
Incremental, Online, and Merge Mining of
Partial Periodic Patterns in Time-Series

Databases
Walid G. Aref, Member, IEEE, Mohamed G. Elfeky, and Ahmed K. Elmagarmid, Senior Member, IEEE

Abstract—Mining of periodic patterns in time-series databases is an interesting data mining problem. It can be envisioned as a tool for

forecasting and prediction of the future behavior of time-series data. Incremental mining refers to the issue of maintaining the

discovered patterns over time in the presence of more items being added into the database. Because of the mostly append only nature

of updating time-series data, incremental mining would be very effective and efficient. Several algorithms for incremental mining of

partial periodic patterns in time-series databases are proposed and are analyzed empirically. The new algorithms allow for online

adaptation of the thresholds in order to produce interactive mining of partial periodic patterns. The storage overhead of the incremental

online mining algorithms is analyzed. Results show that the storage overhead for storing the intermediate data structures pays off as

the incremental online mining of partial periodic patterns proves to be significantly more efficient than the nonincremental nononline

versions. Moreover, a new problem, termed merge mining, is introduced as a generalization of incremental mining. Merge mining can

be defined as merging the discovered patterns of two or more databases that are mined independently of each other. An algorithm for

merge mining of partial periodic patterns in time-series databases is proposed and analyzed.

Index Terms—Data mining, time-series databases, incremental mining, online mining.

�

1 INTRODUCTION

DATA mining is defined as the application of data
analysis and discovery algorithms to large databases

with the goal of discovering (predicting) patterns [12]. A
time-series database is a database that contains data over
time, e.g., weather data that contains several measures (e.g.,
the temperature) at different times per day. Other examples
of time-series databases are the stock prices and the power
consumption.

Early work in time-series data mining addresses the

similarity matching problem [1], [11]. Agrawal et al. [2]

develop a model of similarity of time sequences that can be

used for mining periodic patterns. Recent studies toward

similarity matching of time sequences include [8], [20], [22].

Other studies in time-series data mining concentrate on

discovering special kinds of patterns. Agrawal et al. [4]

define a shape definition language for retrieving user-

specified shapes contained in histories (time-series data).

Agrawal and Srikant [6], [23] develop an apriori-like [5]

technique for mining sequential patterns, which is extended

by Garofalakis et al. in [15]. In [7], Bettini et al. develop

effective algorithms for discovering temporal patterns.

Recently, Han et al. [17], [18] define the notion of partial

periodic patterns and present two algorithms for mining

this kind of patterns in time-series databases.

Partial periodic patterns, which are the patterns of
interest in this paper, specify the behavior of the time series
at some, but not all the points in time [17]. For example, a
pattern disclosing that the prices of a specific stock are high
every Friday and low every Tuesday is a partial periodic
pattern. It is partial since it does not describe any regularity
for the other week days. As another example, consider a
temperature time series of a specific town, a partial periodic
pattern may discover that the average temperature is very
high in August and very low in December, but not regular
in the other months.

One of the important research issues in data mining is
incremental mining, which is defined as how to maintain the
discovered patterns over time as data is continuously being
added to the database. The term is originally proposed by
Agrawal and Psaila in [3]. In [9], [13], [24], incremental
techniques are proposed for the maintenance of frequent
sets that are discovered in transaction databases. Ester et al.
[10] develop a scalable incremental clustering algorithm.
Utgoff [25] develops ID5, an incremental version of the
decision tree classifier ID3 [21], yet it is not scalable. In [16],
Gehrke et al. develop a scalable incremental algorithm for
maintaining decision tree classifiers. In [26], Wang and Tan
present an incremental mining algorithm for finding
sequential patterns. Ganti et al. [14] describe algorithms
for incremental mining of frequent sets and clusters with
respect to a new dimension called the data span dimension
that allows user-defined selections of a temporal subset of
the database. To the best of our knowledge, the problem of
incremental mining of periodic patterns in time-series
databases is not studied before.

In practice, expert users need to provide appropriate
thresholds to obtain useful data mining results. Online

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 2, FEBRUARY 2004 1

. The authors are with the Department of Computer Science, Purdue
University, 250 N. University St., West Lafayette, Indiana 47907-2066.
E-mail: {aref, mgelfeky, ake}@cs.purdue.edu.

Manuscript received 20 Aug. 2001; revised 31 May 2002; accepted 19 Nov.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 114815.

1041-4347/04/$17.00 � 2004 IEEE Published by the IEEE Computer Society

mining considers providing the user with the ability to
change the thresholds while the mining process is in
progress. Generally, an online mining algorithm outputs
continuous results as long as the user keeps changing the
thresholds. In the context of association rules [5], an
algorithm for online mining is proposed by Hidber [19].
To the best of our knowledge, the issue of online mining of
periodic patterns in time-series databases is not addressed
before.

In this paper, we present new algorithms for incremental
and online mining of partial periodic patterns in time-series
databases. Our results show that our algorithms perform an
order of magnitude better than the nonincremental nonon-
line ones both for real and synthetic data sets. We define a
new operation, termed merge mining, that is a technique for
merging the mining results of a collection of databases that
are each mined separately. We present an algorithm for
performing the merge mining operation as an adaptation of
our incremental online mining algorithm.

The rest of this paper is organized as follows: In Section 2,
the mining problem of partial periodic patterns is intro-
duced along with the notation that is used throughout the
paper. Section 3 presents the new algorithms for incre-
mental mining of partial periodic patterns. Section 4 shows
how these algorithms can be adapted to address the online
mining problem. The merge mining operation is defined in
Section 5 along with an efficient algorithm for performing it.
In Section 6, a comparison of the performance of the
algorithms is reported. Finally, we conclude our study in
Section 7.

2 MINING PARTIAL PERIODIC PATTERNS

2.1 Notation

Assume that a sequence of n time-stamped features have
been collected in a time-series database. For each time
instant i, letDi be the feature collected and L be the set of all
features. Thus, the time series of features is represented as,
S ¼ D1; D2; . . . ; Dn. For example, in a time-series database
for power consumption, the features collected may be the
power consumption rates of a certain customer per hour, or
in a time-series database for stock prices, the features
collected may be the stock prices of a specific company.
Hence, if we quantize the time-series into levels and denote
each level (e.g., high, medium, etc.) by a letter, then the set

of features L ¼ fa; b; c; . . .g, and S is a string of length n over
L.

