
Stream Window Join: Tracking Moving Objects in Sensor-Network Databases
�

Moustafa A. Hammad Walid G. Aref
Purdue University

West Lafayette, IN 47907, USA�
mhammad,aref � @cs.purdue.edu

Ahmed K. Elmagarmid
Hewlett Packard

Palo Alto, CA, USA
ahmed elmagarmid@hp.com

Abstract

The widespread use of sensor networks presents revo-
lutionary opportunities for life and environmental science
applications. Many of these applications involve contin-
uous queries that require the tracking, monitoring, and
correlation of multi-sensor data that represent moving ob-
jects. We propose to answer these queries using a multi-way
stream window join operator. This form of join over multi-
sensor data must cope with the infinite nature of sensor data
streams and the delays in network transmission. This paper
introduces a class of join algorithms, termed W-join, for
joining multiple infinite data streams. W-join addresses the
infinite nature of the data streams by joining stream data
items that lie within a sliding window and that match a cer-
tain join condition. W-join can be used to track the motion
of a moving object or detect the propagation of clouds of
hazardous material or pollution spills over time in a sensor
network environment. We describe two new algorithms for
W-join, and address variations and local/global optimiza-
tions related to specifying the nature of the window con-
straints to fulfill the posed queries. The performance of the
proposed algorithms are studied experimentally in a proto-
type stream database system, using synthetic data streams
and real time-series data. Tradeoffs of the proposed algo-
rithms and their advantages and disadvantages are high-
lighted, given variations in the aggregate arrival rates of
the input data streams and the desired response times per
query.

1. Introduction

The widespread use of sensor networks introduce rev-
olutionary opportunities for different disciplines such as
life and environmental sciences and civil engineering. The
readings collected from these sensors form a continuous

1This work was supported in part by the National Science Foundation
under Grants IIS-0093116, EIA-9972883, IIS-9974255, IIS-0209120, and
EIA-9983249.

supply of streaming data. Many of these applications such
as monitoring, tracking and surveillance applications in-
volve continuous queries over an infinite supply of stream-
ing data from multiple sensors.

An important aspect for stream query processing is the
introduction of operators that are non-blocking and that
can process infinite amounts of data. Most recently, re-
searchers have expressed interest in window aggregate op-
erations for data streams [9], where the window defines a
prefix of the stream. Window join processing is reported
in [6, 12, 13] as a practical way to join multiple infinite
data streams. In [13], the Telegraph project suggests imple-
menting a multi-way join operator (referred to as SteM), to
handle joining multiple data streams. In this approach, the
window is defined in terms of tuple count and new tuples in
each stream force old tuples from the same stream to expire
after a specific count of tuples. Psoup [6] uses the notion of
time window over data streams and processes the window
constraint similar to the SteM approach. The recent work
in [12] addresses the window join over two streams where
the two arriving streams have different arrival rates. The
authors suggest using asymmetric join (e.g., using a nested
loop for one stream and building a hash table on the other
stream), to reduce the execution cost. The approach in [12]
for window join evaluation is quite similar to that of SteM
and Psoup.

The approaches in [6, 12, 13] work efficiently for syn-
chronized data streams (no delays among tuples from dif-
ferent data streams) or for windows defined in terms of tu-
ple counts. For windows defined in terms of time intervals,
delays may occur among tuples from different data streams.
In this case, the approaches in [6, 12, 13] tend to provide
approximate answers for the window join operation. This is
the result of old tuples expiring before completely joining
with delayed tuples.

Delays are likely to occur when sensors are connected
over the network. This motivates the need for algorithms
that accommodate both synchronous and asynchronous ar-
rivals of tuples from data streams. This class of sliding time
window join, which we refer to as W-join, is the focus of

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03)
1099-3371/03 $17.00 © 2003 IEEE

this paper. Two examples of W-join are:
Example 1: Spotting the spread area of a pollution cloud
using a sensor network. A user issues a query to monitor the
propagation and expansion of a pollution cloud in a sensor
network. The user specifies a time window for the propaga-
tion to occur based on wind speed and the maximum time
for the cloud to propagate between two sensors and hence
represents a window of interest over the readings between
any two sensors.
Example 2: Tracking objects that appear in video data
streams from multiple cameras. The objects are identified
in each data stream and the maximum time for the object
to travel through the monitoring devices defines an implicit
time window for the join operation.

1.1 The Forms of Window Join

W-join can be of several forms depending on the exis-
tence of window constraints among each pair of the joined
streams. We start by describing the different forms of W-
join. In the following sections, we develop window join
algorithms to handle all the different forms described here.
We introduce the SQL construct WINDOW(A,B) to define
the time window between tuples in the streams A and B.
Form 1: A binary window join joins two input streams
using a single window constraint. For example, the SQL
query corresponding to Example 1 is (w is the maximum
time needed for objects to move from sensor A to sensor
B):

SELECT A.Gas FROM Sensor1 A, Sensor2 B
WHERE A.GasId = B.GasId
WINDOW(A,B) = w

Form 2: A path window join joins multiple streams where
the window constraints connect the streams along one path.
In Example 2 where an object � � � , needs different times
(� � 	 � � 	 � �) to travel from one camera to the other, the user
may issue the query:

SELECT A.Obj
FROM Camera1 A, Camera2 B, Camera3 C
WHERE similar(A.Obj,B.Obj) AND similar(B.Obj,C.Obj)
WINDOW (A,B)=w � AND WINDOW (B,C)=w �

