

Boeing/Purdue Class Project

CS 406/407

Fall 2000

Boeing Sponsored Class Project With

Computer Science Department of

Purdue University

CS406/407

2000/2001 Class Project

Contact:

Robert A. Byrne, Jr.

Department Manager, Avionics Software Engineering

Military Aircraft & Missile Systems

The Boeing Company

PO Box 516, Mailcode S106-3100

St. Louis, MO 63166-0516

314-234-8734

robert.a.byrne-jr@boeing.com
31
Project Overview

2
Functionality Overview
4
3
State Parsing
4
3.1
Scenarios
4
3.2
Requirements
4
4
Developer Configuration Inputs
5
4.1
Overview
5
4.2
Specification of Configuration Parameters
5
4.2.1
Scenarios
5
4.2.2
Requirements
6
4.3
Specification of Default Values and Property Sets
6
4.3.1
Scenarios
6
4.3.2
Requirements
6
4.4
Specification of Data Service Configurations
7
4.4.1
Scenarios
7
4.4.2
Requirements
7
5
Report Generation
8
5.1
Scenarios
8
5.2
Requirements
8
6
Additional Requirements
8
6.1
Operational Environment
8
7
Definitions
9

1 Project Overview

The Phantom Works division of The Boeing Company is the research and development arm of the corporation and is tasked with strengthening the Boeing core competencies through the development and transition of innovative technologies, tools, processes, and products. The Bold Stroke Program within Phantom Works is tasked with developing faster/better/cheaper avionic systems and, especially, the software that is embedded in those systems (known as Operational Flight Programs or OFPs). In order to support the new Object-Oriented/C++/multi-processor architecture being developed by the Bold Stroke Team, additional tools will be required to improve the productivity of the avionics software develop process.

Boeing has developed a component-based software architecture and supporting library of reusable components. This component-based approach to building OFPs enables Boeing to leverage product line concepts to reduce costs through reuse, among other benefits. Facilitating reuse requires library component developers to produce software that is independent of any particular product’s hardware or software configuration and to provide tailoring features that allow product developers to adapt the component to a specific hardware/software configuration.

In support of this design paradigm, Boeing would like to develop a tool to automate selected product developer tasks associated with producing the product specific variants of library components. In particular, development of a component’s Replication, Persistence, and Logging features are viewed as especially amenable to efficiency improvements through tool support. Replication refers to the distribution of data from supplier components within one processor to other processes and processors housing consumer components. Persistence refers to the distribution of data from components to non-volatile memory so that a component’s state can be recreated in the event of a power cycle. Logging refers to the distribution of data from components to a tape or other streaming device that records historical values for key variables to facilitate subsequent analysis of system operation. These three aspects of component development are referred to as “Component Data Services” and were chosen because they share common policy and data selections within each component. Figure 1 shows a notional representation of the tool.

[image: image1.wmf]DSCT

state

functions

Comp

Class

A

Comp

Class

B

Comp

Class

C

Developer

Configuration

Inputs

Operator

Policies

and

Selections

Product

Specific

Component - Service

Interfaces

Identify files

Comp A

Comp B

Comp C

logging

persistance

replication

New

Modified

Instantiated

Component

Definitions

State Parsing

Report

Generation

Replication

Logging

Persistence

Comp A1

Comp B1

Comp C1

Data Services

Code

Generation

Figure 1: Notional Component Data Configuration Tool
2 Functionality Overview

There are several distinct elements of the tool’s functionality:

1. State Parsing

2. Developer Configuration Inputs

3. Code Generation

Each of these elements is further described in subsequent sections.

3 State Parsing

State Parsing represents parsing component header files to determine the set of data members associated with the component. Since components are composed from multiple lower level objects, there are possibly numerous files that are inputs to this process. The State Parsing portion of the tool parses input C++ code files and generates output files containing definitions of the data members associated with each component that are used by subsequent portions of the tool.

3.1 Scenarios

The user invokes the tool and configures the tool to locate the proper source files. The user then invokes the tool’s parsing mechanism. The tool parses the source files, resolves dependencies and nested relationships.

3.2 Requirements

· The tool shall identify all data members of the components under consideration.

· The tool shall identify (based on user input) the components under consideration.