A pattern is a sequence s ¼ s1 . . . sp, such that p is the
length of the pattern and 8i ¼ 1 . . . p, si � L. The L-length of
a pattern s is defined as

P
sij j. A pattern with L-length j is

also called a j-pattern. A pattern s0 ¼ s01 . . . s
0
p is called a

subpattern of another pattern s if, for each position i,
s0i � si. For example, the pattern afb; cg � fd; egf , which is of
length 5, is a 6-pattern; both of the two patterns ac � � f and
� � � df are subpatterns of afb; cg � fd; egf , and none of the
two patterns abc � f and ac � f � are subpatterns of
afb; cg � fd; eg f . Note that the symbol � is used instead of
�, and that we omit the brackets when any si is a singleton
(contains only one element). Clearly, the L-length of any
pattern is greater than or equal to the L-length of any of its
subpatterns.

The sequence S can be divided into disjoint patterns of
equal length p, i.e., S ¼ S1; S2; . . . ; Si; . . . , where Si ¼
Dipþ1; . . . ; Dipþp for i ¼ 0 . . . n=pb c � 1, and p is the period

of that sequence. Each pattern Si is called a period segment.
For example, for the mentioned power-consumption time-
series database, a typical value for the period is 24, which
divides the sequence into patterns each of which represents
a day.

A period segment Si matches a pattern s if s is a
subpattern of Si. The frequency count of a pattern in a time
series is the number of period segments of this time series
that matches that pattern. The confidence of a pattern is
defined as the division of its frequency count by the number
of period segments in the time series (n=pb c). A pattern is
called frequent if its confidence is greater than or equal to a
minimum threshold. For example, in the series abbaebdced,
if the period is 3, then there are three period segments and
the pattern fa; dg � b, has a frequency count of 2, and a
confidence of 2=3.

2.2 The Max-Subpattern Hit Set Algorithm

In this section, we overview the algorithm given in [17],
termed the max-subpattern hit set algorithm, that mines for
partial periodic patterns in a time-series database. The
algorithm builds a tree, called the max-subpattern tree
(refer to Fig. 1 for illustration), whose nodes represent
candidate frequent patterns for the time-series. A node is a
parent to another node if the following two conditions are
satisfied: 1) the pattern represented by the parent node has
an L-length that is larger than the L-length of the pattern

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 2, FEBRUARY 2004

Fig. 1. An example of a max-subpattern tree.

represented by the child node by exactly 1, and 2) the
pattern represented by the child node is a subpattern of the
pattern represented by the parent node. These two condi-
tions mean that the child node pattern is similar to the
parent node pattern after removing one letter. The link
between a parent and a child node is labeled by that letter.
Each node has a count value that reflects the number of
occurrences of the pattern represented by this node in the
entire time-series. Hence, when a pattern from the time-
series is encountered, the corresponding node count is
incremented by 1. Yet, this is not enough since all the counts
of the nodes that correspond to its subpatterns should also
be incremented. For example, when the pattern acd � is
encountered, it also means that the pattern �cd � is
encountered, and so on, for all its subpatterns recursively.
This is a costly operation. Instead, the node that corre-
sponds to the encountered pattern is the only one whose
count will be incremented and, then, the exact frequency
count of any pattern will be the summation of the count of
its corresponding node and all the counts of its parent
nodes along the path of the tree to reach this node.

The resulting data structure will be a graph rather than a
tree since one pattern can be a subpattern of two or more
patterns. For example, the pattern �cd � is a subpattern of
the pattern acd � as well as the pattern �fb; cgd � . In order
to preserve the data structure as a tree and decrease the
complexity of the insertion and search operations, not all
the parent-child links will be kept. This will imply an
additional step to determine all the candidate parents of a
given child in order to calculate its exact frequency count.
Fig. 1 gives an example of the max-subpattern tree. Notice
that the dotted lines represent those parent-child links that
are not kept.

Clearly, the root node of the tree will represent the
candidate frequent pattern that all the other candidate
frequent patterns are subpatterns of. Therefore, this pattern
will be having the maximum L-length among all the
candidate frequent patterns and so it is called the max-

pattern Cmax. To determine this pattern, all the 1-patterns
are extracted from the time-series and are kept in a list
called L1 along with their respective counts. Then, the set of
frequent 1-patterns, termed F1, is generated. Cmax is defined
to be the union of all the frequent 1-patterns such that the
union operation between two patterns s and t is defined as
s [tð Þi¼ si [ti. For example, the union of the two patterns
a � cd � and b � e � f is fa; bg � fc; egdf . For example, if
F1 ¼ fa � ��; �b � �; �c � �; � � d�g, then Cmax ¼ afb; cgd � .

The max-subpattern tree is built incrementally as
follows: The sequence is divided into period segments.
For each period segment, its candidate frequent pattern is
determined and a search operation in the tree for the node
of this pattern is performed. If that node exists, then its
count is incremented. Otherwise, a new node is created for
this pattern and its count is set to 1. The candidate frequent
pattern in a period segment is called a hit and is defined to
be the intersection between the period segment and the
max-pattern Cmax, such that the intersection operation
between two patterns s and t is defined as s \ tð Þi¼ si \ ti.
For example, if Cmax ¼ afb; cgd � and Si ¼ abed, then its hit
is ab � �.

Therefore, the algorithm for mining the partial periodic
patterns in a time-series database can be summarized in the
following steps:

1. The time-series is divided into a number of period
segments according to the value of the period.

2. All the 1-patterns are inserted into the list L1 along
with their respective counts, and then the patterns
that happen to be frequent according to the specified
threshold are inserted into the set F1.

3. The patterns in F1 are unioned to form the max-
pattern Cmax.

4. Each period segment is intersected with Cmax, and
the resulting pattern is either inserted in the tree if
the pattern is a new one, or its corresponding node
count is incremented.

5. Finally, the exact frequency count of each pattern is
calculated by adding the count of its node to the
counts of all the nodes of the patterns that this
pattern is a subpattern of.

