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Abstract

Two research efforts have been conducted to realize sliding-window queries in data stream

management systems, namely, query re-evaluation and incremental evaluation. In the query

re-evaluation method, two consecutive windows are processed independent from each other.

On the other hand, in the incremental evaluation method, the query answer for a window is

obtained incrementally from the answer of the preceding window. In this paper, we focus on

the incremental evaluation method. Two approaches have been adopted for the incremental

evaluation of sliding-window queries, namely, the input-triggered approach and the negative

tuples approach. In the input-triggered approach, only the newly inserted tuples flow in the

query pipeline and tuple expiration is based on the timestamps of the newly inserted tuples.

On the other hand, in the negative tuples approach, tuple expiration is separated from tuple

insertion where a tuple flows in the pipeline for every inserted or expired tuple. The negative

tuples approach avoids the unpredictable output delays that result from the input-triggered

approach. However, negative tuples double the number of tuples through the query pipeline,

thus reducing the pipeline bandwidth. Based on a detailed study of the incremental evaluation

pipeline, we classify the incremental query operators into two classes according to whether an

operator can avoid the processing of negative tuples or not. Based on this classification,

we present several optimization techniques over the negative tuples approach that aim to

reduce the overhead of processing negative tuples while avoiding the output delay of the

query answer. A detailed experimental study, based on a prototype system implementation,

shows the performance gains over the input-triggered approach of the negative tuples approach

when accompanied with the proposed optimizations.
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1 Introduction

The emergence of data streaming applications calls for new query processing techniques to cope

with the high rate and the unbounded nature of data streams. The sliding-window query model is

introduced to process continuous queries in-memory. The main idea is to limit the focus of continu-

ous queries to only those data tuples that are inside the introduced window. As the window slides,

the query answer is updated to reflect both new tuples entering the window and old tuples expiring

from the window. Two research efforts have been conducted to support sliding-window queries in

data stream management systems, namely, query re-evaluation and incremental evaluation.

In the query re-evaluation method, the query is re-evaluated over each window independent from

all other windows. Basically, buffers are opened to collect tuples belonging to the various windows.

Once a window is completed (i.e., all the tuples in the window are received), the completed window

buffer is processed by the query pipeline to produce the complete window answer. An input tuple

may contribute to more than one window buffer at the same time. Examples of systems that

follow the query re-evaluation method include Aurora [1] and Borealis [2]. On the other hand, in

the incremental evaluation method, when the window slides, only the changes in the window are

processed by the query pipeline to produce the answer of the next window. As the window slides,

the changes in the window are represented by two sets of inserted and expired tuples. Incremental

operators are used in the pipeline to process both the inserted and expired tuples and to produce the

incremental changes to the query answer as another set of inserted and expired tuples. Examples

of systems that follow the incremental evaluation approach include STREAM [3] and Nile [20].

In this paper, we focus on the incremental evaluation method. Two approaches have been

adopted to support incremental evaluation of sliding-window queries, namely, the input-triggered

approach and the negative tuples approach. In the input-triggered approach (ITA for short), only

the newly inserted tuples flow in the query pipeline. Query operators (and the final query output)

rely on the timestamps of the inserted tuples to expire old tuples [5, 23]. However, as will be

discussed in Section 3.1, ITA may result in significant delays in the query answer. As an alternative,

the negative tuples approach (NTA for short) is introduced as a delay-based optimization framework
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that aims to reduce the output delay incurred by ITA [4, 21]. A negative tuple is an artificial tuple

that is generated for every expired tuple from the window. Expired tuples are generated by a special

operator, termed EXPIRE, placed at the bottom of the query pipeline (EXPIRE is a generalization

of the operators SEQ-WINDOW in [4] and W-EXPIRE in [21]). For each inserted tuple in the window

(i.e., positive tuple), say t, EXPIRE forwards t to the higher operator in the pipeline. EXPIRE emits a

corresponding negative tuple t− once t expires from the sliding window. As the expired tuple flows

through the query pipeline, it undoes the effect of its corresponding inserted tuple.

Although the basic idea of NTA is attractive, it may not be practical. The fact that a negative

tuple is introduced for every expired input tuple means doubling the number of tuples through the

query pipeline. In this case, the overhead of processing tuples through the various query operators is

doubled. This observation opens the room for optimization methods over the basic NTA. Various

optimizations would mainly focus on two issues: (1) Reducing the overhead of processing the

negative tuples. (2) Reducing the number of the negative tuples through the pipeline.

In this paper, we study the realization of the incremental evaluation approaches in terms of

the design of the incremental evaluation pipeline. Based on this study, we classify the incremental

relational operators into two classes according to whether an operator can avoid the processing

of expired tuples or not. Then, we introduce several optimization techniques over the negative

tuples approach that aim to reduce the overhead of processing negative tuples while avoiding the

output delay of the query answer. The first optimization, termed the time-message optimization,

is specific to the class of operators that can avoid the processing of negative tuples. In the time-

message optimization, when an operator receives a negative tuple, the operator does not perform

exact processing but just “passes” a time-message to upper operators in the pipeline. Whenever

possible, the time-message optimization reduces the overhead of processing negative tuples while

avoiding the output delay of the query answer.

Furthermore, we introduce the piggybacking approach as a general framework that aims to re-

duce the number of negative tuples in the pipeline. In the piggybacking approach, negative tuples

flow in the pipeline only when there is no concurrent positive tuple that can do the expiration.

Instead, if positive tuples flow in the query pipeline with high rates, then the positive tuples purge

the negative tuples from the pipeline and are piggybacked with the necessary information for expi-

ration. Alternating between negative and piggybacked positive tuples is triggered by discovering
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fluctuations in the input stream characteristics that is likely to take place in streaming environ-

ments. Basically, the piggybacking approach always achieves the minimum possible output delay

independent from the stream or query characteristics. In general, the contributions of this paper

can be summarized as follows:

1. We study, in detail, the realization of the incremental evaluation approach in terms of the

design of the incremental evaluation pipeline. Moreover, we compare the performance of

the two approaches, ITA and NTA, for various queries. This comparison helps identify the

appropriate situations to use each approach.

2. We give a classification of the incremental operators based on the behavior of the operator

when processing a negative tuple. This classification motivates the need for optimization

techniques over the basic NTA.

3. We introduce the time-message optimization technique that aims to avoid, whenever possible,

the processing of negative tuples while avoiding the output delay of the query answer.

4. We introduce the piggybacking technique that aims to reduce the number of negative tu-

ples in the query pipeline. The piggybacking technique allows the system to be stable with

fluctuations in input arrival rates and filter selectivity.

5. We provide an experimental study using a prototype data stream management system that

evaluates the performance of the ITA, NTA, time-message, and piggybacking techniques.

The rest of the paper is organized as follows: Section 2 gives the necessary background on

the pipelined query execution model in data stream management systems. Section 3 discusses

and compares ITA and NTA for the incremental evaluation of sliding-window queries. Detailed

realization of the various operators is given in Section 4. A classification for the incremental

operators along with the optimizations over the basic NTA are introduced in Section 5. Section 6

introduces the piggybacking technique. Experimental results are presented in Section 7. Section 8

highlights related work in data stream query processing. Finally, Section 9 concludes the paper.
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2 Preliminaries

In this section, we discuss the preliminaries for sliding-window query processing. First, we discuss

the semantics of sliding-window queries. Then, we discuss the pipelined execution model for the

incremental evaluation of sliding-window queries over data streams.