The similar() user-defined function determines when two
objects that are captured by different cameras are similar,
and is beyond the scope of this paper. For the purposes of
this paper, the reader may think of this function as equiva-
lent to an equality predicate on object identifiers, i.e., A.Obj
= B.Obj.
Form 3: A graph window join joins multiple streams where
the window constraints among the streams form a graph
structure. For example, the following query tracks the
spread of a hazardous gas that is detected by multiple sen-
sors, where the maximum time for the gas to travel through
the sensors defines the time windows, (� � 	 � � 	 � � 	 � �):

SELECT A.Gas
FROM Sensor1 A, Sensor2 B, Sensor3 C, Sensor4 D
WHERE A.Gas=B.Gas AND B.Gas= C.Gas AND C.Gas=
D.Gas
WINDOW(A,B)=w � AND WINDOW(B,C)=w � AND
WINDOW(B,D)=w � AND WINDOW(C,D) =w �

Notice that the window constraints may not exist among all
possible pairs of the streams (e.g., streams A and C may not
be constrained by a window due to the existence of a barrier
that prevents the gas from spreading directly).
Form 4: A clique window join, is a generalization of Form
3, where the window constraints exist between every pair
of the joined streams. In the previous example, if there are
no barriers between any pair of sensors, then there exists
a window constraint between every pair of sensors, which
represents the maximum time for the gas to travel between
them. As a special case of Form 4, we consider the uni-
form clique window join, where all the streams are joined
together using a single window constraint (same as Form 4
except that the windows between each pair of the streams
are equal). For example, to monitor the sales from multiple
department stores using a sliding time window, say w, an
administrator may issue the query:

SELECT A.ItemName
FROM Store1 A, Store2 B, Store3 C, Store4 D
WHERE A.ItemNum=B.ItemNum AND
B.ItemNum=C.ItemNum AND C.ItemNum=D.ItemNum
WINDOW = w

Notice that “window = w” applies to all stream pairs.

1.2 Contributions of the Paper

The paper introduces two new algorithms; the backward
and forward evaluations of W-join, termed BEW-join and
FEW-join, respectively, for evaluating time window con-
straints for all the alternative forms of W-join, described in
the previous section. BEW-join and FEW-join are different
in the way they evaluate the window constraints and up-
date their underlying streams. We identify ranges of arrival
rates where each algorithm provides improved performance
in terms of either response time or throughput.

We present the two join algorithms in the context of the
uniform clique window join, presented in the previous sec-
tion. In addition, we adapt algorithms FEW-join and BEW-
join to handle the other forms of W-join, where some win-
dow constraints may not be present in the query. For that,
we propose two approaches; the global and local conserva-
tive approaches (GCA and LCA, respectively) that utilize a
filter-refine paradigm. GCA chooses the maximum window
constraint to reduce the join into a uniform clique W-join
and applies any of the W-join algorithms. In contrast, LCA
optimizes FEW-join to consider the maximum window con-
straint per sensor.

We present an extensive performance study of all algo-
rithms implemented in a prototype stream database system
while using synthetic data streams and real time-series data.

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03)
1099-3371/03 $17.00 © 2003 IEEE

2 Preliminaries

2.1 Stream Model

We model each stream data item as two components� v, t � , where v is a value (or set of values) of the data item,
and t is the timestamp that defines the order of the stream
sequence. The value of the data item can be a single value
or a vector of values. Time is our default ordering domain.
The timestamp is considered the sequence number, which
is implicitly attached to each new data item. This notion
of time may refer to either the valid time or the transaction
time [16], where valid time is the time assigned to the item
at its source stream (when it is first created), and transac-
tion time is the time assigned to the data item at the query
processing system. Synchronizing the arrival of tuples that
belong to different data sources is not easy to enforce espe-
cially if the sources are independent and each uses its own
clock to generate the timestamps (valid time). Moreover, if
the query processor adds timestamps to the arriving tuples
(transaction time), because of tuple scheduling in stream
data systems, delays among tuples from data streams may
occur during the query execution. The algorithms that we
propose in this paper handle stream data with either type of
timestamps.

2.2 The W-join Operation

To illustrate the operation of a W-join, Figure 1(a) shows
a W-join among five data streams (A – E). The position of
the tuples on the x-axis represents the arrival order over
time. The indices of each tuple represent the order of ar-
rival of this tuple relative to its data stream. The black
dots correspond to tuples from each stream that satisfy the
WHERE clause. The window constraint implies that only
tuples within a window of each other can join. Thus, the
tuple � �

� � � � � � � � � � � � � � is a candidate for the W-join,
however the tuple � �

� � � � � � � � � � � � � � is not, since � �

and � � are more than window, � , away from each other.
The W-join in Figure 1(a) represents a uniform clique

W-join. A graph model of W-join can be obtained by repre-
senting tuples from the streams as nodes in a graph, where
edges correspond to the window constraint (e.g., tuples
from stream A and B must be within window of time from
each other). With this model, the uniform clique W-join
represents a complete graph, Figure 1(a). The non-uniform
clique, graph, and path W-joins are shown in Figure 1(b),
respectively.