As an example for the last step, in Fig. 1, the frequency
count of �cd � is 80 (18 for itself, 2 for �fb; cgd � , 50 for
acd � , and 10 for afb; cgd �). Notice that the frequent 1-
patterns are not inserted into the tree since they are already
stored in F1.

3 NEW ALGORITHMS FOR INCREMENTAL MINING OF

PARTIAL PERIODIC PATTERNS

In this section, we define the incremental mining of partial
periodic patterns problem and present new algorithms for it.

3.1 Problem Definition

Generally, the problem of incremental mining takes as input
an augmented database S0 that is composed of a database S
and new data items that are added to S, i.e., if the time-
series S ¼ D1; D2; . . .Dn is incremented by a data block ofm
features, then S0 ¼ D1; D2; . . .Dn;Dnþ1; Dnþ2; . . . ; Dnþm. The
incremental mining problem assumes that the database S is
previously mined. Hence, sufficient information about the
database S is collected during the mining process and is
currently available. The incremental mining problem
intends to discover the frequent patterns in S0 making use
of the available information. According to the algorithm in
Section 2.2, this available information includes the max-
subpattern tree T and the 1-patterns list L1.

First, the unit by which the data is incremented should
be defined. Clearly, the database will be considered
incremented if at least one period segment is added. Note
that one period segment contains a number of features
(letters) that is equal to the length of the period. This means
that the database will not be considered incremented if the
number of the features added is less than the length of the
period, i.e., when m < p.

Each added period segment contains a number of
1-patterns that is equal to the value of the period. These
1-patterns are inserted into the 1-patterns list L1. If the
inserted 1-pattern is not already there, it is added;
otherwise, its count is incremented. Assume that there are
k period segments added to the data (i.e., m ¼ kp). Hence,
any 1-pattern is incremented by a value that is at least 0 and

AREF ET AL.: INCREMENTAL, ONLINE, AND MERGE MINING OF PARTIAL PERIODIC PATTERNS IN TIME-SERIES DATABASES 3

is at most k. Since the number of period segments in the
database is also incremented by k, the set F1 may be affected
in the following way. Let c be the total number of period
segments in the database S, t be the confidence threshold, x
and x0 be the frequency counts of any given 1-pattern in S
and S0, respectively. For each 1-pattern in one of the added
period segments, there are four cases:

1. Case 1: The 1-pattern is infrequent in both S and S0

(i.e., x=c < t and x0=ðcþ kÞ < t).
2. Case 2: The 1-pattern is infrequent in S and becomes

frequent in S0 (i.e., x=c < t and x0=ðcþ kÞ � t) and,
hence, is added to the set F1.

3. Case 3: The 1-pattern is frequent in S and it remains
frequent in S0 (i.e., x=c � t and x0=ðcþ kÞ � t).

4. Case 4: The 1-pattern is frequent in S and it becomes
infrequent in S0 (i.e., x=c � t and x0=ðcþ kÞ < t) and,
hence, is removed from the set F1.

Cases 2 and 4 result in updating the set F1. Recall that the
max-pattern Cmax, which is the root node of the max-
subpattern tree T , is calculated by unioning all the patterns
of the set F1. Hence, if F1 is updated, Cmax is also updated,
and the max-subpattern tree T should be updated accord-
ingly.

3.2 Entire-Segments (ES) Incremental Algorithm

Let C0
max denote the max-pattern Cmax after update. Let cj be

the component at position j ofCmax, and c0j be the component
at the same position of C0

max. If c
0
j 6¼ cj, then updating cj to c0j

implies deletion and/or insertion of one or more letters. For
example, if Cmax ¼ afb; cgd � and F1 is updated as follows:
The 1-pattern �c � � is removed and the two 1-patterns �e � �
and � � �f are added, thenC0

max ¼ afb; egdf , i.e., the letter c at
position 2 is deleted and then the letters e at position 2 and f
at position 4 are inserted.

Hence, in order to reflect the update of Cmax, the
proposed incremental algorithm contains two main steps
to update the max-subpattern tree T by handling the
deletion and insertion events. The first step updates the
max-subpattern tree T such that the resulting tree Tt

contains no pattern that contains one of the deleted letters.
The second step updates the max-subpattern tree Tt such
that the resulting tree T 0 contains all the patterns that
contain at least one of the inserted letters.

Let Ct
max be the pattern resulting from removing the

deleted letters from Cmax, e.g., in the previous example,
Ct

max ¼ abd � . Ct
max can be calculated easily by intersecting

Cmax and C0
max. Clearly, if C

t
max equals Cmax, then there are

no deleted letters; otherwise, Ct
max is a subpattern of Cmax.

Hence, if there is a node in T that represents Ct
max, then that

node will become the new root of Tt. Otherwise, a new

node is created. Consider the max-subpattern tree given in
Fig. 1. Furthermore, assume that C0

max ¼ afb; egdf . Hence,
Ct

max ¼ abd � , and the tree Tt initially contains only two
nodes: one for the pattern abd � with a count of 40 and one
for the pattern ab � � with a count of 2. There are two
aspects concerning the resulting tree Tt; the counts must be
fixed, and the nonlinked children from T should be added.
To consider both of these two aspects concurrently, the
max-subpattern tree T is scanned and, for each node, the
intersection of its pattern with Ct

max is inserted into Tt with
the same count. We call this operation tree update operation.

For example, in Fig. 1, Cmax ¼ afb; cgd � . Assume that
C0

max ¼ afb; egf , so Ct
max ¼ abd � . The initial tree Tt has only

two nodes that contain the patterns abd �with a count of 40
and the pattern ab � � with a count of 2. Performing the tree
update operation results in inserting the following patterns
in Tt (abd � 10, �bd � 2, a � d � 50, abd � 40, ab � �32, �bd � 8,
a � d � 5, ab � �2). Fig. 2 gives the resulting max-subpattern
tree Tt. Note that the counts of the nodes in the resulting
tree Tt must be reset to zero before the tree update operation
starts.