2.1 Sliding-window Query Semantics

A sliding-window query is a continuous query over n input data streams, S1 to Sn. Each input

data stream Sj is assigned a window of size wj. At any time instance T , the answer of the sliding-

window query equals to the answer of the snapshot query whose inputs are the elements in the

current window for each input stream. At time T, the current window for stream Si contains

the tuples arriving between times T − wi and T . The same notions of semantics for continuous

sliding-window queries are used in other systems (e.g., [24, 27]). In our discussion, we focus on

the time-based sliding window that is the most commonly used sliding window type. Input tuples

from the input streams, S1 to Sn, are timestamped upon the arrival to the system. The timestamp

of the input tuple represents the time at which the tuple arrives to the system. The window wi

associated with stream Si represents the lifetime of a tuple t from Si.

Handling timestamps: A tuple t carries two timestamps, t’s arrival time, ts, and t’s ex-

piration time, Ets. Operators in the query pipeline handle the timestamps of the input and

output tuples based on the operator’s semantics. For example, if a tuple t is generated from the

join of the two tuples t1(ts1, Ets1) and t2(ts2, Ets2), then t will have ts = max(ts1, ts2) and

Ets = min(Ets1, Ets2). In this paper, we use the CQL [4] construct RANGE to express the size

of the window in time units.

2.2 Data Stream Queuing Model

Data stream management systems use a pipelined queuing model for the incremental evaluation

of sliding-window queries [4]. All query operators are connected via first-in-first-out queues. An

operator, p, is scheduled once there is at least one input tuple in its input queue. Upon scheduling,

p processes its input and produces output results in p’s output queue. The stream SCAN (SSCAN)

operator acts as an interface between the streaming source and the query pipeline. SSCAN assigns
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to each input tuple two timestamps, ts which equals to the tuple arrival time, and Ets which equals

to ts + wi. Incoming tuples are processed in increasing order of their arrival timestamps.

Stream query pipelines use incremental query operators. Incremental query operators process

changes in the input as a set of inserted and expired tuples and produce the changes in the output

as a set of inserted and expired tuples. Algebra for the incremental relational operators has been

introduced in [18] in the context of incremental maintenance of materialized views (expiration

corresponds to deletions). In order to process the inserted and expired tuples, some query operators

(e.g., Join, Aggregates, and Distinct) are required to keep some state information to keep track of

all previous input tuples that have not expired yet.

3 Pipelined-execution of Sliding-window Queries

In this section, we discuss two approaches for the incremental evaluation of sliding-window queries,

namely ITA and NTA. As the window slides, the changes in the window include insertion of the

newly arrived tuples and expiration of old tuples. ITA and NTA are similar in processing the

inserted (or positive) tuples but differ in handling the expired (or negative) tuples. Basically, the

difference between the two approaches is in: (1) how an operator is notified about the expiration

of a tuple, (2) the actions taken by an operator to process the expired tuple, and (3) the output

produced by the operator in response to expiring a tuple. In this section, we discuss how each

approach handles the expiration of tuples along with the drawbacks of each approach.

3.1 The Input-triggered Approach (ITA)

The main idea in ITA is to communicate only positive tuples among the various operators in the

query pipeline. Operators in the pipeline (and the final query sink) use the timestamp of the

positive tuples to expire tuples from the state. Basically, tuple expiration in ITA is as follows:

(1) An operator learns about the expired tuples from the current time T that equals to the newest

positive tuple’s timestamp. (2) Processing an expired tuple is operator-dependent. For example,

the join operator just purges the expired tuples from the join state. On the other hand, most of the

operators (e.g., Distinct, Aggregates and Set-difference) process every expired tuple and produce

new output tuples. (3) An operator produces in the output only positive tuples resulted from
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processing the expired tuple (if any). The operator attaches the necessary time information in the

produced positive tuples so that upper operators in the pipeline perform the expiration accordingly.

A problem arises in ITA if the operator does not produce any positive tuples in the output

although the operator has received input positive tuples and has expired some tuples from the

operator’s state. In this case, the upper operators in the pipeline are not notified about the

correct time information, which results in a delay in updating the query answer. Note that upper

operators in the pipeline should not expire any tuples until the operator receives an input tuple

from the lower operator in the pipeline. Operators cannot voluntarily expire tuples based on a

global system’s clock. Voluntary expiration based on a global clock can generate incorrect results

because an expired tuple, t1, may co-exist in the window with another tuple, t2, but t2 may get

delayed at a lower operator in the pipeline. An example demonstrating this incorrect execution

when using a global clock is given in Appendix A.

The delay in the query answer is a result of not propagating the time information that is needed

to expire tuples. The delay is unpredictable and depends on the input stream characteristics. In a

streaming environment, a delay in updating the answer of a continuous query is not desirable and

may be interpreted by the user as an erroneous result. As it is hard to model the input stream

characteristics, the performance of the input-triggered approach is fluctuating.

Example: Consider the query Q1 “Continuously report the number of favorite items sold in the

last five time units”. Notice that even if the input is continuously arriving, the filtering condition,

favorite items, may filter out many of the incoming stream tuples. In this case, the join operator will

not produce many positive tuples. As a result, the upper operators in the pipeline (e.g., COUNT

in Q1) will not receive any notification about the current time and hence will not expire old tuples.

Figure 1 illustrates the behavior of ITA for Q1. The timelines S1 and S2 correspond to the input

stream and the output of JOIN, respectively. S3 and C represent the output stream when using

ITA and the correct output, respectively. The window w is equal to five time units. Up to time T4,

Q1 matches the correct output C with the result 4. At T5, the input “2” in S1 does not join with

any item in the table FavoriteItems. Thus, COUNT is not scheduled to update its result. S3 will

remain 4 although the correct output C should be 3 due to the expiration of the tuple that arrived

at time T0. Similarly, at T6, S3 is still 4 while C is 2 (the tuple arriving at time T1 has expired).

S3 keeps having an erroneous output till an input tuple passes the join and triggers the scheduling
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Figure 1: Input-triggered evaluation.

of COUNT to produce the correct output. This erroneous behavior motivates the idea of having a

new technique that triggers the query operators based on either tuple insertion or expiration.

3.2 The Negative Tuples Approach (NTA)

The main goal of NTA is to separate tuple expiration from the arrival of new tuples. The main idea

is to introduce a new type of tuples, namely negative tuples, to represent expired tuples [4, 21].

A special operator, EXPIRE, is added at the bottom of the query pipeline that emits a negative

tuple for every expired tuple. A negative tuple is responsible for undoing the effect of a previously

processed positive tuple. For example, in time-based sliding-window queries, a positive tuple t+

with timestamp T from stream Ij with window of length wj, will be followed by a negative tuple

t− at time T + wj. The negative tuple’s timestamp is set to T + wj. Upon receiving a negative

tuple t−, each operator in the pipeline behaves accordingly to delete the expired tuple from the

operator’s state and produce outputs to notify upper operators of the expiration.

3.2.1 Handling Delays Using Negative Tuples

Figure 2b gives the execution of NTA for the example in Figure 2a (the negative tuples implemen-

tation of the query in Figure 1a). At time T5, the tuple with value 4 expires and appears in S1 as a

negative tuple with value 4. The tuple 4− joins with the tuple 4 in the FavoriteItems table. At time

T5, COUNT receives the negative tuple 4−. Thus, COUNT outputs a new count of 3. Similarly at

time T6, COUNT receives the negative tuple 5− and the result is updated.

The previous example shows that NTA overcomes the output delay problem introduced by ITA
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because tuple expiration is independent from the query characteristics. Even if the query has highly

selective operators at the bottom of the pipeline, the pipeline still produces timely correct answers.