· The tool shall provide the user with an interface to identify the source files under consideration.
· The parser shall identify and resolve dependencies and relationships.
· The data collected by the parser shall be persisted in a data file.
· The tool shall provide the user a method to establish a policy for groups of dynamically created objects (by group).
· The tool shall detect and resolve nested objects it shall provide the user with options to configure nested objects of varying depth.
· The tool shall present the user with options to establish a policy for classes of nested objects (e.g. rules apply to all ground navigation points of all aircraft routes).
· The tool shall allow developers to specify policies within special comment blocks. (e.g. //persist all <class name> or possibly //persist all <data_member_name>). Specifics of these comment blocks will be provided at a later date.
4 Developer Configuration Inputs
The Developer Configuration Inputs Function of the DSCT enables the user to create a configuration description for a specific application’s Data Services. The user is required to initiate this function before Report Generation.
4.1 Overview

The types of configuration activities associated with each Data Service are the same. The configuration specification activities currently identified are:

· Specification of configuration parameters

· Specification of default values and Property Sets (defined below)

· Application of defaults and Property Sets to components and specification of configuration parameter values

Each Data Service has one or more component attributes. Some attributes must be configured prior to subsequent report generation. Others are optional. In some cases, attributes are either optional or required depending on a specification for another attribute.

Attribute categories will be represented within the DCST such that a user can select attributes for configuration per component. Attributes available for edit should be displayed for the user. Configured attributes categories should be distinguishable from unconfigured categories. User entries should be saved and available for future edit.

4.2 Specification of Configuration Parameters

Configuration Parameter Specification is the process by which a user defines the set of configuration parameters for a Data Service. For each Data Service, there are two categories of configuration parameters constant and variable. “Constant configurable items” refer to configuration variables that are applicable to all components for a particular Data Service. “Variable configurable items” refer to configuration variables that are different for different components. The principal category of variable items is the list of data members resulting from State Parsing. The set of data members associated with each component is potentially unique.

As an example, constant configurable items for the Persistence Service include:

· Whether or not persistence is enabled for the component

· The following parameters apply only if persistence is enabled:

· Region ID: int

· is Classified: Y/N

· is Double Buffered: Y/N

· default Save Method: USE_DEFAULT, COPY_NOW_STORE_NOW_AND_WAIT, COPY_NOW_STORE_NOW, COPY_NOW_STORE_LATER, COPY_NOW_STORE_NOW_FILTER

· filter Time: float in microseconds

· save Rate ID: noRateID, storeLaterRateID
4.2.1 Scenarios

Either within the tool, or in a separate text file, the user provides a specification of the constant configuration parameters for each Data Service. Variable configuration items are specified via output from State Parsing.

4.2.2 Requirements

· The DSCT shall provide the user with the ability to specify the constant configuration parameters for each Data Service. The tool may either provide a specific user interface to facilitate this process, or rely on a specification being provided via an externally created XML based text file input.

· The DSCT shall provide the user with the ability to specify the variable configuration parameters for each Data Service using output from the State Parsing activity.

· The DSCT shall support hierarchical configuration items. For constant configuration parameters hierarchy shall be supported in the sense that some parameters are conditionally applicable based on the selections of the other parameters (e.g. the save mode is applicable only if persistence is enabled). For variable configuration parameters hierarchy shall be supported in the sense that the data members within an object may themselves be objects that contain other data members.
· The DSCT shall support the following types of configuration parameters:
· Integers

· Floating point values

· Booleans

· Enumerations, with the ability to specify enumeration values

4.3 Specification of Default Values and Property Sets

A Property Set is a specification of configuration values for a particular Data Service that is specified separately from any particular component instantiation. A Property Set represents a “template” which can be applied to numerous components and provide a number of user-definable “default” value sets. Default values and Property Sets provide an expedited method for users to apply commonly used sets of configuration parameters to components. In addition to speeding configuration specifications, they also facilitate maintainability by encapsulating configuration parameter sets in localized specifications and reusing them within individual components. The standard “default” values may be viewed as an initial Property Set: the Property Set which is applied to all components until another Property Set is explicitly specified.
4.3.1 Scenarios

Either within the tool, or in a separate text file, the user provides a specification of the default configuration parameters for each Data Service. A single default value applies for the variable configuration parameters for each Data Service: whether or not data members are automatically included in the selected set of data members.

4.3.2 Requirements

· The DSCT shall provide the user with the ability to specify the default constant configuration parameters for each Data Service. The tool may either provide a specific user interface to facilitate this process, or rely on a specification being provided via an externally created XML based text file input.

· For variable configuration parameters, the DSCT shall support specification of a single configuration parameter default for each Data Service that indicates whether or not data members are included by default.

· The DSCT shall support multiple user-definable Property Sets. Each Property Set contains a default specification for every configuration parameter. As for the standard default settings, the tool may either provide a specific user interface to facilitate this process, or rely on a specification being provided via an externally created XML based text file input. The user shall be allowed to create new Property Sets based on existing ones, edit them and save them.

· The DSCT shall allow users to define default or Property Sets which provide specified default values for only a subset of the complete set of configuration parameters.

