
Duplicate Record Detection: A Survey
Ahmed K. Elmagarmid, Senior Member, IEEE,

Panagiotis G. Ipeirotis, Member, IEEE Computer Society, and

Vassilios S. Verykios, Member, IEEE Computer Society

Abstract—Often, in the real world, entities have two or more representations in databases. Duplicate records do not share a common

key and/or they contain errors that make duplicate matching a difficult task. Errors are introduced as the result of transcription errors,

incomplete information, lack of standard formats, or any combination of these factors. In this paper, we present a thorough analysis of

the literature on duplicate record detection. We cover similarity metrics that are commonly used to detect similar field entries, and we

present an extensive set of duplicate detection algorithms that can detect approximately duplicate records in a database. We also

cover multiple techniques for improving the efficiency and scalability of approximate duplicate detection algorithms. We conclude with

coverage of existing tools and with a brief discussion of the big open problems in the area.

Index Terms—Duplicate detection, data cleaning, data integration, record linkage, data deduplication, instance identification,

database hardening, name matching, identity uncertainty, entity resolution, fuzzy duplicate detection, entity matching.

Ç

1 INTRODUCTION

DATABASES play an important role in today’s IT-based
economy. Many industries and systems depend on the

accuracy of databases to carry out operations. Therefore, the
quality of the information (or the lack thereof) stored in the
databases can have significant cost implications to a system
that relies on information to function and conduct business.
In an error-free system with perfectly clean data, the
construction of a comprehensive view of the data consists
of linking—in relational terms, joining—two or more tables
on their key fields. Unfortunately, data often lack a unique,
global identifier that would permit such an operation.
Furthermore, the data are neither carefully controlled for
quality nor defined in a consistent way across different data
sources. Thus, data quality is often compromised by many
factors, including data entry errors (e.g., Microsft instead of
Microsoft), missing integrity constraints (e.g., allowing
entries such as EmployeeAge ¼ 567), and multiple conven-
tions for recording information (e.g., 44 W. 4th St. versus
44 West Fourth Street). To make things worse, in indepen-
dently managed databases, not only the values, but also the
structure, semantics, and underlying assumptions about the
data may differ as well.

Often, while integrating data from different sources to

implement a data warehouse, organizations become aware

of potential systematic differences or conflicts. Such

problems fall under the umbrella-term data heterogeneity

[1]. Data cleaning [2], or data scrubbing [3], refers to the
process of resolving such identification problems in the
data. We distinguish between two types of data hetero-
geneity: structural and lexical. Structural heterogeneity occurs
when the fields of the tuples in the database are structured
differently in different databases. For example, in one
database, the customer address might be recorded in one
field named, say, addr, while, in another database, the same
information might be stored in multiple fields such as street,
city, state, and zipcode. Lexical heterogeneity occurs when the
tuples have identically structured fields across databases,
but the data use different representations to refer to the
same real-world object (e.g., StreetAddress = 44 W. 4th St.
versus StreetAddress = 44 West Fourth Street).

In this paper, we focus on the problem of lexical
heterogeneity and survey various techniques which have
been developed for addressing this problem. We focus on
the case where the input is a set of structured and properly
segmented records, i.e., we focus mainly on cases of database
records. Hence, we do not cover solutions for various other
problems, such as that of mirror detection, in which the goal
is to detect similar or identical Web pages (e.g., see [4], [5]).
Also, we do not cover solutions for problems such as
anaphora resolution [6] in which the problem is to locate
different mentions of the same entity in free text (e.g., that
the phrase “President of the US” refers to the same entity as
“George W. Bush”). We should note that the algorithms
developed for mirror detection or for anaphora resolution
are often applicable for the task of duplicate detection.
Techniques for mirror detection have been used for
detection of duplicate database records (see, for example,
Section 5.1.4) and techniques for anaphora resolution are
commonly used as an integral part of deduplication in
relations that are extracted from free text using information
extraction systems [7].

The problem that we study has been known for more
than five decades as the record linkage or the record matching
problem [8], [9], [10], [11], [12], [13] in the statistics

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007 1

. A.K. Elmagarmid is with the Department of Computer Sciences, Purdue
University, West Lafayette, IN 47907. E-mail: ake@cs.purdue.edu.

. P.G. Ipeirotis is with the Department of Information, Operations, and
Management Sciences, Leonard N. Stern School of Business, New York
University, 44 West 4th Street, HKMC 8-84, New York, NY 10012.
E-mail: panos@stern.nyu.edu.