On the other hand, if the bottom operator in the query pipeline has low selectivity then almost all

the input tuples pass to the intermediate queues. In this case, NTA may present more delays due

to the increase of waiting times in queues.

3.3 Invalid Tuples

In ITA, expired tuples are not explicitly generated for every expired tuple from the window but

some tuples may expire before their Ets due to the semantics of some operators (e.g., set-difference)

as will be explained in Section 4. In the rest of the paper, we refer to tuples that expire out-of-order

as invalid tuples. Operators in ITA process invalid tuples in the same way as negative tuples are

processed by NTA and produce outputs so that other operators in the pipeline behave accordingly.

This means that even in ITA, some negative tuples may flow in the query pipeline.

4 Window Query Operators

Window query operators differ from traditional operators in that window operators need to process

the expired tuples as well as the inserted tuples. Two issues should be distinguished when discussing

window operators: operator semantics and operator implementation. Operator semantics defines

the changes in operator’s output when the input is changed (by inserting or deleting a tuple) while

operator implementation defines the way the operators in the pipeline are coordinated to achieve

the desired semantics. Operator semantics is independent from the approach (ITA or NTA) used for
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query evaluation. Incremental semantics for various relational operators is defined in the context of

incremental maintenance of materialized views [18]. On the other hand, operator implementation

depends on whether ITA or NTA is used for query evaluation. In this section, we discuss the

semantics and implementation issues for the various relational operators under ITA and NTA.

4.1 Incremental Evaluation

In this section, we use the incremental equations from [18] as a guide for discussing the semantics of

the various window operators. Two equations are given for every operator, one equation gives the

semantics when the input changes by inserting a tuple and the other equation gives the semantics

when the input changes by deleting a tuple. In stream operators, inputs are streams of inserted

and expired tuples. At any time point T , an input stream S can be seen as a relation that contains

the input tuples that have arrived before time T and have not expired yet. After time T , an

input positive tuple s+ indicates an insertion to S, represented as (S + s), and an expired tuple

s− indicates a deletion from S, represented as (S − s). In the following, we assume the duplicate-

preserving semantics of the operators. Tuples arriving to the system out-of-order can be stored in

buffers and can be ordered using heartbeats [25]. Ordering tuples is beyond the scope of this paper.

4.2 Window Select σp(S) and Window Project πA(S)

σp(S + s) = σp(S) + σp(s) σp(S − s) = σp(S) − σp(s)

πA(S + s) = πA(S) + πA(s) πA(S − s) = πA(S) − πA(s)

The incremental equations for Select and Project show that both positive and negative tuples

are processed in the same way. The only difference is that positive inputs result in positive outputs

and negative inputs result in negative outputs. The equations also show that processing an input

tuple does not require access to previous inputs, hence Select and Project are non-stateful operators.

An output tuple carries the same timestamp and expiration timestamp as the corresponding input

tuple. In ITA, Select and Project do not produce any outputs in response to an expired input tuple.

4.3 Window Join (S ./ R)

(S + s) ./ R = (S ./ R) + (s ./ R) (S − s) ./ R = (S ./ R) − (s ./ R)
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Join is symmetric which means that processing a tuple is done in the same way for both input

sides. The incremental equations for Join show that, like Select, Join processes positive and negative

tuples in the same way with the difference in the output sign. Unlike Select, Join is stateful since

it accesses previous inputs while processing the newly incoming tuples. The join state can be

expressed as two multi-sets, one for each input. An output tuple from Join carries the semantics

(windows) of two different streams. The timestamp of the output tuples is assigned as follows: the

timestamp, ts, equals the maximum value of the timestamps for all joined tuples. The expiration

timestamp, Ets, equals the minimum value of expiration timestamps for all joined tuples (output

of the join should expire whenever any of its composing tuples expires). In ITA, Join does not

produce any outputs in response to an expired input tuple.

4.4 Window Set Operations

We consider the duplicate-preserving semantics of the set operations as follows: if stream S has n

duplicates of tuple a and stream R has m duplicates of the same tuple a, the union stream (S ∪R)

has (n+m) duplicates of a, the intersection stream (S ∩R) has min(n, m) duplicates of a, and the

minus stream (S − R) has max(0, n − m) duplicates of a.

4.4.1 Window Union (S ∪ R)

(S + s) ∪ R = (S ∪ R) + s (S − s) ∪ R = (S ∪ R) − s

An input tuple to the union operator is produced in the output with the same sign. In ITA,

Union does not produce any outputs in response to an expired tuple. Union is non-stateful since

processing an input tuple does not require accessing previous inputs. An output tuple carries the

same timestamp and expiration timestamp as the input tuple.

4.4.2 Window Intersection(S ∩ R)

(S + s) ∩ R = (S ∩ R) + (s ∩ (R − S)) (S − s) ∩ R = (S ∩ R) − (s − (S − R))

The intersection operator is symmetric. When a tuple s is inserted into stream S, s is produced

in the output only if s has duplicates in the set “R− S” (“R− S” includes the tuples that exist in

R and does not exist in S). On the other hand, when a tuple s expires, s should expire from the
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output only if s has no duplicates in the set “S − R”.

When using ITA, Intersection needs to produce additional positive tuples in response to expiring

a tuple. Figure 3 gives an example to illustrate this case. Assume that S and R are the two input

streams and O is the output of Intersection. When the tuple “1” arrives in stream S at time T1,

a corresponding tuple “1” is produced in the output. At time T6, the tuple with value “5” arrives

to S and causes the expiration of the tuple “1”. When the tuple “5” is propagated to the output

stream, O, “5” causes the expiration of the tuple “1” from O as well. In this case, Intersection

should produce another positive tuple with value 1 in the output stream to replace the expired

tuple. A similar case happens in Distinct as will be described later.

4.4.3 Window Minus (S − R)

Case 1: (S + s)−R = (S −R) + (s− (R−S)) Case 3: S − (R + r) = (S −R)− (r ∩ (S −R))

Case 2: (S − s)−R = (S −R)− (s∩ (S −R)) Case 4: S − (R− r) = (S −R)+ (r− (R−S))

The minus operator is asymmetric, which means that processing an input tuple depends on

whether the tuple is from S or R. The four cases for the input tuples are handled as follows:

• Case 1: An input positive tuple, s+, from stream S is produced as a positive tuple in the

output stream only if s does not exist in the set “R − S”.

• Case 2: An input negative tuple, s−, from stream S is produced in the output stream as

a negative tuple only if s exists in the set “S − R”. In ITA, the Minus operator does not

produce any output in response to a tuple expiring from stream S.

• Case 3: An input positive tuple, r+, from stream R results in producing a negative tuple

s− for a previously produced positive tuple s+ when s is a duplicate for r and s exists in the
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set “S −R”. Note that the negative tuple s− is an invalid tuple and is produced when using

either ITA or NTA.

• Case 4: An input negative tuple, r−, from stream R results in producing a positive tuple s+

when s is a duplicate of r and s does not exist in the set “R − S”. The positive tuple s+ is

produced in both ITA and NTA.

Minus is stateful since processing a positive or negative input tuple requires accessing previous

inputs. In Cases 1 and 2, the output tuple carries the same timestamp as the input tuple. In

Cases 3 and 4, the input tuple is from stream R while output tuple s is from stream S and carries

timestamp from the stored s tuple.