Recall that C0
max is the updated max-pattern due to

updating F1. Therefore, C
0
max should be the pattern of the

root node of the max-subpattern tree T 0 that must result
from the second step. The input max-subpattern tree for
this step is Tt that results from the previous step. Since
Ct

max, the root node pattern of Tt, is calculated by
intersecting Cmax and C0

max, then Ct
max is a subpattern of

C0
max. Hence, as an initial action, if Ct

max 6¼ C0
max, a new

root node for T 0 is created that contains the pattern C0
max,

and the root node of Tt becomes a child for that new root
node. The problem now is that all the information we
have (the max-subpattern tree T and the list L1) is not
enough to determine the counts of the patterns that
contain at least one of the inserted letters since these
patterns were not originally included in T . For example,
consider Fig. 3 that gives the result of applying the initial
action on the max-subpattern tree given in Fig. 2. Both
the patterns afb; egdf and abdf have appeared as nodes
in the new tree, but their counts cannot be determined.
Also, there might be other frequent patterns that should
appear in T 0, e.g., ab � f . Hence, the time-series S should
be scanned again in the same way as the scanning step in
the max-subpattern hit set mining algorithm to determine

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 2, FEBRUARY 2004

Fig. 2. The max-subpattern tree of Fig. 1 after deleting the letter c.

Fig. 3. The max-subpattern tree of Fig. 2 after inserting the two letters e

and f.

the frequent patterns that should appear in T 0 as well as
their exact counts. Fig. 4 gives the tree T 0 after this scan.

In the tree given in Fig. 2, the pattern abd � results from
different data segments. Two of them are abde and abdf .
Rescanning the time-series S will reconsider both those
segments. Reconsidering abde is easy since its hit (its
intersection with C0

max) is still abd � which is already a
node in the tree. Yet, reconsidering the segment abdf is a bit
nontrivial since its hit now is abdf and, hence, the count of
its node should be incremented, while the count of the node
abd � should be decremented in order to correctly maintain
the counts of the nodes. Therefore, we can notice that the
only segments that need to be considered in the scanning
step are those segments that contain at least one of the
inserted letters. If we maintain an inverted list associated
with each 1-pattern in L1 that contains the period segments
in which this 1-pattern appears, then we can avoid the scan
over the time series S and consider only the segments in the
lists of the 1-patterns that are added to F1. This approach
will avoid the additional scan over the time series in our
proposed algorithm.

Since the max-subpattern tree is updated to reflect the
change of the max-pattern Cmax, the added period segments
are scanned and their hits are inserted in the tree. Therefore,
the max-subpattern tree T 0 now reflects the new time-series
database S0.

The ES algorithm for incremental mining of partial
periodic patterns is outlined in the following steps:

1. The list L1 is updated to include the 1-patterns of the
added period segments and then the set F1 is
updated consequently (only if needed).

2. The patterns in F1 are unioned to form the new max-
pattern C0

max.
3. The tree is updated appropriately according to the

previous discussion to reflect the change of the max-
pattern (the pattern of the root node).

4. Each one of the added period segments is intersected
with C0

max, and the resulting pattern is either inserted
in the tree if it is new, or its corresponding node
count is incremented.

5. Finally, the exact frequency count of each pattern is
calculated by adding the count of its node to the
counts of all the nodes of the patterns that this
pattern is a subpattern of.

3.3 Analysis

A quick analysis of the ES algorithm shows that there is at
most one scan over the database if there are inserted letters.
This scan is an expensive operation. Although we can avoid
scanning the database by maintaining inverted lists, we
prove below that the probability of performing this scan is
very low if the data size is very large, which is the case in
most practical applications.

Assume that the added period segments will be
uniformly distributed over the 1-patterns they have. Hence,
for the 1-pattern si whose frequency count is xi, the new
count of this pattern will be x0

i ¼ xi þ kðxi=cÞ. If this pattern
was not already in F1 since xi=c < t, where t is the
confidence threshold, then x0

i=ðcþ kÞ ¼ xiþkðxi=cÞ
cþk ¼ xi=c < t

and, hence, it will not be added to F1, i.e., the scan is not
required. If this uniform distribution is missed by a value of
�i, i.e., x0

i ¼ xi þ kðxi=cÞ þ �i, then, in order to add this
pattern to F1, xi=cþ �i=ðcþ kÞ should be larger than t.
Assuming that xi=c ¼ t� "i, then it should be that
�i > "iðcþ kÞ. But, kðxi=cÞ þ �i < k, then �i < kð1� tþ "iÞ.
Fig. 5 gives a plot of these two inequalities for a 1-pattern
segment si. The solution of these inequalities lies in the
shaded area of the plot. From the figure, we deduce that, for
large values of c, i.e., c > 1�t

"i
k 8i, no solution is found for the

inequalities. Therefore, the probability that new patterns are
added to F1 is very low and, hence, the probability of
performing the additional scan over the database is very
low as well. In other words, when the database size is large,
the cost of the scan operation will be high. However,
according to our discussion here, the scan operation will be
unlikely to happen in this case. Fig. 5 also shows that
increasing the value of t will decrease the shaded area and,
hence, decrease the probability of performing the additional
scan.

The inverted lists approach will avoid the additional
scan over the database in our proposed algorithm, but it
requires additional space. This additional space is given by
the sum of the counts of all 1-patterns in L1, which equals to
the space occupied by the original time-series times the
value of the period. Yet, any information that can be
obtained from the original time-series can also be obtained
now from L1 with the inverted lists. Therefore, this
representation is an alternative for the original representa-
tion of the data and, hence, we no longer require the
original time-series. It is worth mentioning that this
inverted lists approach was proposed in a similar way in
[14] for incremental mining of frequent itemsets.

AREF ET AL.: INCREMENTAL, ONLINE, AND MERGE MINING OF PARTIAL PERIODIC PATTERNS IN TIME-SERIES DATABASES 5

Fig. 4. The max-subpattern tree of Fig. 3 after scanning the time-series.

Fig. 5. A plot of the inequalities relations between � and c for one

1-pattern.