. V.S. Verykios is with the Department of Computer and Communication
Engineering, University of Thessaly, Glavani 37 and 28th str., 38221
Volos, Greece. E-mail: verykios@inf.uth.gr.

Manuscript received 21 June 2005; revised 18 Mar. 2006; accepted 6 Sept.
2006; published online 20 Nov. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0240-0605.

1041-4347/07/$20.00 � 2007 IEEE Published by the IEEE Computer Society

community. The goal of record matching is to identify
records in the same or different databases that refer to the
same real-world entity, even if the records are not identical.
In slightly ironic fashion, the same problem has multiple
names across research communities. In the database
community, the problem is described as merge-purge [14],
data deduplication [15], and instance identification [16]; in the
AI community, the same problem is described as database
hardening [17] and name matching [18]. The names coreference
resolution, identity uncertainty, and duplicate detection are also
commonly used to refer to the same task. We will use the
term duplicate record detection in this paper.

The remaining parts of this paper are organized as
follows: In Section 2, we briefly discuss the necessary steps
in the data cleaning process before the duplicate record
detection phase. Then, Section 3 describes techniques used
to match individual fields and Section 4 presents techniques
for matching records that contain multiple fields. Section 5
describes methods for improving the efficiency of the
duplicate record detection process and Section 6 presents
a few commercial, off-the-shelf tools used in industry for
duplicate record detection and for evaluating the initial
quality of the data and of the matched records. Finally,
Section 7 concludes the paper and discusses interesting
directions for future research.

2 DATA PREPARATION

Duplicate record detection is the process of identifying
different or multiple records that refer to one unique real-
world entity or object. Typically, the process of duplicate
detection is preceded by a data preparation stage during
which data entries are stored in a uniform manner in the
database, resolving (at least partially) the structural hetero-
geneity problem. The data preparation stage includes a
parsing, a data transformation, and a standardization step. The
approaches that deal with data preparation are also
described under the using the term ETL (Extraction,
Transformation, Loading) [19]. These steps improve the
quality of the in-flow data and make the data comparable
and more usable. While data preparation is not the focus of
this survey, for completeness we briefly describe the tasks
performed in that stage. A comprehensive collection of
papers related to various data transformation approaches
can be found in [20].

Parsing is the first critical component in the data
preparation stage. Parsing locates, identifies, and isolates
individual data elements in the source files. Parsing makes
it easier to correct, standardize, and match data because it
allows the comparison of individual components, rather
than of long complex strings of data. For example, the
appropriate parsing of name and address components into
consistent packets of information is a crucial part in the data
cleaning process. Multiple parsing methods have been
proposed recently in the literature (e.g., [21], [22], [23], [24],
[25]) and the area continues to be an active field of research.

Data transformation refers to simple conversions that can
be applied to the data in order for them to conform to the
data types of their corresponding domains. In other words,
this type of conversion focuses on manipulating one field at
a time, without taking into account the values in related

fields. The most common form of a simple transformation is
the conversion of a data element from one data type to
another. Such a data type conversion is usually required
when a legacy or parent application stored data in a data
type that makes sense within the context of the original
application, but not in a newly developed or subsequent
system. The renaming of a field from one name to another is
considered data transformation as well. Encoded values in
operational systems and in external data is another problem
that is addressed at this stage. These values should be
converted to their decoded equivalents, so records from
different sources can be compared in a uniform manner.
Range checking is yet another kind of data transformation
which involves examining data in a field to ensure that it
falls within the expected range, usually a numeric or date
range. Last, dependency checking is slightly more involved
since it requires comparing the value in a particular field to
the values in another field to ensure a minimal level of
consistency in the data.

Data standardization refers to the process of standardiz-
ing the information represented in certain fields to a specific
content format. This is used for information that can be
stored in many different ways in various data sources and
must be converted to a uniform representation before the
duplicate detection process starts. Without standardization,
many duplicate entries could be erroneously designated as
nonduplicates based on the fact that common identifying
information cannot be compared. One of the most common
standardization applications involves address information.
There is no one standardized way to capture addresses, so
the same address can be represented in many different
ways. Address standardization locates (using various
parsing techniques) components such as house numbers,
street names, post office boxes, apartment numbers, and
rural routes, which are then recorded in the database using
a standardized format (e.g., 44 West Fourth Street is stored as
44 W. 4th St.). Date and time formatting and name and title
formatting pose other standardization difficulties in a
database. Typically, when operational applications are
designed and constructed, there is very little uniform
handling of date and time formats across applications.
Because most operational environments have many differ-
ent formats for representing dates and times, there is a need
to transform dates and times into a standardized format.
Name standardization identifies components such as first
names, last names, title, and middle initials and records
everything using some standardized convention. Data
standardization is a rather inexpensive step that can lead
to fast identification of duplicates. For example, if the only
difference between two records is the differently recorded
address (44 West Fourth Street versus 44 W. 4th St.), then the
data standardization step would make the two records
identical, alleviating the need for more expensive approx-
imate matching approaches, which we describe in the later
sections.