4.5 Window Distinct ε

ε(S + s) = ε(S) + (s − S) ε(S − s) = ε(S) − (s − (S − s))

The semantics of the distinct operator states that an input positive tuple, s+, is produced in the

output only if s has no duplicates in S (i.e., s exists in the set “s − S”). An input negative tuple,

s−, is produced in the output only if s has no duplicates in the set “S − s”. The Distinct operator

is stateful. Similar to Intersection, when using ITA, Distinct may need to produce a positive tuple

in response to expiring a tuple.

4.6 Window Aggregates and Group-By

The group-by operator maps each input stream tuple to a group and produces one output tuple

for each non-empty group G. the output tuples have the form < G, V al > where G is the group

identifier and V al is the group’s aggregate value. The aggregate value V ali for group Gi is updated

whenever the set of Gi’s tuples changes, by inserting or expiring a tuple. Two tuples are produced

to update the value of the group: an invalid tuple to cancel the old value and a positive tuple to

report the new value. The behavior of Group-By is the same for both ITA and NTA and works

as follows. When receiving an input tuple, s+, or when a tuple expires, s−, Group-By maps s to

the corresponding group, Gs, and produces an invalid tuple, < Gs, oldV al >−, to invalidate the old

value of Gs, if Gs exists before, and another positive tuple, < Gs, newV al >+, for the new value of

Gs after aggregating s.
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Aggregate operator’s state: When using ITA, the aggregate operator stores all the input

tuples in the operator’s state. When using NTA, some aggregate operators (e.g., Sum and Count)

do not require storing the tuples. These aggregates are incremental, and when receiving a negative

tuple, the new aggregate value can be calculated without accessing the previous inputs. Other

aggregates (e.g., MAX) require storing the whole input independent from using ITA or NTA.

4.7 Result Interpretation

In ITA, the output of a sliding-window query is a stream of positive tuples. Two timestamps are

attached with each output tuple: a timestamp, ts, and an expiration timestamp, Ets. When a

tuple with ts equals to T is received in the output, all previously produced tuples with Ets less than

T should expire. The output of a sliding-window query should be stored in order to identify the

expired tuples. In NTA, the output of a sliding-window query is a stream of positive and negative

tuples. Each negative tuple cancels a previously produced positive tuple with the same attributes.

5 Negative Tuples Optimizations

Although the basic idea of NTA is attractive, it may not be practical. The fact that we introduce

a negative tuple for every expired tuple results in doubling the number of tuples through the query

pipeline. In this case, the overhead of processing tuples through the various query operators is

doubled. This observation gives rise to the need for optimization methods over the basic NTA. The

proposed optimizations focus mainly on two targets: (1) Reducing the overhead of processing the

negative tuples. (2) Reducing the number of negative tuples through the pipeline.

Based on the study of the window query operators in Section 4, we classify the query operators

into two classes according to whether an operator can avoid the complete processing of a negative

tuple or not. Based on this classification, we propose optimizations to reduce the overhead of

processing negative tuples whenever possible (target (1) above). In Section 6, we address optimiza-

tions to reduce the number of negative tuples in the pipeline (target (2) above). Before discussing

the proposed optimizations, it is important to distinguish between two types of negative tuples:

(1) expired tuples that are generated from the EXPIRE operator, and (2) invalid tuples that are

generated from internal operators (e.g., Minus). Invalid tuples are generated out-of-order and have
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to be fully processed by the various operators in the pipeline. The proposed optimizations aim to

reduce the overhead of expired tuples and hence are not applied to invalid tuples.

5.1 Operator Classification

Based on the study of window operators in Section 4, we classify the window operators into two

classes according to whether an operator can avoid the processing of negative tuples or not while

guaranteeing a limited output delay.

• Class 1: The first class of window operators includes the operators in which an expired tuple

repeats the output that was previously produced by the corresponding positive tuple. This

class includes the following operators: Select, Project, Union, and Join. The only difference

between the output in response to processing an expired tuple and the output in response

to processing the corresponding positive tuple is in the tuple’s sign. These operators can

avoid processing the expired tuples and just “pass” the necessary time information to upper

operators in the pipeline so that upper operators expire the corresponding tuples accordingly.

• Class 2: The second class of window operators includes the operators in which processing an

expired tuple is different from processing the corresponding positive tuple. Example operators

belonging to this class include: Intersection, Minus, Distinct, and Aggregates. Processing an

expired tuple in this class may result in producing output tuples (positive or negative) even

if the corresponding positive tuple did not produce any outputs. The operators in this class

must perform complete processing of every expired tuple. One interesting observation is that

most of the operators in this class are stateful operators, which means that the operator’s

state has a copy of every input tuple that has not expired yet. For such operators, it suffices

to notify the operator of the necessary time information and the operator reads the expired

tuples from the operator’s state.

5.2 The “Time-message” Optimization

The goal of the “time-message” optimization is to reduce the overhead of processing negative

tuples in Class-1 operators (especially Join) without affecting the output delay. Mainly, when a
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Class-1 operator receives a negative tuple (or a tuple expires from the operator’s state), instead

of processing the tuple, the operator performs the following: (1) Delete the corresponding tuple

from the operator’s state (if any), and (2) Set a special flag in this tuple indicating that this tuple

is a time-message and produce the tuple as output (an example demonstrating the time-message

approach is given later in Section 5.3). The time-message tuple can be regarded as a special kind

of heartbeat that is generated when a tuple expires.

One problem in the time-message optimization as described is that if an operator sends a time-

message for every expired tuple, then unnecessary messages may be sent even if their corresponding

positive tuples have not produced any outputs before. This happens when, for example, the join

filter is highly selective (i.e., when most of the input tuples do not produce join outputs). Filter-

ing operators (e.g., Select and Join) are the source for unnecessary time-messages. Avoiding the

unnecessary time-messages in the join operator is addressed in the next section (Section 5.2.1).

Avoiding the unnecessary time-messages in Select is achieved by merging the Select and EXPIRE

operators into one operator. Mainly, in our implementation, Project and Select are merged into

one operator. Moreover, Select is pushed down and is merged with the Expire operator. By

pushing the selection into the EXPIRE operator, we achieve the following: (1) Reducing the size of

the EXPIRE state since only tuples satisfying the selection predicate are stored, and (2) Producing

negative tuples only for tuples satisfying the selection predicate. This means that Select generates

exact negative tuples (and not just time-messages) without the overhead of re-applying the selection

predicate.

Union is not a filtering operator and hence Union is not a source of unnecessary time-messages.

Moreover, negative tuples do not encounter processing overhead in Union. These observations lead

us to the fact that Join is the only Class-1 operator that uses and benefits from the time-message

optimization. In the rest of the paper, we will use the terms “time-message” and “join-message”

interchangeably.

5.2.1 Time-messages in the Join Operator

The join operator is the most expensive operator in the query pipeline. Without the time-message

optimization, Join would normally reprocess negative tuples in the same way as their corresponding

positive tuples. Given the fact that a negative tuple joins with the same tuples as the corresponding
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Figure 4: The Join-message Technique.

positive tuple and the high cost of the join operation, the time-message technique aims to avoid

re-executing the join with the negative tuples. To achieve this, the join operator keeps some state

information to avoid unnecessary messages.

Algorithm and Data Structures: Upon receiving a positive tuple t, the join operator inserts

t in the join state and joins the tuple with the other input(s). In addition to processing t, the join

operator keeps some information with t in the state to indicate whether t has produced join results

or not. Upon receiving a negative tuple, instead of re-performing the join operation, the time-

message optimization performs the following steps: (1) Removes the corresponding positive tuple

from the join state, (2) Checks whether the corresponding positive tuple has produced join results

before, (3) If join results were produced, the join operation sets a flag in this tuple indicating that

this tuple is a time-message and produces the message as output. The information to be kept with

every positive tuple depends on the type of the join operator as described below.