3.4 Block (BL) Incremental Mining

The Entire-Segments (ES) Incremental Mining algorithm
discussed in the previous sections assumes that all the
k new segments will be dealt with simultaneously. Another
algorithm based on the same approach is to divide the k new
period segments into blocks of equal size, say b, and to
consider the same updating technique several times over
each block independently. This algorithm is called Block

(BL) Incremental Mining. The special case when b ¼ 1 is
called Single-Segment (SS) Incremental Mining. Section 6
gives a comparison among these algorithms based on the
performance analysis.

3.5 Merge (ME) Incremental Mining

Another approach for incremental mining of partial
periodic patterns is to consider the newly added period
segments as a stand-alone time-series database and apply
the original mining algorithm over this time-series
separately from the original time series database. The
result will be new instances of the structures (the list L1

and the max-subpattern tree T). Then, the algorithm
merges these structures with the corresponding ones of
the original time-series database. We term this algorithm
the Merge Incremental Mining Algorithm. Let T and T 0

denote the max-subpattern trees of the original time-series
database and the added time-series, respectively. Then,
the max-subpattern tree of the overall time-series is
T 00 ¼ T [T 0. This union operation is described below.
Similarly, Let L1 and L0

1 denote the 1-patterns lists of the
original time-series and the added time-series, respec-
tively. Then, the 1-patterns list of the overall time-series is
L00
1 ¼ L1 [L0

1. The latter union operation is simple to
perform. For each pattern s 2 L1 with count x and s =2 L0

1,
add s to L00

1 with the same count x. For each pattern
s 2 L0

1 with count x and s =2 L1, add s to L00
1 with the same

count x. Finally, for each pattern s 2 L1 with count x and
s 2 L0

1 with count x0, add s to L00
1 with count xþ x0.

To merge the two max-subpattern trees (T [T 0) into one
tree (T 00), first we determine the root node pattern (max-
pattern) of T 00. Following the same notation, let Cmax and
C0

max be the max-patterns of T and T 0, respectively. Recall
that those max-patterns capture the frequent 1-patterns of
their corresponding time-series. Clearly, it is not possible
that a pattern would be frequent in the overall time-series
without being frequent in at least one of the two sub time-
series (the original and the added). Therefore, the max-
pattern of the overall time-series can be determined by
unioning Cmax and C0

max, i.e., C00
max ¼ Cmax [C0

max. Then,
each tree is updated such that its root node pattern contains
the calculated max-pattern C00

max using the same technique
of the previously proposed algorithm. Recall that the
update operation may trigger a rescan of the corresponding
database and this scan can be avoided using the inverted
lists approach. Now, the two trees T and T 0 have the same
root node pattern. Without loss of generality, let T 0 be the
tree with smaller number of nodes. Initially, T 00 is set equal
to T . Then, T 0 is scanned and, for each node, its pattern is
inserted into T 00. Notice that, if a subpattern does not belong
to the tree T or the tree T 0, then it cannot belong to T 00.

3.6 Data Span Dimension

In [14], Ganti et al. introduce a new dimension to the
problem of incremental mining called the data span dimen-
sion that offers two options. The unrestricted window option is
similar to the regular incremental mining problem where all
the data is considered for mining. In the most recent window
option, a specified number w of the most recently segments
is the only data to be considered for mining. The proposed
model in [14] (GEMM) to allow for this most recent window
option can be generalized for any incremental model
maintenance algorithm. Yet, the full generality of GEMM
comes to the fore for classes of models that cannot be
maintained under deletions of tuples [14].

Our proposed incremental model can be maintained
easily under deletion of segments. Therefore, if the user
specifies a window w of segments, then the segments that
lie before this window should be removed from the
maintained model. Recall that the maintained model
includes the 1-patterns list L1, the max-subpattern tree,
and the inverted lists (if used). The deletion operation of a
segment from the maintained model is analogous to the
insertion operation discussed so far. Deleting a segment
from L1 is performed by decrementing the count of all the
1-patterns in L1 that are contained in this segment, and also
deleting this segment from the inverted list associated with
the 1-patterns. Deleting a segment from the max-subpattern
tree is performed by decrementing the count of the node
that represents the hit pattern of this segment.

4 ONLINE MINING

Online mining can be defined as maintaining the discov-
ered patterns over the whole range of thresholds. Practi-
cally, under online mining, the user should be able to
change the thresholds during the mining process in order to
refine the mining results. Online mining should not restart
the mining process each time the user changes the thresh-
olds; otherwise, it would be so inefficient and will not be
considered online.

4.1 Online Mining of Partial Periodic Patterns

Recall that the mining algorithm of partial periodic patterns
proposed in [17] and discussed in Section 2.2 uses the
confidence threshold in extracting the frequent 1-patterns
set F1 from the 1-patterns list L1 and in extracting the
frequent patterns from the max-subpattern tree T . Hence,
changing the confidence threshold during building the 1-
patterns list L1 has no effect. Yet, changing the confidence
threshold during building the tree is the main issue since it
may result in updating the set F1. As discussed in
Section 3.1, updating F1 will result in updating the root
node, Cmax, of T . In other words, the max-subpattern tree T
should be rebuilt.

Let l be the number of features scanned so far from the
time-series S ¼ D1; D2; . . .Dl�1; Dl;Dlþ1; . . . ; Dn. Clearly,
since the time series is first divided into period segments
of length p, l ¼ kp for a certain integer k. It can be shown
now that the problem is transferred to an incremental
problem in which n� l features are added to the time-series
database of which l features were mined before.

In other words, if the user changes the confidence
threshold value, F1 is updated accordingly and so will the

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 2, FEBRUARY 2004

max-pattern Cmax. Let C0
max denote the new max-pattern

after the update. The process of building the max-
subpattern tree is stopped (l features are scanned so far).
The tree is updated to have a new root node that contains
the pattern C0

max in a similar way to what was discussed in
Section 3.2. Then, the process resumes considering the
remaining n� l features of the time-series.

This online algorithm has at most one rescan over the
l features per every change of the confidence threshold.
Although this algorithm is theoretically costly, the follow-
ing analysis shows that it is practically not.