It is evident from the W-join operation that we need an
efficient approach for continuously verifying window con-
straints among the input streams and for updating the join
buffers (intermediate structures that hold tuples from each
stream during the join) to contain only eligible tuples. A

D

C

B

A

E

WAB WAB WAB

AEW

WDE WDE WDE

WBC

WCD

WBC

WCD

D

B

CE

A W
b2

c1c2

e1

b3

a2a3

b1

d1W
W

d2

e2

a1

b4

New tuples Old tuples
Sliding window

(a) 5−way W−join using a uniform clique W−join

E

A B

D

C

Non−uniform clique W−join
D

C

BA

E

D

C

BA

E

Graph W−join Path W−join

WAC

WCE

(b) Other forms of W−join operation

Figure 1. Variations of W-join.

brute-force approach to verify window constraints among
streams requires verifying the constraint between each pair
of n streams, adding 	 �� additional comparisons for each
input tuple. A more efficient approach is suggested in [2] to
verify that � objects, each from a different class, are within
a fixed-radius from each other. A similar approach is also
introduced for band join in [8].

The BEW-join algorithm adopts a similar approach to [2,
8] to verify the window constraints among the individ-
ual tuples. However, the algorithms in [2, 8] cannot deal
with infinite streams and may block if data is delayed from
one stream. In contrast, the BEW-join algorithm is non-
blocking and provides online update of join buffers to re-
flect tuples that reside within the window from each other.

3 The Uniform Clique W-join

In this section, we introduce the W-join algorithms in
the context of the uniform clique W-join. In the following
sections, we demonstrate how we address the other W-join
query forms.

3.1 The Backward Evaluation W-join Algorithm

To identify tuples that are within window � from each
other, the BEW-join algorithm maintains a period, say � ,
that includes the timestamp of the new arriving tuple � � � �
and timestamps of the other � � �

tuples (each from a dif-
ferent stream). � starts with length equals twice the size of
the window constraint, � , and has the timestamp of � � � � as
its center. The period is completely constructed when it in-
cludes a tuple from every stream (including � � � �) such that
the difference between the maximum timestamp and mini-
mum timestamp of the tuples in � is less than or equal to

� . All the tuples that currently belong to � must satisfy the

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03)
1099-3371/03 $17.00 © 2003 IEEE

window constraint and can be checked for satisfaction of the
join predicate. While constructing � , a tuple, say � � � � , from
a stream, say

�
, can be safely removed from the join buffer

of
�

if and only if � � � � has a timestamp that is older than the
newest tuples in all streams, other than

�
, by more than � .

Tuple � � � � is guaranteed not to W-join with any new tuples
from the other streams and need not be stored. The process
of updating � and updating the join buffer is repeated for

� � � � and with all combination of tuples in the join buffers
of the other streams. This step is terminated as all com-
binations are exhausted and in this case the algorithm can
process a different new tuple, not necessarily from the same
stream, and construct a new period in a similar fashion. We
use the term iteration to refer to the process of W-joining
a new tuple and until the algorithm is ready to process an-
other new tuple. The algorithm has no notion of fixed outer
stream, where it always starts the join process, and therefore
does not block waiting for tuples from a single stream.

D

C

B

A

E

D

C

B

A

E

b2b4

e1

b3

a2 a1

b5 b1

(ii) Processing tuple b5 from stream B

New tuple

c2c3

d2

e2

c1

d1
Deleted

New tuple Old tuple

a2

(i) Processing tuple a2 from stream A

e2

a1

e1

c2c3

w w
b1b2b3b4

c1

d1d2

Old tupleNew tuple

Figure 2. The BEW-join algorithm.

Figure 2(i) depicts the status of the algorithm when pro-
cessing tuple �

� from Stream 	 and forming a window of
length
 � centered at �

� . The algorithm iterates over all
tuples of Stream � which are within the window of tuple�

� . These tuples are shown inside the rectangle over � .
� � satisfies the join predicate (for illustration of the algo-
rithm, we assume that only the black dots (tuples) from each
stream satisfy the join predicate2) and is located within the
window of �

� (i.e., it is included in the rectangle). The
period is modified (shrunk) to include �

� , � � and all tu-
2Although the join predicate is equi-join, this algorithm can work with

any types of join predicate such as non-equi-join or user defi ned functions.

ples within � of both of them. This new period is used
to test tuples in Stream � , and is shown as a rectangle over
Stream � in Figure 2(i). The same process as with Stream

� is repeated for Streams � � and � , respectively, and
finally the 5 tuple � �

� � � � �
 � � � � � � � is reported as
output. The algorithm recursively backtracks to consider
other tuples in Streams , then � and finally � . The fi-
nal output 5 tuples in the iteration that starts with tuple

�
� are: � �

� � � � �
 � � � � � � � , � �
� � � � �
 � � � � � � � ,

� �
� � � � �
 � � � � � � � , � �

� � � � �
 � � � � � � � and� �
� � � � �
 � � � � � � � , respectively. While iterating over

stream , tuple � � is located at distance more than �

from all the last tuples in streams 	 � � � � � � , (i.e., tuples�
� � � � �
 � � �). Tuple � � can be safely dropped from the join

buffer of stream . After finishing with tuple �
� , the al-

gorithm starts a new iteration using a different new tuple(if
any). In the example of Figure 2, we advance the pointer
of Stream � to process tuple � � . This iteration is shown in
Figure 2(ii) where periods over Streams � � � � and 	 are
constructed, respectively.

The algorithm never produces spurious duplicate tuples,
since in each iteration a new tuple is considered for the join
(the newest tuple from a stream). The output tuples of this
iteration must include the new tuple, thus duplicate tuples
cannot be produced.