Joining a stream with a table: In this case, only stream tuples will have negative coun-

terparts. To process the negative tuples efficiently, the join operator keeps a table (Joined Tuples

Table, JTT) in a sorted list (sorted on the timestamp). When a positive tuple produces join results,

the expiration timestamp of this positive tuple is entered in JTT. Only one copy of the expiration

timestamp is entered in JTT even if more than one tuple have the same expiration timestamp. At

most, the size of this table is equal to the window size. When a negative tuple is to be processed,

the join operator checks whether there is an expiration timestamp in JTT that is equal to the

expired tuple timestamp. If found, then a time-message is sent and the corresponding timestamp

is removed from JTT. Note that only one time-message is produced for every timestamp value.

If the tuple timestamp is not in JTT then the negative tuple is simply ignored. Notice that a
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join-message is more beneficial in the case when a stream tuple joins with more than one tuple or

when more than one tuple has the same expiration timestamp.

Joining two streams: When the join operator joins two tuples t+i from S1 and t+j from S2, the

resulting tuple t+ should expire whenever either t+i or t+j expire. Assume that t+i expires first. To

expire, t+, only the join-message for t+i is needed. To avoid unnecessary join-messages, a reference

count will be kept with every tuple tx in the corresponding hash table in the join state. This

reference count indicates the number of output tuples that expire when tx expires. The reference

count of a tuple tx is incremented by one when tuple tx joins with tuple ty and tx has the minimum

timestamp. When the join operator is scheduled and a negative tuple is to be processed, the

corresponding positive tuple is deleted from the hash table and the reference count associated with

it is checked, if greater than zero then a join-message for this tuple is emitted. The pseudocode for

the join operator after adding the reference count is given in Algorithm 1. Figure 5 gives an example

on the reference count. When the join operator joins tuple ti from Stream S1 (with timestamp T1)

with tuple tj from Stream S2 (with timestamp T3), the join operator increments the reference count

of ti. At time T6, tuple ti from S1 expires. Since the reference count of ti is one then a join-message

will be sent. No messages will be sent when tj expires since tj’s reference count is zero.

Note that one time-message is produced for all input tuples that have the same expiration time-

stamp. The join operator avoids producing time-messages with the same timestamp by keeping

the timestamp of the last emitted join-message in a variable, termed lastTM . Before producing

another time-message with time currentTM , the join operator checks the value of lastTM . If

currentTM is greater then lastTM then the current time-message is emitted and the value of

lastTM is set to currentTM , otherwise, the current message is ignored.

5.3 Processing Time-messages

When an operator receives a negative tuple with the time-message flag set, the operator learns

that all positive tuples that have expiration timestamps equal to the message’s timestamp are

expired and acts accordingly. This can be achieved in the same way as expiring tuples in ITA,

i.e., by scanning the operator’s state and expiring all tuples that carry the same expiration time-

stamp (Ets) as that of the join-message. If the operator’s state is sorted on the Ets attribute of

the tuples, then this scan should not be costly. Non-stateful Class-1 operators (e.g., Union) just
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pass the time-message to the output. As will be discussed in the next section, the time-message

optimization imposes an additional memory overhead for non-stateful Class-2 operators.

The join-message optimization is designed with two goals in mind: (1) Reduce the work per-

formed by the join operator when processing a negative tuple, and (2) Reduce the number of

negative tuples emitted by the join operator. Note that the join-message achieves its goals as fol-

lows: (1) Negative tuples are “passed” through the join operator without probing the other hash

table(s). (2) Only one message is emitted for every processed negative tuple independent from

its join multiplicity. Moreover, one join-message is emitted for tuples having similar expiration

timestamps. A large number of negative tuples can be avoided in the case of one-to-many and

many-to-many join operations, which are common in stream applications, for example, in on-line

auction monitoring [26].

Example: Figure 4 gives an example of the join-message approach. Figure 4a is the query

pipeline. Two input streams S1 and S2 are joined. Both streams have the same input schema:

<ItemId, Price, StoreID>. The sliding windows for the two streams are of the same size and are

equal to five time units each. In the figure, the table beside the MAX operator gives MAX’s state.

The table consists of three columns: the first column is for the value used in the MAX aggregation

(S2.Price), and the second column is for the tuple timestamp and the third column is for the tuple

expiration timestamp (other attributes may be stored in the state but are omitted for clarity of

the discussion). Figure 4b gives the tuples in the pipeline when using NTA and before applying

the join-message optimization. The values on the lines represent the joining attribute (StoreID).

Figure 4c gives the tuples in the query pipeline after applying the join-message optimization. A

tuple with joining attribute value 6+ arrives at S1 at time T1. Three subsequent tuples from S2 (at

times T2, T3 and T4) join with the tuple 6+ (at time T1) from S1. The output of the join has an

expiration timestamp equals to that of the tuple that expires first from the two joining tuples. In

this example, the output of the join carries expiration timestamp T1. At time T6, tuple 6+ from S1

expires. In NTA (Figure 4b), JOIN will perform the join with tuple 6− and output three negative

tuples. The three tuples are processed by MAX independently. As mentioned in Section 4.6, MAX

will output a new output after processing each input tuple (positive or negative). When applying

the join-message optimization, (Figure 4c), the join operator sends a join-message with timestamp

T1 to its output queue. Upon receiving the join-message, MAX scans its state and expires all tuples
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Algorithm 1 The Modified W-Join Algorithm

Input: ti : Incoming tuple from stream Si. H1, H2: Hash tables for S1 and S2 represent the join operator state.
Algorithm

1) If ti is a positive tuple
2) Bx = hash(ti)
3) Insert ti in the bucket Bx in the hash table Hi

4) For each tuple tj in bucket Bx in the other hash table
5) If tj joins with ti
6) output a positive join output tuple t+ for (ti and tj) with:
7) t+.ts = max(ti.ts,tj .ts)
8) t+.Ets = min(ti.Ets,tj .Ets)
9) If (tj .Ets < ti.Ets)
10) Increment reference count of tj by one
11) Else Increment reference count of ti by one
12) Else if ti is an expired tuple
13) Bx = hash(ti)
14) Delete the tuple ti from the bucket Bx

15) If reference count of ti > 0
16) if ti.ts > lastTM
17) lastTM = ti.ts

18) Send a join-message with timestamp = ti.ts

with expiration timestamp T1 and produces a new output after processing each expired tuple.

5.4 Discussion

As can be seen from the previous example and explanations, the join-message optimization reduces

the CPU cost of negative tuples in the join operator. On the other hand, the join-message op-

timization encounters a little additional memory overhead. The memory overhead is due to the

reference counter that is kept with tuples in the join state. The reference counter is an integer

and its size can be neglected in comparison with the tuple size. Moreover, the memory overhead is

offset by the great savings in CPU by avoiding the re-execution of the join for negative tuples.

The join-message optimization does not encounter memory overhead for the operator above the

join if this operator is stateful (e.g., Join or Distinct). The memory overhead of the join-message

optimization is worth considering only when the join operator is followed by a non-stateful Class-2

operator (i.e., the subtractable aggregates: Sum, Count, and Average). Unlike NTA, when the

join-message optimization is applied, these aggregates have to store the input tuples in a state.

But, as will be discussed next, for high input rates, NTA gives very high output delays due to
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tuples flooding the pipeline. Based on these observations, the decision on whether to use the join-

message optimization or the basic NTA with these aggregate queries involves a compromise among

memory, CPU, and output delay. The decision should be based on the available resources and the

characteristics of the input stream.