Let t and t0 be the confidence thresholds before and after
the change, respectively. If t0 < t, then more patterns
become frequent and new 1-patterns will be added to F1.
Accordingly, letters will be inserted into C0

max and a rescan
of the database will be needed. If t0 > t, some patterns will
be removed from F1. Accordingly, there will be deleted
letters from C0

max and no inserted letters. Hence, no rescan is
needed. In practice, it is more appropriate that the user
starts the mining process with lower threshold values, gets
many frequent patterns, and then tries to increase those
values in order to obtain less frequent patterns. Hence, the
proposed online algorithm is practically efficient. Note that
using the inverted lists approach discussed before will
avoid a rescan under all conditions.

5 MERGE MINING

Merge mining can be defined as merging the discovered
patterns of two or more databases that are mined
independently of each other. This operation can be viewed
as a generalization of incremental mining. The input is two
or more previously mined databases and it is required to
discover the patterns from the combined database without
applying the mining algorithm again. This problem arises in
practice, e.g., in a multilocation company that has a
database for each one of its branches. Merging the databases
and running the mining algorithm again over the entire
database may not be appropriate and is time consuming.
Instead, merge mining is how to merge the mining results
of the databases to discover the patterns of the combined
database. Another application of merge mining is in parallel
data mining where the database is composed into a number
of smaller databases; each is mined separately and the
results are combined using merge mining. This procedure
can be recursively performed when mining each of the
small databases.

The input to the merge mining algorithm is a number of

max-subpattern trees and the same number of 1-pattern

lists, each belongs to one of the databases to be merged. The

proposed algorithm is the same as the algorithm described

in Section 3.5 for merge incremental mining. We obtain the

max-pattern Cmax of the combined time-series by the union

operation Cmax ¼ [
m

i¼1
Ci

max such that m denotes the number

of time-series databases to be combined and Ci
max is the

max-pattern of the time-series number i. Then, each tree is

updated to have a root node that contains the combined

max-pattern. Now that all the trees have the same root node

pattern, the one that has more nodes is selected and all the

other trees are inserted into that one, which becomes the

combined tree that contains the aggregate mining results of

the combined time-series databases.

6 PERFORMANCE STUDY

In our experiments, we use two real databases. The first one
is a relatively small database that contains the daily power
consumption rates of some customers over a period of one
year. It is made available through the CIMEG1 project. The
database size is approximately 5 Megabytes. The appro-
priate period for this data is 7 that corresponds to weekly
power consumption in units of days. The second database
contains sanitized data of timed sales transactions for some
Wal-Mart stores over a period of 15 months. The timed sales
transactions data has a size of 130 Megabytes. An appro-
priate period for this data is 24 that corresponds to daily
transactions in units of the number of transactions per hour.
In the experiments using the power consumption database,
the time-series data is incremented by 100 segments of
period 7, i.e., 700 features, while in the experiments using
the timed sales transactions database, the data is incremen-
ted by 30 segments of period 24, i.e., one month of data. In
both databases, the numeric data values are quantized into
five levels: very low, low, medium, high, and very high. For the
power consumption data, quantization is done based on
discussions with domain experts (very low corresponds to
less than 6,000 Watts/Day, and each level has a 2,000 Watts
range). For the timed sales transactions data, quantization is
based on manual inspection of the values (very low
corresponds to transactions per hour, low corresponds to
less than 200 transactions per hour, and each level has a 200
transactions range).

We study the performance of algorithms ES, BL, SS, and
ME, described in Sections 3.2, 3.4, and 3.5. Table 1 gives the
results for different values of confidence threshold using
the power consumption database. The results show that all
the incremental algorithms, proposed in the paper, perform
better than the nonincremental mining algorithm.

While the nonincremental mining algorithm takes
approximately 30 seconds for mining the entire database,
for different values of confidence threshold, the proposed
incremental algorithm ES takes around 30 milliseconds.
There is an additional overhead time that is paid once by

AREF ET AL.: INCREMENTAL, ONLINE, AND MERGE MINING OF PARTIAL PERIODIC PATTERNS IN TIME-SERIES DATABASES 7

1. CIMEG: Consortium for the Intelligence Management of the Electric
Power Grid (http://helios.ecn.purdue.edu/~cimeg).

TABLE 1
Sample Results Using Power Consumption Database

the incremental algorithms that involve storing the max-
subpattern tree and the 1-patterns list (column 3 of Table 1)
(30-40 milliseconds). Also, there is some additional storage
needed to store these data structures, but is very minor
compared to the size of the database (less than 0.1 percent of
the size of the database). Note that the inverted lists
approach is not used in this experiment.

Using the timed sales transactions database for the same
experiment gives similar results (Table 2). While nonincre-
mental mining takes more than 100 seconds, the two
proposed incremental algorithms, ES and ME, take time
that ranges from about six seconds for small confidence
threshold values to less than one second for large con-
fidence threshold values.

Table 3 gives a comparison of the running time of the
proposed incremental mining algorithms while varying the
period size (for a constant confidence threshold of 10 percent)
using the power consumption database. The execution times
of the nonincremental mining algorithm are given in the
second column of this table. The table shows that the single-
segment incremental mining algorithm (SS) is worse than the
other algorithms, especially with large period sizes. This is
clear since the SS algorithm considers the added segments
one-by-one and may require more than one scan over the
database. These results show that the entire-segments
incremental algorithm (ES) is better than the merge incre-
mental algorithm (ME) for large period values.

Fig. 6 gives a comparison of the incremental mining
algorithms while varying the confidence threshold for a
constant period size of 7 for the power consumption
database. The figure shows that the single segment
incremental mining algorithm (SS) is worse than the other
two incremental algorithms. Note that the high drop in
execution time for SS, which happens at confidence thresh-
old 55 percent, occurs because of the drop in the max-
subpattern tree size. In this case, the number of frequent

1-patterns decreases and so is the L-length of the max-
pattern Cmax (the root node).

The scale of Fig. 6 does not show a clear comparison
between algorithms ES and ME. In Fig. 7, we exclude
algorithm SS from the comparison. Fig. 8 gives the results of
the same study using the timed sales transactions database.
The results show that algorithm ES performs better than
ME. Note that, in Fig. 7, a high value is encountered at
confidence threshold 50 percent for algorithm ME. The
reason is that at the 50 percent confidence threshold, the
number of frequent patterns in the original database
happens to be less than the number of frequent patterns
in the added period segments and, hence, the max-
subpattern tree size of the original database is less than
the max-subpattern tree size of the added segments.