The nested loop implementation of the BEW-join algo-
rithm is straightforward from the previous description. The
join buffers are FIFO (First In First Out) queues over each
data stream and the algorithm keeps an ordered vector, � , of
timestamps for the newest tuples in each data stream. Each
new tuple, say � � � � , is added to the queue corresponding to
its data stream and updates � . Then � � � � starts to iterate
over and update the other steam queues as described above.
The hash implementation of the algorithm is quite similar to
the nested loop implementation except that the FIFO queues
are hash tables and the scanning is replaced with probing
the corresponding bucket in the other hash tables. Bucket
updating is carried similarly to nested loop using vector � .

3.1.1 Discussion

One clear advantage of the previous algorithm is that it does
not block waiting for tuples from a single data stream. The
BEW-join algorithm processes any stream that has tuples
waiting for the join (no fixed outer data stream). In addition,
the update of the data streams (dropping of old tuples) is
performed during the join. Therefore, the join buffers do
not increase indefinitely during the join.

However, the BEW-join may iterate over tuples that will
never W-join as we illustrate by the following example. Fig-
ure 3 illustrates this case where data streams are not of
equal arrival rates and one of the data streams is very slow
compared to the others. In this example, the BEW-join

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03)
1099-3371/03 $17.00 © 2003 IEEE

D

C

B

A

E

a2
New tuple

(i) Processing tuple a2 from stream A

a1

c3

w w
b2b3b4

d1

e2

c1c2

e1

d5 d4 d3d6 d2

Figure 3. BEW-join extra processing.

algorithm will examine 12 tuples (
�
x � x

�
x � from streams

� � � � � and � , respectively), none of which will contribute
to the final W-join results. This example illustrates that
the BEW-join may fall into cases that include lengthy and
nested iteration over tuples that may not satisfy the win-
dow constraint. In addition, during the iterative execution of
BEW-join, the algorithm verifies for each tuple the period
inclusion and update the period accordingly. This check and
update of the period adds to the time complexity of pro-
cessing each tuple in the nested iteration (many of them are
examined in each iteration).

3.2 Forward Evaluation of the W-join (FEW-join)
Algorithm

As presented in the previous section, the repeated verifi-
cation of the period inclusion and update of the period in-
creases the execution time per input tuple. To eliminate the
repeated window test we need to constrain the join buffers
(that store the current tuples from different data streams)
to hold only tuples that are within window of each other.
In this case, a blind (without window verification) iteration
can be performed to verify the join predicate. The FEW-
join algorithm achieves this by maintaining the join buffers
in a way that always reflects tuples, across the different data
streams, that are within window w of each other and re-
stricts the window constraint test to occur only once when a
new tuple arrives.

3.2.1 Algorithm Description

The basic idea of the FEW-join algorithm is to use the cur-
rent tuples in the join buffers to determine a combination
of tuples, starting n tuples that bounds the past (the tuples
that have already arrived in the rest of the data streams and
needs to be checked by a new tuple). The algorithm also
determines a forward point in time, � � , before which all ar-
riving tuples can join without a need to verify the window
constraint. The join buffers maintain tuples from each data

stream that are time-bounded at one end by a tuple from the
starting n tuples and at the other end by � � . We describe the
details of the FEW-join algorithm as follows.

The FEW-join algorithm iterates between two modes,
Mode 1 and Mode 2. In Mode 1, a plane sweep is per-
formed on the time axis for all incoming tuples from all
the streams. The target is to locate the first n tuples at win-
dow distance � from each other, where � refers to the num-
ber of joined streams. As this tuple is found, Mode 1 con-
structs a period, � , that includes all the n tuples and de-
termines � � � � �
 � � � � � � � � � � � . In Mode 1, all the
tuples older than the starting n tuples are dropped from the
streams’ buffers. Then Mode 2 begins admitting tuples that
follow the starting n tuples and that have timestamps within
the period � . Those tuples are guaranteed to be within �

time units from the tuples already included in the period. As
a result, no repeated verification for the window inclusion
is necessary while joining the new tuple to the ones already
in the period. Mode 2 continues processing new tuples until
they fall outside the period. In this case, Mode 1 is restarted
to determine new starting n tuples and new period.

Ft

D

C

B

A

E

Ft

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

a1

c1

d1

d2

d2

e1

e2

a1

a2

b1

b1

b2

c1

e1

d1

b1

a1

d2

b2

e2

a2

c1

P

P

(i)

(iii)

e2

c1

D

C

B

A

E

c2

b2

P

a2

c3

d2

e3

a3

e2

D

C

B

A

E

c2

b2

a2

c3

d2

e3

a3

b3

e4

a4

d3

P

Old tuples

c1

new

Deleted

New tuples

(ii)

Output tuple
end (Mode 1)

Start stream: D

Start stream: A

c4

a3: (a3,b2,c1,d2,e2)
c2: (a3,b2,c2,d2,e2), (a2,b2,c2,d2,e2)
c3: (a3,b2,c3,d2,e2), (a2,b2,c3,d2,e2)
e3: (a3,b2,c3,d2,e3), (a2,b2,c3,d2,e3)
 : (a3,b2,c2,d2,e3), (a2,b2,c2,d2,e3)
 : (a3,b2,c1,d2,e3), (a2,b2,c1,d2,e3)

Figure 4. The FEW-join Algorithm.