6 The Piggybacking Approach

As described in Section 3.2, the main motivation behind NTA is to avoid the output delay that

is incurred in ITA. The output delay comes from either the low arrival rate or highly selective

operators (e.g., Join and Select). Thus, in the case of high arrival rates and non-selective operators,

the overhead of having negative tuples is unjustified. In fact, in these cases, ITA is preferable over

NTA. In many cases, data stream sources may suffer from fluctuations in data arrival, especially

in unpredictable, slow, or bursty network traffic (e.g., see [29]). In addition, due to the streaming

nature of the input, data distribution is unpredictable. Hence, it is difficult to have a model for

operator selectivity [22].

In this section, we present the piggybacking approach for efficient pipelined execution of sliding-

window queries. The goal of the piggybacking optimization is to always achieve the minimum

possible output delay independent from the input stream characteristics. This goal is achieved by

dynamically adapting the pipeline as the characteristics of the input stream change.

In the piggybacking approach, time-messages and/or negative tuples flow in the query pipeline

only when they are needed. The main idea of the piggybacking optimization is to reduce the number

of tuples in the pipeline by merging multiple negative tuples and/or time-messages into one time-

message. Moreover, positive tuples are piggybacked with the time-messages if they co-exist in a

queue. By reducing the number of tuples in the pipeline, we also reduce the memory occupied by

the queues between the operators and reduce the cost of inserting and reading tuples from queues.

A similar notion of piggybacking is used in [2] to reduce the memory needed to process a query.

The piggybacking optimization is realized by changing the queue insertion operation such that, at

any time, the queue will include at most one time-message. The piggybacking approach works in

two stages as follows:

Producing a piggybacking flag. When an operator produces an output tuple t (either
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positive, negative, or time-message) in the output queue, the insertion operation of the queue

works as follows: first checks if there are any time-messages in the queue (which is the input queue

of the next operator in the pipeline). If there is at least one time-message, the insertion operation

performs two actions: (1) The output tuple t is tagged by a special flag PGFlag, (2) All the time-

messages in the output queue are purged. The timestamp of the tagged tuple is a time-message

that is used in the second stage to direct the execution of the pipelined query operators. Notice

that (1) only time-messages are purged from the queue but invalid tuples remain, (2) at any time,

the queue will include at most one time-message, and (3) the time-message is the bottom most

tuple in the queue.

Processing the piggybacking flag. When a query operator receives a tuple t (either positive,

negative, or time-message) at time T , it checks for the PGFlag in t. If the input tuple is not

tagged by the piggybacking flag, the query operator will act exactly as NTA and the time-message

optimization. However, if the incoming tuple is tagged by the piggybacking flag, the query operator

acts as ITA, described in Section 3.1. This means that all tuples stored in the operator state with

expiration timestamp less than or equal T should expire. The idea is, if there are many positive

tuples, then there is no need to communicate explicit time-messages in the pipeline. In the case

that processing the incoming tuple t does not result in any output (e.g., filtered with the Join),

we output a time-message that contains only the timestamp and the piggybacking flag so that

operators higher in the pipeline behave accordingly.

The piggybacking flag (PGFlag) is a generalization of the time-message, described in Sec-

tion 5.2.1. The main difference is that a time-message with timestamp T is responsible for expiring

tuples with expiration timestamp T , while a PGFlag with timestamp T is responsible for expiring

all the tuples with expiration timestamps less than or equal to T .
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Figure 7: Q1: Effect of Selectivity and Data Distribution.

Example: Figure 6 gives an example on the piggybacking approach. This example uses the

same query of Figure 2a. The example shows that when JOIN is highly selective (in the period T6

to T8) negative tuples are passed to COUNT for immediate expiration of tuples with values 4, 5,

and 5. At time T10, JOIN emits tuple 4− immediately followed by tuple 4+. If tuple 4+ is emitted

before COUNT reads 4−, then 4+ will delete 4− from the queue and COUNT will read only tuple

4+. While processing 4+, COUNT checks the input tuple’s (4+) timestamp and knows that a tuple

with value 4 (that is stored in COUNT’s state) should expire. Then, COUNT emits the new answer

reflecting the expiration of 4 and the addition of 4. The same happens at time T11. This example

shows that the answer update will have the minimum possible delay.

The piggybacking approach is designed with the following goal in mind: “always achieve the

minimum possible output delay independent from the input stream or query characteristics”. This

goal is achieved as follows: (1) the time information is propagated (using time-messages) in the

pipeline once they are generated without waiting for positive tuples, and (2) the time information

is merged with the positive tuples whenever possible. Basically, the piggybacking optimization

self-tunes the query pipeline by alternating between both NTA and ITA.
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6.1 Discussion

In our prototype, operators in the pipeline are scheduled using the round-robin approach (RR). In

RR, an operator runs for a fixed amount of time before releasing the CPU to the next operator.

During an operator run, the operator processes tuples from the operator’s input queue and produces

tuples in the operator’s output queue. The piggybacking approach results in minimizing the number

of tuples produced in the output queue during an operator’s run since time-messages are merged

together or merged with positive tuples. This reduction in queue sizes has the benefit of reducing

the memory usage by the pipeline and reducing the overhead of reading tuples from the queue.

There are several other operator scheduling techniques, e.g., FIFO, chain [7] and train [11]. The

reduction in the queue size gained by using the piggybacking approach depends on which scheduling

policy is used. For example, if the FIFO scheduling is used, then the piggybacking optimization

does not provide any performance gains over NTA. This is because in the FIFO scheduling, one

tuple is processed in the pipeline at a time and tuples are not accumulating in the intermediate

queues. On the other hand, for scheduling policies that allow tuples to accumulate in the output

queues (e.g., RR, chain, or train), the piggybacking optimization achieves performance gains over

NTA. In other words, the piggybacking optimization is orthogonal to the scheduling policy. Under

all scheduling policies, in the worst case, the piggybacking approach performs the same as NTA.

7 Experiments

In this section, we present experimental results from the implementation of our algorithms in a

prototype data stream management system, Nile [20]. We compare the performance of NTA with

ITA and show how the proposed optimizations enhance the performance further.

7.1 Experimental Setup

The prototype system is implemented on Intel Pentium 4 CPU 2.4 GHz with 512 MB RAM running

Windows XP. The system uses the pipeline query execution model for processing queries over data

streams. The query execution pipeline is connected with the underlying streaming source via

the stream scan operator SSCAN. The EXPIRE operator is implemented as part of the SSCAN
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operator. The local selection predicates for each stream are pushed inside the EXPIRE operator.

Different operators in the pipeline communicate with each other via a network of FIFO queues.

Tuples are tagged with a special flag to indicate whether the tuple is positive, negative, or invalid.

Each operator in the pipeline runs as an independent thread. Operators in Nile are scheduled

using a round-robin scheduling where each operator runs for a fixed amount of time to consume

tuples from the operator’s input queue. Once the input queue of the operator is exhausted or the

operator’s time slot is finished, the next operator is scheduled.

We use the average and max output delay as a measure of performance. The output delay is

defined as the delay between the arrival/expiration of a tuple and the appearance of its effect in

the query answer. For example, assume that in Q1 (Figure 2), a tuple t1 arrives to the system at

time T . COUNT produces an output tuple after adding the value of t1 at time T + d, then this

tuple encounters an output delay of d units of time.