There are other factors that may affect the performance of
the ES and ME algorithms. Namely, we study the following

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 2, FEBRUARY 2004

TABLE 2
Sample Results Using Timed Sales Transactions Database

TABLE 3
Results with Respect to the Period Size Using Power Consumption Database

Fig. 6. Time comparison with respect to the confidence threshold (power
consumption database).

Fig. 7. Excluding single-segment incremental mining algorithm from

Fig. 6.

factors: the number of levels into which the data is
quantized, the period length of the periodic patterns, and
the size of the increment part to the original database. We
synthesize controlled data based on the timed sales transac-
tions data. Using a synthesized data set with a variable
number of quantization levels, Fig. 9 shows that the
difference between the performance of the ES algorithm
and that of the ME algorithm is not affected much as the
number of quantization levels varies. Using synthesized
data sets, each of which has the same size but a different
value of the period length, Fig. 10 shows an increase trend in
the time with the increase in the period length. A similar
behavior is shown in Table 3. The drops in the time that
occur frequently prove that the performance depends
mainly on the tree size of the original database. Fig. 11
shows an expected increase in the time with the increase of
the size of the increment part to the database. The three
figures show that the ES algorithm always outperforms the
ME algorithm.

We study the performance of the block incremental
algorithm for different block sizes, while varying the
confidence threshold, with a constant period size (equals
to 7 for the power consumption database and 24 for the
timed sales transaction data). Fig. 12 and Fig. 13 give the
comparison results using the two databases, respectively.
They illustrate that increasing the block size reduces the
probability of frequent patterns and, hence, decreases the
execution time. In Fig. 12, notice that there is a drop in
execution time that is encountered at confidence threshold
60 percent for all the algorithms. The reason is that the

number of frequent patterns in the added segments
happens to be zero from this point on. Note also that there
is a sudden increase in execution time that happens at
confidence threshold 75 percent for the smallest two block
sizes. In this case, the root of the max-subpattern tree gets
updated, which implies that the max-subpattern tree is
modified significantly, as described in Section 3.2. This
results in an increase in execution time.

We study the performance of Algorithm ES while
considering the inverted lists approach, discussed in
Sections 3.2 and 3.3, to avoid the one scan over the
database. Since the inverted lists approach is useful only
when this scan is needed, i.e., when there are inserted
letters in Cmax as discussed earlier, we compare the
performance of the algorithm when this scan is actually
needed. Table 4 illustrates that, in those particular cases, the
inverted lists approach outperforms the approach of
scanning the database with average speedup of 24 percent.
Of course, this is at the expense of the additional space
occupied by the inverted lists.

Finally, we study the performance of the proposed
algorithm for the merge mining operation. Using the timed
sales transactions database, Table 5 shows the results of
merge mining two time-series for two specific stores versus
mining the combined time-series. The results show that we
achieve a high speedup for merge mining (column 4) over
mining the combined time-series (column5).Note thatmerge
mining assumes that the two time-series were mined
previously. Yet, the results show that the total time for

AREF ET AL.: INCREMENTAL, ONLINE, AND MERGE MINING OF PARTIAL PERIODIC PATTERNS IN TIME-SERIES DATABASES 9

Fig. 8. Time comparison with respect to the confidence threshold (timed
sales transactions database).

Fig. 9. Time comparison with respect to the number of quantization levels. (a) 10 percent confidence threshold and (b) 50 percent confidence
threshold.

Fig. 10. Time comparison with respect to the period length at

50 percent confidence threshold.

mining each time-series, and then for applying the merge
mining algorithm, is again lower than the time needed for
mining the combined time-series. We believe that this
happens because of the increased size of the combined
time-series.

7 CONCLUSION

Various new algorithms are proposed for the incremental
mining problem, which also prove to fit the online mining
problem. The performance analysis shows that the entire-
segments incremental mining algorithm is the best among the

proposed incremental algorithms. The inverted lists ap-
proach is very expensive, although it saves time as it avoids
rescanning the database.

We define a new problem of merge mining and propose
an algorithm for solving it in the context of partial periodic
patterns in time-series databases. Performance analysis
shows that merge mining is a promising problem to be
investigated more in the context of other types of mining
patterns and other types of databases.

ACKNOWLEDGMENTS

This work has been supported in part by the US National

Science Foundation under grants IIS-0093116, EIA-9972883,

and IIS-0209120, the ARO/EPRI under GrantW08333-02, the

Purdue Research Foundation, the NAVSEA/NSWC-Crane,

jointly with the Purdue University Center for Sensing

Science and Technology under the Integrated Detection of

Hazardous Materials (IDHM) Program, and by grants from

NCR and Wal-Mart.

REFERENCES

[1] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient Similarity
Search in Sequence Databases,” Proc. Fourth Int’l Conf. Foundations
of Data Organization and Algorithms, 1993.

[2] R. Agrawal, K. Lin, H. Sawhney, and K. Shim, “Fast Similarity
Search in the Presence of Noise, Scaling, and Translation in Time-
Series Databases,” Proc. 21st Int’l Conf. Very Large Databases, 1995.

[3] R. Agrawal and G. Psaila, “Active Data Mining,” Proc. First Int’l
Conf. Knowledge Discovery and Data Mining, 1995.

[4] R. Agrawal, G. Psaila, E. Wimmers, and M. Zait, “Querying
Shapes of Histories,” Proc. 21st Int’l Conf. Very Large Databases,
1995.

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 2, FEBRUARY 2004

Fig. 11. Time comparison with respect to the increment size. (a) 10 percent confidence threshold and (b) 50 percent confidence threshold.

Fig. 12. Time comparison for different sizes of block incremental mining

(power consumption database).

Fig. 13. Time comparison for different sizes of block incremental mining

(timed sales transactions database).

TABLE 4
Comparison Results with Respect to the Inverted Lists

Approach (Power Consumption Database)

[5] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 20th Int’l Conf. Very Large Databases, 1994.

[6] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
11th Int’l Conf. Data Eng., 1995.