Figure 4 shows an example of joining five Streams,
� � � � � � � � and � . Assume that �

� � � � � 	 � �
 � � � � are the
first tuples in each stream. Mode 1 starts with Stream �

and determines the period that includes �
� , shown in Step

1 of Figure 4(i). The algorithm proceeds to Stream � , and
� � is tested to determine if it falls within the period deter-
mined by �

� . Since � � is included inside the period, the
period is modified (shrunk) to include �

� , � � and all tuples
within window of each of them, the period adjustment is

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03)
1099-3371/03 $17.00 © 2003 IEEE

shown in Step 2. Stream � is processed similar to Stream
� (Step 3). In Stream � , since � � is older than the current
period, � � is dropped (deleted from the join buffer) and the
next tuple, � � , is considered for Mode 1. Since � � is older
than the current period, the current period is discarded and
a new period is created in Step 6 which is centered at � � .
Mode 1 then considers Stream � as the starting stream, and
continues testing the rest of the streams before looping back
to Stream � . Stream � is now processed. � � is older than
the period, so it is dropped and the next tuple from Stream

� is tested. � � is included within the period, which is up-
dated in Step 8 to reflect the inclusion. Streams � and �

are processed similar to Stream � (Steps 9-12). At Step
13, tuple � � in Stream � is added to the period and all the
streams participate by a single tuple in the final period, � .
This indicates the end of Mode 1. The final tuple becomes
the starting n tuples for Mode 2. Note that the window join
predicate is not considered during Mode 1, and only the pe-
riod inclusion is verified.

Mode 2 begins iterating over all tuples in the neighbor-
hood of the n tuples and included within � . In Mode 2 we
start by verifying the join predicate for the starting n tuples
only if it includes new tuples from the streams. Afterwards,
Mode 2 processes the new tuple from each stream repeat-
edly as long as it falls within � .

Figure 4(ii) illustrates the layout of the data streams as
the new tuples �

� � � � � � � and � � arrive, respectively. The
output tuples are illustrated below Figure 4(ii) at the time
each new tuple arrives. Note than for each of these tuples
(and generally during Mode 2) there is no need to verify the
window constraint as it is guaranteed that tuples already in
the join buffer are included within the period (i.e., within
window from each other). The algorithm stops Mode 2
when the next tuple from each stream is newer than the cur-
rent period � . In Figure 4(iii) as tuples �

� � � � � � � � � � and � �

arrive, Mode 2 drops the tuple � � (the oldest tuple in the pe-
riod �) and restarts Mode 1 again to search for next starting
n tuples and so on.

3.2.2 Discussion

Mode 1 of the FEW-join algorithm updates the buffers (i.e.,
by adding new tuples and dropping tuples from the join
buffers) of each stream such that the join buffers only in-
clude tuples that lie within window of each other. There-
fore, the algorithm avoids nested-iteration over any tuples
outside the window. In addition Mode 2 needs to test the
window inclusion only when admitting a new tuple and not
during the nested iteration over tuples from the different
streams.

The advantages of the FEW-join algorithm comes at the
expense of increasing the waiting time for some input tu-
ples. For example, in Mode 2, switching to Mode 1 (to de-

termine a new period) is delayed until all new tuples from
the different data streams are also newer than the current
period. The waiting times for tuples increase as they need
to wait for tuples from other data streams before process-
ing. This is not the case for BEW-join where a new tuple is
processed immediately as long as BEW-join can handle it.

3.2.3 Hash Implementation of FEW-join

The FEW-join is described as a nested loop join. In this sec-
tion we describe the implementation of the algorithm when
the tuples from each stream are stored in a hash table. The
only requirement when using the FEW-join is that the tuples
in the hash table should be organized in the order of their ar-
rival. In this case, Mode 1 can perform a linear scan over
tuples in each stream and update the hash table as a whole.
For this requirement we use a structure of the hash table that
maintains the order of tuples at the level of a bucket as well
as the level of the whole hash table by two doubly linked
lists (DLL). Mode 1 uses the DLL that links tuples of the
whole hash table to update the hash table by dropping old
tuples. New tuples are inserted in the bucket that has a sim-
ilar hashing value and the links of the two DLLs (the DLL
of the bucket and the one of the hash table) are updated ac-
cordingly. Mode 2 only iterates over the bucket probed by
the new tuple.

4 Performance Study

4.1 Experiments Setup

The implementation is performed on a prototype stream
database system, STEAM, based on PREDATOR [14],
which is modified to accommodate stream processing.
The modifications include introducing an abstract data
type stream-type that can represent source data types
with streaming capability. Any stream-type must pro-
vide the following interfaces, InitStream, ReadStream, and
CloseStream. In order to collect data from the streams
and supply them to the query execution engine, we devel-
oped a stream manager as a new component of the stream
database system. The main functionality of the stream man-
ager is to register new stream-access requests, retrieve data
from the registered streams into its local buffers, and sup-
ply data to be processed by the query execution engine.
The stream manager runs as a separate thread and sched-
ules the retrieval of tuples in a round robin fashion (other
scheduling options are still being studied). To interface the
query execution plan to the stream manager, we introduce a
StreamScan operator to communicate with the stream man-
ager and receive new tuples as they are collected by the
stream manager.

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03)
1099-3371/03 $17.00 © 2003 IEEE

We performed our experiments on both real time-series
data and synthetic data streams. For real data, we use the
logs of the transactions from Wal*Mart stores3. A sold item
in a store appears as a transaction of customer purchases. A
single transaction for each store includes the item number in
addition to other information, such as the item description,
the item unit price, the item quantity and the item purchase
date and time. The timestamp of each tuple is the time of
the transaction, valid time. Data is extracted from an NCR
Teradata machine that holds 70GBytes of Wal*Mart data.
We consider also synthetic data streams, where each stream
consists of a sequence of integers, and the inter-arrival time
between two numbers follows the exponential distribution
with mean � .

All the experiments are run on a Sun Enterprise 450
machine, running the Solaris 2.6 operating system with 4
GBytes main memory.