After the data preparation phase, the data are typically
stored in tables having comparable fields. The next step is to
identify which fields should be compared. For example, it
would not be meaningful to compare the contents of the
field LastName with the field Address. Perkowitz et al. [26]

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

presented a supervised technique for understanding the
“semantics” of the fields that are returned by Web
databases. The idea was that similar values (e.g. last names)
tend to appear in similar fields. Hence, by observing value
overlap across fields, it is possible to parse the results into
fields and discover correspondences across fields at the
same time. Dasu et al. [27] significantly extend this concept
and extract a “signature” from each field in the database;
this signature summarizes the content of each column in the
database. Then, the signatures are used to identify fields
with similar values, fields whose contents are subsets of
other fields, and so on.

Even after parsing, data standardization, and identifica-
tion of similar fields, it is not trivial to match duplicate
records. Misspellings and different conventions for record-
ing the same information still result in different, multiple
representations of a unique object in the database. In the
next section, we describe techniques for measuring the
similarity of individual fields and, later, in Section 4, we
describe techniques for measuring the similarity of entire
records.

3 FIELD MATCHING TECHNIQUES

One of the most common sources of mismatches in database
entries is the typographical variations of string data.
Therefore, duplicate detection typically relies on string
comparison techniques to deal with typographical varia-
tions. Multiple methods have been developed for this task,
and each method works well for particular types of errors.
While errors might appear in numeric fields as well, the
related research is still in its infancy.

In this section, we describe techniques that have been
applied for matching fields with string data in the duplicate
record detection context. We also briefly review some
common approaches for dealing with errors in numeric
data.

3.1 Character-Based Similarity Metrics

The character-based similarity metrics are designed to
handle typographical errors well. In this section, we cover
the following similarity metrics:

. edit distance,

. affine gap distance,

. Smith-Waterman distance,

. Jaro distance metric, and

. Q-gram distance.

3.1.1 Edit Distance

The edit distance between two strings �1 and �2 is the
minimum number of edit operations of single characters
needed to transform the string �1 into �2. There are three
types of edit operations:

. insert a character into the string,

. delete a character from the string, and

. replace one character with a different character.

In the simplest form, each edit operation has cost 1. This
version of edit distance is also referred to as the Levenshtein
distance [28]. The basic dynamic programming algorithm

[29] for computing the edit distance between two strings
takes Oðj�1j � j�2jÞ time for two strings of length j�1j and j�2j,
respectively. Landau and Vishkin [30] presented an algo-
rithm for detecting in Oðmaxfj�1j; j�2jg � kÞ whether two
strings have an edit distance less than k. (Notice that if��j�1j � j�2j

�� > k, then, by definition, the two strings do not
match within distance k, so

Oðmaxfj�1j; j�2jg � kÞ � Oðj�1j � kÞ � Oðj�2j � kÞ

for the nontrivial case where
��j�1j � j�2j

�� � k.) Needleman
and Wunsch [31] modified the original edit distance model
and allowed for different costs for different edit distance
operations. (For example, the cost of replacing O with 0
might be smaller than the cost of replacing f with q.) Ristad
and Yiannilos [32] presented a method for automatically
determining such costs from a set of equivalent words that
are written in different ways. The edit distance metrics
work well for catching typographical errors, but they are
typically ineffective for other types of mismatches.

3.1.2 Affine Gap Distance

The edit distance metric described above does not work
well when matching strings that have been truncated or
shortened (e.g., “John R. Smith” versus “Jonathan Richard
Smith”). The affine gap distance metric [33] offers a solution
to this problem by introducing two extra edit operations:
open gap and extend gap. The cost of extending the gap is
usually smaller than the cost of opening a gap, and this
results in smaller cost penalties for gap mismatches than the
equivalent cost under the edit distance metric. The algo-
rithm for computing the affine gap distance requires Oða �
j�1j � j�2jÞ time when the maximum length of a gap
a� minfj�1j; j�2jg. In the general case, the algorithm runs
in approximately Oða2 � j�1j � j�2jÞ steps. Bilenko et al. [18],
in a spirit similar to what Ristad and Yiannilos [32]
proposed for edit distances, describe how to train an edit
distance model with affine gaps.