Workload queries: We use the two queries, Q1 (Figure 2) and Q2 (Figure 4) to evaluate

the proposed techniques. The stream SalesStream used in the queries has the same following

schema: (StoreID, ItemID, Price, Quantity, Timestamp). We use randomly generated synthetic

data. The inter-arrival time between two data items follows the exponential distribution with mean

λ tuples/second. The arrival rate of the input streams is changed by varying the parameter λ of the

exponential distribution. A timestamp is assigned to a tuple when the tuple arrives to the server.

Synthetic data generation: For the input streams, the number of distinct items is set to 1200.

For Query Q1, the table FavoriteItems is changed to achieve the desired selectivity. The distribution

of the data items inside the window is randomly generated (if not mentioned otherwise). For Query

Q2, we achieve the desired join selectivity by controlling the values of the join attribute (StoreID).

For example, if the window size is set such that the window will contain 100 tuples, then the StoreID

values in the first stream are randomly generated in the range 1 to 100 and in the second stream

in the range 50 to 150. Such data distribution guarantees a selectivity of 0.005 for all windows.

7.2 ITA vs. NTA

In this section, we compare the performance of ITA and NTA for various data distributions. Figure 7

gives the effect of changing the selectivity of JOIN in Q1 (Figure 2a). Figure 7b gives the average

output delay while Figure 7c gives the maximum output delay. We run the experiment for two data
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Figure 8: Effect of the Join-message.

distributions as shown in Figure 7a. In this experiment, the input rate is fixed at 50 tuples/second,

the window size is 30 seconds and the selectivity varies from 0.1 to 1. For the same selectivity

value, the data distribution in Figure 7a shows how the qualified tuples are distributed in the

window. In Data Distribution 1, the qualified tuples are accumulated at one end of the window

and some windows may not have any qualified tuples. On the other hand, in Data Distribution 2

the qualified tuples are scattered along the window width. The experiment shows that the output

delay in ITA is highly affected by the selectivity and the data distribution. For low selectivity, ITA

shows high output delay since COUNT will not expire old tuples until a new input tuple qualifies

the join. The output delay for ITA is higher in the case of Data Distribution 1 because the range

between two qualified tuples is bigger than that in Data Distribution 2. The output delay for ITA

decreases considerably when either the selectivity increases or when tuples are scattered in the

window since qualified tuples pass the join and COUNT is scheduled more often. In general, the

output delay in the case of ITA is unpredictable and is highly affected by the input characteristics.

The experiment also shows that NTA does not depend on the selectivity or data distribution since

tuple expiration takes place even if no input tuples pass the join. As the input characteristics

in streaming environments are always changing, ITA is not suitable to use. In the rest of the

experiments we omit ITA.

7.3 The Join-message Optimization

Figure 8 illustrates how the join-message optimization reduces the overhead of processing negative

tuples. This experiment uses Query Q2 (Figure 4a). The input rate is 50 tuples/second for each
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stream. The window is 30 seconds and the join selectivity is fixed to 0.01. The tuple’s join

multiplicity ranges from 1 to 5. To understand how to get different tuple multiplicity for the same

join selectivity, assume the number of tuples in each window is 100, then for a join selectivity of

0.01, 100 tuples will be output from the join in each window (100/100*100). The 100 output tuples

can result if 100 tuples from the first stream each joining with one tuple from the second stream

(i.e., tuple multiplicity equals to 1). The 100 output tuples can also result if 50 tuples from the

first stream each joining with 2 tuples from the second stream (i.e., tuple multiplicity equals to 2).

Figure 8a gives the ratio between the number of negative and positive tuples in the join output

queue. The number of tuples in the queue is an indication about memory usage by the queue.

Also, the number of negative tuples represents the overhead associated with NTA. This overhead

is always zero for ITA. The overhead is almost equal to one in NTA since one negative tuple is

processed for every positive tuple (in the figure, it is not exactly one since some negative tuples may

have not been processed yet at the time the measurement is taken). The join-message optimization

reduces the number of negative tuples emitted from the join operator to the next operator in the

pipeline (MAX). The reduction increases as the tuple join multiplicity increases. Figure 8b gives

the average join capacity. The join capacity is defined as the number of tuples processed by the

join operator per second. Figure 8b shows that: (1) the join capacity is almost the same for NTA

and ITA because of the exact processing of negative tuples, and (2) the join capacity is doubled

when using the join-message optimization (shown in the join message and piggybacking lines in

Figure 8b) because the negative tuples do not perform the exact join.

Figure 8b illustrates that the join capacity is independent of tuple multiplicity. In the symmetric

hash join between two streams S1 and S2, an input tuple from S1 probes only one bucket in the

hash table for S2. The probing cost is negligible compared to the cost of performing the join and

constructing the output tuple. The join capacity is independent of the tuple multiplicity because

the join selectivity is fixed and the number of output tuples is independent of the tuple multiplicity.

7.4 The Piggybacking Approach

This section shows the performance of the piggybacking optimization (accompanied by the join-

message optimization). Implementing the piggybacking approach requires only a slight modification

to the implementation of the queues connecting operators in the pipeline (as described in Section 6).
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Figure 9: Performance of Piggybacking.

7.4.1 Performance Enhancement

Figure 9a compares the output delay of NTA and the piggybacking approach for Query Q2 (Fig-

ure 4a). The input rate is fixed to 200 tuples per second while varying the join selectivities from 0

to 1%. The figure illustrates that for lower selectivity, which corresponds to high output rates from

the join operator, NTA encounters more output delays since the queues are flooded with positive

and negative tuples. For low selectivity values (which corresponds to lower output rates from the

join), NTA and the piggybacking approach give the same output delay since fewer number of tuples

flow in the queues and hence there is no waiting time. In general, the piggybacking approach gives

the minimum possible output delay in all arrival rates and all selectivities since it communicates

the negative tuples only when necessary.

7.4.2 Reducing Overhead

This experiment shows how the piggybacking approach reduces the number of negative tuples in the

pipeline. Reducing the number of negative tuples in the pipeline means reducing the memory usage

by the queues. Figure 9b gives the ratio between the number of negative tuples and the number of

positive tuples processed by the MAX operator in Query Q2. We vary the join selectivity as the

input rate is fixed to 200 tuples per second. In NTA, the ratio is almost one since one negative

tuple is processed for every positive tuple. In the piggybacking approach, the ratio decreases for

lower selectivity. The reason is that positive tuples flow in the query pipeline with high rate and
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Figure 10: Throughput for Query Q2.

hence purge negative tuples (if any) from the queue.

7.5 System throughput

In this section we compare the system throughput for Query Q2 (Figure 4a) when using ITA, NTA,

and the optimizations (piggybacking + join message optimizations). The system throughput is

measured as the number of output tuples produced by the query pipeline per second. Figure 10

gives the throughput when varying the input rate from 50 to 350 tuples per second. Figure 10

illustrates that for small arrival rates (50 tuples/second or less) the three approaches give the same

throughput. In the three approaches, the system load is low for small arrival rate and hence all the

input tuples can be processed as fast as they arrive. As the input rates increase, NTA encounters

more processing overhead than ITA and piggybacking because the queues are flooded with positive

and negative tuples. As a result, the throughput of NTA is lower than the throughput of the other

approaches. Figure 10 also illustrates that the throughput of the optimizations approach is slightly

higher than that of ITA. The reason is that the tuples are processed faster in the optimizations

approach due to the join message optimization. Figure 10 illustrates that the system reaches a

saturation level at which the number of output tuples is fixed even if the input rate increases. The

saturation level corresponds to the maximum number of tuples per second that the pipeline can

process. The saturation level of NTA is lower than that of ITA and the optimizations approach.