4.2 Experimental Results

4.2.1 Query Execution Throughput

In the following set of experiments we use the throughput
as the performance measure for the query execution, i.e., the
number of tuples processed by each algorithm in a unit time.
The throughput indicates how fast each algorithm executes.
All measures are collected at the steady state. To compute
the throughput, we measure the total execution time every
1000 tuples and calculate the average. We repeat this cal-
culation for an increasing number of input tuples until this
value is almost unchanged. We repeat this experiment while
varying the arrival rate of input data streams and measure
the throughput in each case. We monitor the throughput
until the point that the W-join algorithm is no more capa-
ble of handling the total arrival rate over all its input data
streams. After this point the W-join algorithms start to drop
tuples from the input data streams. The experiment is re-
peated for � � � -way W-joins and using the hash and nested
loop implementations for the BEW-join and the FEW-join
algorithms. For brevity, we present only the results as the
input rates of all data streams are comparable (no significant
differences among the input rates from one data stream and
the other). We have experimented the case when the arrival
rate between data streams is different and the obtained re-
sults are similar in spirit to that when the arrival rates are
comparable.

We use synthetic data streams with integer values that
range between 1 and 1000. For nested loop implementa-
tions we use queries with window of size 10 seconds. For
hash implementations we use queries with window of size
of 1 minute.
Figure 5 shows the maximum throughput that can be sup-

3Donated to Purdue University by Wal*Mart and NCR Corporation

2 3 4 5 6
Number of joined data streams

0

500

1000

1500

2000

Q
ue

ry
 e

xe
cu

tio
n

th
ro

ug
hp

ut
 (

tu
pl

es
/s

ec
.)

Maximum throughput (Hash−Implementation)

FEW−join
BEW−join

(a)

2 3 4 5 6
Number of joined data streams

0

50

100

150

200

250

300

Q
ue

ry
 e

xe
cu

tio
n

th
ro

ug
hp

ut
 (

tu
pl

es
/s

ec
.)

Maximum throughput (Nested−Loop−Implementation)

FEW−join
BEW−join

(b)
Figure 5. Maximum execution throughput.

ported by each algorithm as we increase the input arrival
rates and for � � � � � -way W-joins. The FEW-join al-
gorithm achieves higher maximum throughput than BEW-
join, which falls earlier behind the input arrival rates. This is
the case for all the experimented � 2-6 � -way W-joins. The
improvement is approximately 70% for 2-way W-join us-
ing hash implementations (Figure 5(a)), and 40% for 2-
way using nested loop implementations (Figure 5(b)). In
both implementations, the difference between the maximum
throughput in BEW-join and FEW-join is reduced as we in-
crease the number of joined data streams. This is the case as
both algorithms spend most of the execution time iterating
over large number of tuples (joining more data streams in-
creases exponentially the number of tuples to test). Besides,
for FEW-join algorithm as we increase the arrival rates the
algorithm switches between Mode 1 and Mode 2 almost for
every new tuple. The switch back and forth between Mode 1
and Mode 2 increases the overhead of Mode 1 in total exe-
cution time and reduces the save in comparisons introduced
by Mode 2.

4.2.2 Response Time

In this section we study the average response time of a new
tuple to complete execution. This time includes the waiting

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03)
1099-3371/03 $17.00 © 2003 IEEE

40 140 240 340
Total input rate (tuples/sec.)

10
−1

10
0

10
1

10
2

10
3

R
es

po
ns

e
tim

e
(m

ill
is

ec
on

ds
)

4−way W−join

BEW−join
FEW−join

Figure 6. Response time using the hash implementations

time plus the execution time for a tuple. We use hash imple-
mentations of the BEW-join and FEW-join algorithms. In
the first experiment we use 4-way W-join with window of
size one minute and use synthetic data streams. We change
the average arrival rate per each stream from 10 to 90 tu-
ples/sec. We measure the time elapsed from the arrival of
each new tuple until its completion, averaged over a range
of 10,000 input tuples.

As illustrated in Figure 6, for low arrival rates the BEW-
join algorithm has low response time when compared to the
FEW-join algorithm. This is mainly due to the behavior
of Mode 1 and Mode 2 of the FEW-join algorithm. Both
modes need to hold new input tuples before finding the start-
ing n tuples for Mode 1 and before switching to Mode 1
from Mode 2. This also increases the average waiting time
of new tuples in the FEW-join algorithm. For the BEW-join
algorithm, the processing of each new tuple is independent
of arriving tuples in other data streams. As a result, the wait-
ing time is minimal and is determined by the current waiting
tuples before the W-join operation. As the data arrival rate
increases, the BEW-join algorithm spends more time pro-
cessing a tuple and therefore the response time is increased.
For FEW-join, the execution time is smaller than that of
the BEW-join algorithm and as we increase the arrival rate,
Mode 1 and Mode 2 need not wait for tuples for long pe-
riods of time. As a result the response time for the FEW-
join algorithm decreases as we increase the arrival rate. The
maximum throughput of BEW-join is approximately 340 tu-
ples/sec (aggregate input arrival rate). The response time
of BEW-join crosses that of FEW-join algorithm and gets
higher afterwards.

4.2.3 Output Execution Time for Real Time-series
Data

In this experiment we study the performance of the pro-
posed algorithms while using real time-series data from
Wal*Mart stores. We measure the total output execution
time of each algorithm for various (increasing) sizes of

0 20 40 60 80 100
Number of output tuples (in thousands)

0

2

4

6

8

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

.)