· The DSCT shall store defaults and Property Sets separately from other files to allow them to be used for multiple applications.

4.4 Specification of Data Service Configurations

The core use of the DSCT is supporting the specification of Data Service configurations. This step leverages the results of earlier Data Service Configuration activities and the State Parsing activity to provide the user with the capability of specific Data Service parameters for all of the components in an application. As a final input, this activity takes a specification of the component instantiations for each component within each process on each processor. This is combined with State Parsing information that indicates the data associated with each component class to provide a display of the data associated with each instantiated component. Each collection of the configuration parameters for an application represents a model of the Data Services for a particular application.

The component instantiation information provides a listing of all of the instantiated components in a system and information regarding their deployment to hardware, and the classes from which they are instantiated. It starts with a definition of the processors in a system (e.g. CPU1, CPU2, and CPU3) and the processes associated with each processor (e.g. CPU1_P1, CPU1_P2). Finally the component instantiations associated with each process are specified, along with the class for the component façade to allow association with output of State Parsing. Component instantiations are designed in another tool, such as the 1999-2000 Purdue Operational Flight Program Builder Tool (OBT). For DSCT purposes, the specific XML file format providing this input can be chosen however desired.

4.4.1 Scenarios

Using the outputs of State Parsing, Specification of Configuration Parameters, Specification of Default Values and Property Sets, and a specification of instantiated components, the tool provides a user interface to create configuration parameter specifications for new applications. After creating or opening a configuration parameter specification, the user is provided with a means of displaying the current configuration parameter values for all components. Based on this display, the user may modify or edit the parameter values. The user may apply Property Sets to components for any Data Service, or may revert values to default values. At any point the user may save the state of the current model.
4.4.2 Requirements

· The DSCT shall allow the user to create, open, edit, and save Data Service models.

· The DSCT shall display the current values of all configuration parameters for each Data Service to the user.

· The standard default set of configuration parameters shall be associated with newly created component instantiations.

· The DSCT shall allow users to associate a single Property Set or standard default set of configuration values with a component for each Data Service.

· The DSCT shall allow users to overwrite any default or Property Set configuration parameter values for specific component instantiations. If the standard default or Property Set is changed for a component, only the values that were previously specified via a default or Property Set shall be affected. All values that were previously overwritten shall remain overwritten with the new Property Set or default.

· The DSCT shall indicate visually which parameters are currently specified via defaults values or Property Sets, and which have been specifically set for a particular component instance.

· For any configuration parameters which do not have a specified default or associated Property Set value, the DSCT shall require the user to specify values within the tool and should indicate those components that have not been fully configured. The DSCT shall provide a means to determine if there are any outstanding items which have not been configured.

· The DSCT shall provide appropriate user interface constructs (e.g. drop down menus for enumeration types) and checks to minimize incorrect data entry by users.

5 Report Generation

To make Data Service usage as easy and rapid as possible for developers, it is desired to automatically generate as much of the associated source code implementations as possible. There are multiple different source code formats that might be designed for this purpose. For this reason, the actual code generation is planned to be performed by a separate script or tool based on output from the DSCT. Thus the output of the DSCT is one or more “reports”, or output files, that contain the requested Data Service configuration parameter values.

5.1 Scenarios

Based on a currently opened Data Service model, a user requests that a report be created that contains the configuration parameter values for any or all Data Services.

5.2 Requirements

· The DSCT shall allow the user to create a report of configuration parameters for the currently open Data Service model. The DSCT shall create separate XML files for each requested Data Service report. The report shall contain all of the information in the model associated with the configuration parameter values for each component instantiation, including constant and variable configuration parameters.

6 Additional Requirements

6.1 Operational Environment

· The tool shall operate on a Windows NT based workstation.

· All output files shall be in XML format. In addition, input files that are specified as part of DSCT development (e.g. default and Property Set files) shall also be in XML format.
7 Definitions

Avionics – Refers to the airborne computers used for navigation, flight control and weapons management.

Configurator – Performs the function of creating the entire running application by creating each component and providing initialization information to each created component. Much of the current configurator is hand coded.

Data Services – Services associated with component data flow: specifically persistence, logging, and replication.

Logging – The distribution of data from components to a tape or other streaming device that records historical values for key variables to facilitate subsequent analysis of system operation.

OFP - The software that is embedded in avionic systems (known as Operational Flight Programs or OFPs).

Persistence – The distribution of data from components to non-volatile memory so that a component’s state can be recreated in the event of a power cycle.

Process – An abstraction consisting of multiple interconnected components that share an address space and common build files.

Replication – The distribution of data from supplier components to processes and processors housing consumer components.

2
Copyright unpublished 1999 by The Boeing Company. All rights reserved.