Notice that the throughput measure does not distinguish between the query processing ap-

proaches for low arrival rates. For fluctuating input streams, the maximum output delay can be

considered a more illustrative measure since it differentiates the approaches from each other for

both low and high arrival rates.
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8 Related Work

Stream query processing is currently being addressed in a number of research prototypes. Examples

include Aurora [1], which is later extended to Borealis [2], NiagaraCQ [15], TelegraphCQ [12],

PSoup [14], NILE [20, 21] and STREAM [3]. These research prototypes address various issues in

processing queries over data streams. All these research prototypes have recognized the need for

sliding windows to express queries over data streams. For a survey about the requirements for

stream query processing, refer to [8, 16].

Window-aware query operators have been addressed many times in the literature. Examples

of algorithms for processing window aggregates include [5, 1, 13] and examples of algorithms for

window join include [23]. The previous work in this subject addresses the processing of a single

window operator but does not address the processing of a whole query pipeline. Aurora [1] uses

the window re-evaluation approach to evaluate window aggregates. In the window re-evaluation

approach, a computation state is initialized whenever a window is opened, that state is updated

whenever a tuple arrives, and the state is converted into a final result when the window closes.

An input tuple updates and is stored in more than one computation state in the same time. In

this paper we focus on the incremental evaluation pipeline. Incremental evaluation for Join is

addressed in [23], where ITA is used to invalidate tuples from the join state when a new tuple

arrives. However, the authors in [23] do not address how to expire tuples from the operators above

the join. Also, [23] does not address the output delay problem.

The traditional query optimization goal does not apply to continuous queries. Rate-based

optimization is introduced in [30]. The goal of the optimization is to maximize the output rate of

a query. In [6], the authors introduce a framework for conjunctive query optimization. The goal

of the optimization is to find an execution plan that reduces the resource usage. None of these

optimization techniques consider reducing the output delay as an optimization goal. Moreover,

these optimization frameworks consider only ITA. Applying these optimization frameworks over

NTA is an interesting area for future work. The time-message and piggybacking optimizations

reduce the CPU and memory utilization of NTA, hence they can be categorized under the class

of optimizations to reduce resource utilization. [17] introduces two optimizations to eliminate the

overhead of negative tuples. The first optimization re-orders the query plan (i.e., pulls-up the Minus

operator and pushes-down the Distinct operator). The second optimization uses a hyprid approach
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of both NTA and ITA (referred to as direct). The reordering optimization can be used with our

optimizations and is orthogonal to the focus of this research. Moreover, our proposed optimizations

avoid the use of the direct approach because of its unpredictable output delay as explained in 3.1.

Recent research efforts focus on introducing new “artificial” kinds of tuples that flow through

the query pipeline. Examples of such tuples include delete messages [2], DStream [4], Negative

Tuples [21], heartbeats [25], and punctuation [28]. The main idea of these artificial tuples is to notify

various pipelined operators of a certain event (e.g., expiring a tuple, synchronizing operators, or

end of sequence of data). STREAM [3] and Nile [20, 21] use NTA to expire tuples. Negative tuples

have been used in other systems, e.g., Borealis [2] for automatic data revision where a negative

tuple is sent by the streaming source to delete an erroneous positive tuple. Although not mentioned

explicitly, NiagaraCQ [15] uses a notion similar to negative tuples when processing stream deletions.

All the previous works either uses ITA or NTA. Our work is considered the first to automatically

adapt the pipeline to switch between ITA and NTA based on the underlying stream characteristics.

Punctuation is another form of artificial tuples [28]. A punctuation marks the end of a subset of

the data and is used to purge state and to unblock blocking operators. Processing stream constraints

is another way to discover and purge unneeded tuples from operators’ states [9]. Unlike negative

tuples, the tuples purged by the punctuation (or stream constraints) are not re-processed and do

not affect the query answer. Moreover, both [28] and [9] assume prior knowledge of the input

stream characteristics and utilize this knowledge in generating the appropriate punctuation.

An operator-level heartbeat [25] is a way for time synchronization. A heartbeat is sent along the

query pipeline so that the operators learn the current time and process input tuples accordingly.

The goal of the heartbeats is to order tuples arrived out-of-order. Heartbeat generation assumes

knowledge of the characteristics of the input streams and is independent from the data distribution

or the query. The time-message optimization we propose in this paper can be regarded as a special

kind of heartbeat that has a different goal and different generation policies than the heartbeats

in [25]. Time-messages are generated based on the data distribution and query selectivity and flow

in the pipeline only when there are tuples to expire. Moreover, time-messages can be merged with

positive tuples. The goal of time-messages is to reduce the output delay of the query.

Processing negative tuples in the query pipeline to update the query answer is closely related to

the traditional incremental maintenance of materialized views [19, 10]. The design of our window
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operators is based on the differential approach for incremental view maintenance [18] where change

propagation equations are designed for the various relational operators [18]. The equations specify

how an operator should process an inserted or expired tuple.

9 Conclusions

Incremental query evaluation has been adopted by data stream management systems as a coor-

dination scheme among various pipelined query operators. In this paper, we focus on the two

approaches for incremental query evaluation, namely, the input-triggered approach (ITA) and neg-

ative tuples approach (NTA). We study the realization of the incremental evaluation pipeline in

terms of the design of the incremental relational operators. We show that although NTA avoids

the shortcomings of ITA (i.e., large output delays), NTA suffers from a major drawback. Negative

tuples double the number of tuples in the query pipeline, hence the pipeline bandwidth is reduced

to half. We classified incremental operators into two classes according to whether an operator can

avoid the processing of a negative tuple or not. Based on the operator classification, we presented

two optimization techniques to enhance the performance of NTA. The first optimization, namely

the time-message optimization, mainly focuses on the join operator subtree. The main idea is to

avoid the re-execution of the expensive join operation with negative tuples. The second optimiza-

tion, namely the piggybacking optimization, self-tunes the query pipeline to work in either ITA or

NTA according to the characteristics of the tuples flowing in the query pipeline. With the piggy-

backing approach, the query pipeline gets the benefits of both ITA and NTA. Experimental results

based on a real implementation of ITA, NTA, time-messages, and piggybacking approaches inside a

prototype data stream management system show that the join-message optimization enhances the

performance of negative tuples by a factor of two. Based on the input rate and/or join selectivity,

the piggybacking optimization always traces the best performance of either ITA or NTA.
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Figure 11: Expiration based on global clock

A Global Clock Approach

This appendix gives an example to show that a query may produce incorrect answers if the operators

depend on a global clock to expire tuples. The example in Figure 11 is an aggregate query (SUM) over an

input stream S1. Figure 11a gives the query pipeline and Figure 11b gives the execution time line. Stream

S3 represents the output of the SUM operator while stream C represents the expected output.

In this example, a delay of three clock-ticks takes place between the time that the tuple 7 is received

at S1 and the time it is received at S2. The tuple 7 has a timestamp T4 which equals the time 7 arrives to

S1. Due to scheduling and the different operator processing speeds, the tuple 7 does not arrive at the SUM

operator until time T7. If SUM is scheduled between T5 and T7, SUM will expire tuple 5 and produce an

incorrect SUM 8 in S3 at time T5. Moreover, when SUM is scheduled at time T7 or after, SUM will receive

the delayed tuple 7 that has a timestamp T4. This means that SUM processes and produces tuples in a

nondeterministic timestamp order. The negative tuples approach solves this problem because the positive

tuple 7 is generated at time T4 while the negative tuple 5 is generated at time T5 and the two tuples will

arrive to the SUM operator in the correct timestamp order.
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