4−way W−join

FEW−join
BEW−join

Figure 7. Total execution time for output tuples.

stream databases. We use hash based implementation of
both algorithms and run W-join queries similar to Exam-
ple 1 in Section 1. We use window of size one hour and
conduct the experiment of � � � and � -way W-join. We il-
lustrate only the results for 4-way W-join. Figure 7 shows
that the FEW-join algorithm can produce more output in
less amount of time than the BEW-join algorithm. For ex-
ample, FEW-join can produce 100,000 output tuples in 2.3
seconds for � -way W-join, whereas the BEW-join algorithm
produces the same amount of output tuples in 6.5 seconds.

5 Variations of W-join

In this section, we study the forms of W-join where the
window is not unique between all the streams and/or some
pairs of the streams are not window-constrained (Form 4
and Form 3 described in Section 1.1). The path W-join,
Form 2, is presented as a special case of Form 3, the graph
W-join.

5.1 The Non-uniform Clique W-join

The BEW-join and FEW-join algorithms as described in
Section 3 require a single window constraint to be applied
over all streams. Having different window constraints be-
tween every pair of the streams requires adaptation of these
algorithms. One conservative approach for solving W-join
with different window constraints is to consider the largest
window constraint as the single window constraint among
all streams, and apply the BEW-join or the FEW-join algo-
rithms to find all candidate tuples. This step is referred to
as a filtering step. Since the filtering step will result in false
positive answers (tuples that should not be reported in the
actual W-join), we use a refinement step where all the win-
dows’ constraints are verified between the tuples included
in the output n tuples. This final test will only be applied to
the output of the filtering step. We refer to this approach as
a global conservative approach, GCA for short.

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03)
1099-3371/03 $17.00 © 2003 IEEE

P

A

B

C

D

A

D

B

C

w2

w6w5

w1

w4

w3

(1

(2

(3

(4

(5

(6

(7

(8

(9

(10

(11

(12

b2,w5

c1,w6

c2,w6

b1,w5

c1,w6

d1,w5

d2,w5

d2,w5

a1, w6

a2, w6

b1,w5

a1, w6

C

Bw1A

D

w4

w3

w2

D

A B

C

w4

w1

w3

SP(A,D)
SP(A,C)

SP = Shortest Path
w3

w2

w1A B

D C

P

c2

b1

d1

w6 a1 w6
w5 b1 w5

w6 w6c1

d1

d2

w5 w5d2

a1

w6 a2 w6

w5 w5b2

c1

w6 w6c2

b2

d2

c1

a2 a1

Start stream: D

Start stream: A

(end Mode 1)

Output tuple

b1

New tuples Old tuples

(a) The LCA approach

(b) Graph construction for Graph W−join (c) The Path W−join

w2

SELECT A.ObjID
FROM Sensor1 A, Sensor2 B, Sensor3 C,

AND WINDOW(C,D)=w3
WINDOW(A,B)=w1 AND WINDOW(B,C)=w2

C.ObjID AND C.ObjID=D.ObjID
WHERE A.ObjID=B.ObjID AND B.ObjID=

Sensor4 D

Figure 8. Variations of W-join.

GCA may assign an unnecessarily large window size
during the join, resulting in an excessive number of addi-
tional comparisons. We propose a variant of the FEW-join
algorithm that uses the maximum local windows for each
stream. We call this approach the local conservative ap-
proach, LCA for short.

LCA has the same filter and refine steps as those of GCA.
The filter step also alternates between two modes, Mode 1
and Mode 2, similar to the of FEW-join. Mode 1 produces
the starting n tuples and the period, and Mode 2 iterates on
all tuples in this period to produce the results. However,
during Mode 1, the construction of the period considers the
maximum local window for each stream. We describe the
filtering step using the example shown in Figure 8(a). The
example illustrates a W-join among four streams. We as-
sume the window sizes are ordered by their indices (i.e., � �

is the maximum window size). The execution steps of LCA
are similar to those of FEW-join.

5.2 The Graph W-join and the Path W-join

In both graph and path W-joins, one or more pairs of
the streams are not window-constrained4. For these types
of W-join, we propose two approaches. The first approach
is similar to the conservative approaches developed in Sec-
tion 5.1. The second approach uses the BEW-join approach

4We assume a connected graph with regard to window constraints
among the streams.

to update tuples (add and drop tuples) in data streams. In
the following sections we describe the two approaches.

5.2.1 Using Conservative Approaches

With the absence of some window constraints, the implicit
assumption would be that the two streams join in infinite
window sizes. However, due to the nature of the window
constraints, we can deduce more practical values for the
missing constraints. Figure 8(b) shows a 4-way W-join,
where the window constraints between Streams (A, C) and
(A, D) are not specified. The upper bound to the missing
constraint is the shortest path between these two streams.
For example, in Figure 8(b), the window constraint between
Streams (A, D) is MIN(� � � � � � � � , � � � � �). The
calculation of the shortest path is only performed at query
compilation time and no query execution time is affected.

We repeat the construction of the bound evaluation for
all missing window constraints until arriving at a complete
graph. At this point, either one of the conservative ap-
proaches can be used, as described in Section 5.1.