[7] C. Bettini, X. Wang, S. Jajodia, and J. Lin, “Discovering Frequent
Event Patterns with Multiple Granularities in Time Sequences,”
IEEE Trans. Knowledge and Data Eng., vol. 10, no. 2, pp. 222-237,
Mar./Apr. 1998.

[8] K. Chan and A. Fu, “Efficient Time-Series Matching by Wavelets,”
Proc. 15th Int’l Conf. Data Eng., 1999.

[9] D. Cheung, J. Han, V. Ng, and C. Wong, “Maintenance of
Discovered Association Rules in Large Databases: An Incremental
Updating Technique,” Proc. 12th Int’l Conf. Data Eng., 1996.

[10] M. Ester, H. Kriegel, J. Sander, M. Wimmer, and X. Xu,
“Incremental Clustering for Mining in a Data Warehousing
Environment,” Proc. 24th Int’l Conf. Very Large Databases, 1998.

[11] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast
Subsequence Matching in Time-Series Databases,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, 1994.

[12] Advances in Knowledge Discovery and Data Mining, U. Fayyad, G.
Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, eds. AAAI/MIT
Press, 1996.

[13] R. Feldman, Y. Aumann, A. Amir, and H. Mannila, “Efficient
Algorithms for Discovering Frequent Sets in Incremental Data-
bases,” Proc. SIGMOD Workshop Data Mining and Knowledge
Discovery, 1997.

[14] V. Ganti, J. Gehrke, and R. Ramakrishnan, “DEMON: Mining and
Monitoring Evolving Data,” Proc. 16th Int’l Conf. Data Eng., 2000.

[15] M. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT: Sequential
Pattern Mining with Regular Expression Constraints,” Proc. 25th
Int’l Conf. Very Large Databases, 1999.

[16] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh, “BOAT:
Optimistic Decision Tree Construction,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, 1999.

[17] J. Han, G. Dong, and Y. Yin, “Efficient Mining of Partial Periodic
Patterns in Time Series Databases,” Proc. 15th Int’l Conf. Data Eng.,
1999.

[18] J. Han, W. Gong, and Y. Yin, “Mining Segment-Wise Periodic
Patterns in Time-Related Databases,” Proc. Fourth Int’l Conf.
Knowledge Discovery and Data Mining, 1998.

[19] C. Hidber, “Online Association Rule Mining,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, 1999.

[20] H. Mannila, H. Toivonen, and A. Verkamo, “Discovering Frequent
Episodes in Sequences,” Proc. First Int’l Conf. Knowledge Discovery
and Data Mining, 1995.

[21] J. Quinlan, “Induction of Decision Trees,” Machine Learning, vol. 1,
pp. 81-106, 1986.

[22] D. Rafiei, “On Similarity-Based Queries for Time-Series Data,”
Proc. 15th Int’l Conf. Data Eng., 1999.

[23] R. Srikant and R. Agrawal, “Mining Sequential Patterns: General-
izations and Performance Improvements,” Proc. Fifth Int’l Conf.
Extending Database Technology, 1996.

[24] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka, “An Efficient
Algorithm for the Incremental Updation of Association Rules in
Large Databases,” Proc.Third Int’l Conf. Knowledge Discovery and
Data Mining, 1997.

[25] P. Utgoff, “ID5: An Incremental ID3,” Proc. Fifth Int’l Conf. Machine
Learning, pp. 107-120, 1988.

[26] K. Wang and J. Tan, “Incremental Discovery of Sequential
Patterns,” Proc. SIGMOD Data Mining Workshop Research Issues
on Data Mining and Knowledge Discovery, 1996.

Walid G. Aref is an associate professor of
computer science at Purdue University. His
research interests are in developing database
technologies for emerging applications, e.g.,
spatial, multimedia, genomics, and sensor-
based databases. He is also interested in
indexing, data mining, scalable media servers,
and geographic information systems (GIS).
Professor Aref’s research has been supported
by the US National Science Foundation, DoN,

Purdue Research Foundation, CERIAS, Panasonic, and Microsoft Corp.
In 2001, he received the CAREER Award from the US National Science
Foundation. He is a member of the ACM and the IEEE.

Mohamed G. Elfeky received the BSc and MSc
degrees in computer science from Alexandria
University, Egypt, in 1996 and 1999, respec-
tively. He is pursuing a PhD degree in computer
science at Purdue University. His current re-
search interests include data mining, data
quality, and object-orientation.

Ahmed K. Elmagarmid received the BSc
degree from the University of Dayton in 1977,
and the MS and PhD degrees from the Ohio
State University in 1980 and 1985, respectively.
He is a chief scientist in the Office of Strategy
and Technology at Hewlett-Packard (HP). He is
responsible for software strategy coming out of
the corporate CTO office. As chief scientist in
the Office of Strategy and Technology, he
contributes to cross company roadmap initia-

tives and serves on the technology council for HP. He works closely
with the business units to identify areas of leverage in the software
directions for HP. He was director of the Indiana Center for Database
Systems and the Indiana Telemedicine Incubator. He is on leave from
Purdue University where he serves as a professor of computer
science. He also served on the faculty of The Pennsylvania State
University and the University of Padua. He has worked on long term
consulting engagements with Harris Commercial Systems, IBM,
Bellcore, Telcordia, MDL, UniSql, MCC, CSC, DoD, the Padua
Chamber of Commerce, and the Italian Government. He received a
US National Science Foundation Presidential Young Investigator
award from President Ronald Reagan, and distinguished alumni
awards from Ohio State University and the University of Dayton in
1988, 1993, and 1995, respectively. Dr. Elmagarmid is the editor-in-
chief of the Distributed and Parallel Databases: An International
Journal, editor of the IEEE Transactions on Knowledge and Data
Engineering, Information Sciences Journal, Journal of Communication
Systems, and editor of the book series on Advances in Database
Systems. He has written six books and more than 150 papers in
database systems. He is a senior member of the IEEE and the IEEE
Computer Society.

AREF ET AL.: INCREMENTAL, ONLINE, AND MERGE MINING OF PARTIAL PERIODIC PATTERNS IN TIME-SERIES DATABASES 11

TABLE 5
Comparison Results Regarding the Merge Mining Algorithm (Timed Sales Transactions Database)

