-7

	7. Editing Requirements (cont.)
	Test Numbering Req. 7-8 Req. 7-9 Req. 7-10
	Test Summary Req. 7-11
	Default I/O Modes Req. 7-12
	8. Merging
	Requirements
	Req. 8-1 The UTG must be able to determine when the source code for a unit test script is out of ...
	Obj. 8-2 The UTG should inform the user if (and what) tests need to be modified, added or deleted.

	Synchronization Req. 8-1 Obj. 8-2

	9. Environmental and Other Requirements
	Miscellaneous
	Req. 9-1 The UTG must be compileable and executable on Solaris Version 2.6.
	Req. 9-2 The UTG must be written in languages which are freely available at Tellabs.

	Languages