5.2.2 Using a Variation of BEW-join

The BEW-join algorithm drops a tuple, say � , from one
stream if and only if � is more than a time-window older
than all new tuples that arrive at the other joined data
streams. This mechanism can be extended to handle graph
and path W-joins in the following way. For each data
stream, say

�
, we select a subset of the window constraints

that
�

participates in. We refer to this subset as � � .
Tuples that satisfy all the window constraints in � � are
reported as output after being evaluated and filtered by
the refinement step. Tuples that violate all the window
constraints in � � are dropped from

�
during W-join. On

the other hand, tuples that only violate some of the window
constraints are kept (as these tuples may satisfy the window
constraints with a different combination of tuples from the
other streams). For example, in Figure 8(b), the window
constraints for stream � are as follows (assume that 	

�
� � �

represents the timestamp for tuple �):

� � � � � 	
�

� � � � � 	
�

� � � � � � � � �

� 	
�

� � � � � 	
�

� � � � � � � � �

� 	
�

� � � � � 	
�

� � � � � � � � �

A clear advantage of the modified BEW-join approach
over the conservative approaches is that the window size per
stream could be smaller. The advantage is clear when one
of the time windows is much larger than all the other time
windows. In this case, for path and graph W-joins, BEW-
join iterates over less tuples and processes a new tuple faster
than any of the conservative approaches.

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03)
1099-3371/03 $17.00 © 2003 IEEE

6 Related Work

Seshadri et al. [15] provide the SEQ model and imple-
mentation for sequence databases. A sequence is defined as
a set with a mapping function to a defined ordered domain.
The work in [11] provides a data model for chronicles (se-
quences) of data items and discusses the complexity of exe-
cuting a view described by the relational algebra operators.
In [10], the work includes a study of algorithm complex-
ity on computation over data stream. Adaptive query pro-
cessing [3] and execution of continuous query [7] address
reordering of operators during execution and how long run-
ning queries are managed. The COUGAR [5] system and
the work in [17] focus on executing queries over sensor data
and stored data. Sensors are represented as new data types
with special functions to extract the sensor data when re-
quested. The STREAM [4] project discusses the new de-
mands imposed by data streams on data management and
processing techniques. The work on STREAM also ad-
dresses the processing of query operators using bounded
memory space [1], suggesting that some queries over data
streams (e.g., projection with duplicate elimination opera-
tors) may be answered using limited memory by consid-
ering the relationship between the terms in the WHERE
clause.

7 Conclusion

In this paper we identify different variations of sliding
time window joins, referred to as W-join. We describe two
W-join algorithms, BEW-join and the FEW-join. BEW-join
achieves low response time for lower aggregate rates of
data streams. The FEW-join algorithm outperforms the
BEW-join algorithm as the arrival rate of data streams
increases. The FEW-join algorithm processes tuples faster
than the BEW-join algorithm and can support high arrival
rates from the input data streams before starting to thrash.
We compared both algorithms using nested loop and hash
implementations using real implementation on a prototype
stream database system. The performance study validates
our previous conclusion. We proposed alternative ways
to solve the other variations of W-join using adaptations
of our algorithms and utilizing the filter-refine paradigm
and compared their performance. We plan to study similar
techniques for w-join when the data arrival rates are higher
than what the system can handle, and hence will have no
choice but drop some tuples, hopefully the insignificant
ones.

Acknowledgment

We would like to thank Michael Franklin for his valuable
comments.

References

[1] A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom.
Characterizing memory requirements for queries over con-
tinuous data streams. In Proc. Of PODS 2002, June., 2002.

[2] W. G. Aref, D. Barbará, S. Johnson, and S. Mehrotra. Effi -
cient processing of proximity queries for large databases. In
Proc. of the 11th ICDE, March, 1995.

[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously adap-
tive query processing. In Proc. of the SIGMOD Conference,
2000.

[4] S. Babu and J. Widom. Continuous queries over data
streams. In SIGMOD Record Vol 30 No 3 Sept., 2001.

[5] P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards sensor
database systems. In Proc. of the 2nd Int. Conference on
Mobile Data Management, Jan., 2001.

[6] S. Chandrasekaran and M. J. Franklin. Streaming queries
over streaming data. In Proc. of the VLDB Conference, Aug.,
2002.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagracq: A
scalable continuous query system for internet databases. In
Proc. of the SIGMOD Conference, 2000.

[8] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An evalu-
ation of non-equijoin algorithms. In 17th VLDB Conference,
Sept., 1991.

[9] J. Gehrke, F. Korn, and D. Srivastava. On computing cor-
related aggregates over continual data streams. In Proc. of
SIGMOD Conference, 2001.

[10] M. Henzinger, P. Raghavan, and S. Rajagopalan. Comput-
ing on data streams. In Technical Note 1998-011, Digital
Systems Research.

[11] H. V. Jagadish, I. S. Mumick, and A. Silberschatz. View
maintenance issues for the chronicle data model. In Proc. of
PODS, May, 1995.

[12] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window
joins over unbounded streams. In ICDE, Feb., 2003.

[13] S. Madden, M. Shah, J. Hellerstein, and V. Raman. Contin-
uously adaptive continuous queries over streams. In Proc. of
the SIGMOD Conference, June., 2002.

[14] P. Seshadri. Predator: A resource for database research. SIG-
MOD Record, 27(1):16–20, 1998.

[15] P. Seshadri, M. Livny, and R. Ramakrishnan. The design and
implementation of a sequence database system. In Proc. of
22th VLDB Conference, Sept., 1996.

[16] R. T. Snodgrass. Developing Time-Oriented Database Ap-
plications in SQL. Morgan Kaufmann, 2000.

[17] Y. Yao and J. Gehrke. Query processing in sensor networks.
In Proc. of the 2003 Conference on Innovative Data Systems
Research (CIDR), to appear Jan., 2003.

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03)
1099-3371/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