3.1.3 Smith-Waterman Distance

Smith and Waterman [34] described an extension of edit
distance and affine gap distance in which mismatches at the
beginning and the end of strings have lower costs than
mismatches in the middle. This metric allows for better local
alignment of the strings (i.e., substring matching). There-
fore, the strings “Prof. John R. Smith, University of Calgary”
and “John R. Smith, Prof.” can match within a short distance
using the Smith-Waterman distance since the prefixes and
suffixes are ignored. The distance between two strings can
be computed using a dynamic programming technique
based on the Needleman and Wunsch algorithm [31]. The
Smith and Waterman algorithm requires Oðj�1j � j�2jÞ time
and space for two strings of length j�1j and j�2j; many
improvements have been proposed (e.g., the BLAST
algorithm [35] in the context of computational biology
applications, the algorithms by Baeza-Yates and Gonnet
[36], and the agrep tool by Wu and Manber [37]). Pinheiro
and Sun [38] proposed a similar similarity measure which
tries to find the best character alignment for the two
compared strings �1 and �2 so that the number of character
mismatches is minimized.

ELMAGARMID ET AL.: DUPLICATE RECORD DETECTION: A SURVEY 3

3.1.4 Jaro Distance Metric

Jaro [39] introduced a string comparison algorithm that was
mainly used for comparison of last and first names. The basic
algorithm for computing the Jaro metric for two strings �1

and �2 includes the following steps:

1. Compute the string lengths j�1j and j�2j.
2. Find the “common characters” c in the two strings;

common are all the characters �1½j� and �2½j� for
which �1½i� ¼ �2½j� and ji� jj � 1

2 minfj�1j; j�2jg.
3. Find the number of transpositions t; the number of

transpositions is computed as follows: We compare
the ith common character in �1 with the ith common
character in �2. Each nonmatching character is a
transposition.

The Jaro comparison value is:

Jaroð�1; �2Þ ¼
1

3

c

j�1j
þ c

j�2j
þ c� t=2

c

� �
: ð1Þ

From the description of the Jaro algorithm, we can see
that the Jaro algorithm requires Oðj�1j � j�2jÞ time for two
strings of length j�1j and j�2j, mainly due to Step 2, which
computes the “common characters” in the two strings.
Winkler and Thibaudeau [40] modified the Jaro metric to
give higher weight to prefix matches since prefix matches
are generally more important for surname matching.

3.1.5 Q-Grams

The q-grams are short character substrings1 of length q of
the database strings [41], [42]. The intuition behind the use
of q-grams as a foundation for approximate string matching
is that, when two strings �1 and �2 are similar, they share a
large number of q-grams in common. Given a string �, its
q-grams are obtained by “sliding” a window of length q
over the characters of �. Since q-grams at the beginning and
the end of the string can have fewer than q characters from
�, the strings are conceptually extended by “padding” the
beginning and the end of the string with q � 1 occurrences
of a special padding character, not in the original alphabet.
With the appropriate use of hash-based indexes, the
average time required for computing the q-gram overlap
between two strings �1 and �2 is Oðmaxfj�1j; j�2jgÞ. Letter
q-grams, including trigrams, bigrams, and/or unigrams,
have been used in a variety of ways in text recognition and
spelling correction [43]. One natural extension of q-grams is
the positional q-grams [44], which also record the position of
the q-gram in the string. Gravano et al. [45], [46] showed
how to use positional q-grams to efficiently locate similar
strings within a relational database.

3.2 Token-Based Similarity Metrics

Character-based similarity metrics work well for typogra-
phical errors. However, it is often the case that typogra-
phical conventions lead to rearrangement of words (e.g.,
“John Smith” versus “Smith, John”). In such cases, character-
level metrics fail to capture the similarity of the entities.
Token-based metrics try to compensate for this problem.

3.2.1 Atomic Strings

Monge and Elkan [47] proposed a basic algorithm for
matching text fields based on atomic strings. An atomic string
is a sequence of alphanumeric characters delimited by
punctuation characters. Two atomic strings match if they
are equal or if one is the prefix of the other. Based on this
algorithm, the similarity of two fields is the number of their
matching atomic strings divided by their average number of
atomic strings.

3.2.2 WHIRL

Cohen [48] described a system named WHIRL that adopts
from information retrieval the cosine similarity combined
with the tf.idf weighting scheme to compute the similarity of
two fields. