- Distributed Autonomous Online Learning: Regrets and Intrinsic
Privacy-Preserving Properties,
F. Yan, S. Sundaram, S. V. N. Vishwanathan, and Y. Qi,
IEEE Transactions on Knowledge and Data Engineering, DOI:10.1109/TKDE.2012.59, 2012. [pdf]
|
- Self-adjusting Models for Semi-supervised Learning in Partially-observed Settings,
F. Akova, B. Rajwa, Y. Qi, and M. Dundar,
IEEE International Conference on Data Mining, 2012.
|
- Using Probabilistic Generative Models For Ranking Risks of
Android Apps,
H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru and I. Molloy,
ACM Conference on Computer and Communications Security, Oct., 2012.
[pdf]
|
- Minimizing Private Data Disclosures in the Smart Grid,
W. Yang, N. Li, Y. Qi, W. Qardaji, S. McLaughlin and P. McDaniel,
ACM Conference on Computer and Communications Security, Oct., 2012.[pdf]
|
- Enriching Amnestic MCI Populations for Clinical Trials: Optimal
Combination of Biomarkers to Predict Conversion to Dementia,
P. Yu, R.A. Dean, S.D. Hall, Y. Qi, G. Sethuraman, B.A. Willis, E.R. Siemers, F. Martenyi, J.T. Tauscher, A. J. Schwarz, the Alzheimer’s Disease Neuroimaging
Initiative, Volume 32, Number 2, Journal of Alzheimer's Disease, 2012
|
- Infinite Tucker decomposition: nonparametric Bayesian models for multiway data analysis,
Z. Xu, F. Yan, Y. Qi, in
Proceedings of International Conference on Machine Learning, 2012. [pdf]
|
- Bayesian nonexhaustive learning for online discovery and modeling of emerging classes,
M. Dundar, F Akova, Y. Qi, B. Rajwa, In Proceedings of International Conference on Machine Learning, 2012. [pdf]
|
-
Message passing with relaxed moment matching ,
Y. Qi and Y. Guo, arXiv:1204.4166v1 [cs.LG], 2012 [pdf]
|
- EigenGP: Gaussian processes with sparse data-dependent eigenfunctions, ,
Y. Qi, B. Dai, and Y. Zhu, arXiv:1204.3972v1 [cs.LG], 2012. [pdf]
|
-
Infinite Tucker decomposition: nonparametric
Bayesian models for multiway data analysis,
Z. Xu, F. Yan, Y. Qi, arXiv:1108.6296v2 [cs.LG] 2012. [pdf]
|
-
EigenNet: A Bayesian hybrid of generative and conditional models for
sparse learning, Y. Qi, F. Yan, in Advances in
Neural Information Processing Systems, MIT Press, Cambridge, MA, 2011.
[pdf]
|
- t-divergence based approximate inference, N. Ding, S V N Vishwanathan, Y. Qi,
in Advances in Neural Information Processing Systems, MIT Press, Cambridge,
MA, 2011. [pdf]
|
- Sparse matrix-variate Gaussian process blockmodels for network modeling,
F. Yan, Z. Xu, and Y. Qi, In Proceedings of the 27th Conference on Uncertainty
in Artificial Intelligence, Barcelona, Spain, 2011.
[pdf]
|
- Sparse matrix-variate t process blockmodels,
Z. Xu, F. Yan, and Y. Qi,
in Proceedings of the 25th Conference on Artificial Intelligence
(AAAI-2011), San Francisco, CA, 2011.
(Previous version: CS TR 11-005, Purdue University.)
[pdf]
|
- Identifying neuroimaging and proteomic biomarkers for MCI and AD via the Elastic Net,
L. Shen, S. Kim, Y. Qi, M. Inlow, S. Swaminathan, K. Nho, J. Wan, S. Risacher, L. Shaw, J. Trojanowski, M. Weiner, A. Saykin, ADNI,
MBIA 2011: Lecture Notes in Computer Science (LNCS) 7012:27-34, Springer, Heidelberg, 2011.
[link]
|
- Distributed Autonomous
Online Learning: Regret and Intrinsic Privacy-Preserving Properties,
F. Yan, S. Sundaram, S. V. N. Vishwanathan, Y. Qi, [arxiv.org/abs/1006.4039].
|
- Sparse-posterior Gaussian
Processes for general likelihoods, Y. Qi, A. Abdel-Gawad, T.P.
Minka, In Proceedings of the 26th Conference on Uncertainty in
Artificial Intelligence, 2010.[pdf]
|
- Uncovering Transcriptional
Regulatory Networks by Sparse Bayesian Factor Model, Jia Meng,
Jianqiu Zhang, Yuan Qi, Yidong Chen and Yufei Huang, in
EURASIP Journal on Advances in Signal Processing, 2010.[link]
|
- Sparse Bayesian Learning
for Identifying Imaging Biomarkers in AD Prediction, L. Shen, Y.
Qi, S. Kim, K. Nho, J. Wan, S. L. Risacher, A.J. Saykin, and ADNI, in
Proceedings of the 13th International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI), China, September
2010.[pdf]
|
- Identification of
Rare Cell Populations in Comparative Flow Cytometry, A. Azad, J. Langguth, Y. Fang, Y.
Qi, and A. Pothen, 10th Workshop on Algorithms in Bioinformatics,
United Kingdom, September 2010.
|
- Sparse Gaussian process
regression via L_1 penalization, F. Yan, and Y. Qi, in
Proceedings of International Conference on Machine Learning, Israel,
June 2010 [pdf].
|
- Nonparametric Bayesian
Matrix Factorization by Power EP, N. Ding, Y. Qi, R.
Xiang, I. Molloy, N. Li, in Journal Machine Learning
Research, W &CP 9, vol. 9. (AI & STATS 2010) [pdf].
|
- Behavior Based Record
Linkage, M. Yakout, A.K. Elmagarmid, H. Elmeleegy, M. Ouzzani,
and Y. Qi, in PVLDB (Journal track), Vol. 3, 2010.
|
- Mining Roles with Noisy
Data, I. Molloy, N. Li, J. Lobo, Y. Qi, and
L. Dickens, Proceedings of the Fifteenth ACM Symposium on Access
Control Models and Technologies (SACMAT'10), June 2010.
|
- Variable sigma Gaussian
processes: An expectation propagation perspective, Y. Qi, A. H.
Abdel-Gawad, T. P. Minka, arXiv:0910.0668v1.
|
- Parallel Inference for
Latent Dirichlet Allocation onGraphics Processing Units, F.
Yan,
N.
Xu,
Y.
Qi,
Advances
in
Neural
Information
Processing
Systems,
2009 [pdf]
|
- Virtual Vector Machine for
Bayesian Online Classification, T.P. Minka, R. Xiang, and
Y. Qi, In Proceedings of the 25th Conference on Uncertainty in
Artificial Intelligence, 2009. [pdf]
|
- Parameter
Expanded Variational
Bayesian Methods,
Y. Qi and T.S. Jaakkola, in Advances in Neural Information
Processing Systems 19, MIT Press, Cambridge, MA, 2007. [pdf]
|
- Expectation Propagation
for Signal Detection in Flat-fading
Channels,
Y. Qi & T.P. Minka, in IEEE trans. on Wireless
Communications, vol. 6, no. 1, 348-355, 2007. [Preprint,
IEEE notice]
|
- Cortical Surface Shape
Analysis Based
on Spherical Wavelets, P.
Yu, P.E. Grant, Y. Qi, X. Han, F. Segonne, R.
Pienaar, E. Busa, J. Pacheco, N. Makris, R. L. Buckner, P.
Golland, and B. Fischl, IEEE Transaction on Medical
Imaging, 26(4):582-597, 2007. [html]
|
- High-resolution
Computational Models
of Genome Binding Events,
Y. Qi, A. Rolfe, K. D. MacIsaac, G. K. Gerber, D. Pokholok, J.
Zeitlinger, T. Danford, R. D. Dowell, E. Fraenkel, T. S. Jaakkola, R.
A. Young and D. K. Gifford, Nature Biotechnology, vol. 24, 963-970,
August,
2006. [link]
|
- Modularity and Dynamics of
Cellular
Networks, Y. Qi and H. Ge, PLoS
Computational Biology, vol. 2, no. 12, 1502-1510, December, 2006. [html
/ pdf]
|
- Semi-supervised Analysis
of Gene Expression Profiles for Lineage-specific Development in the
Caenorhabditis Elegans Embryo, Yuan
(Alan)
Qi, Patrycja E. Missiuro, Ashish Kapoor, Craig P. Hunter, Tommi S.
Jaakkola, David K. Gifford and Hui Ge, Bioinformatics, vol. 22,
no. 14, e417-e423, 2006. [Abstract,
pdf]
|
- Diagram Structure
Recognition by Bayesian Conditional Random Fields,
Y. Qi, M. Szummer, and T. P. Minka, in the
Proceedings of International
Conference
on
Computer
Vision
and
Pattern
Recognition,2005. [pdf/ps]
|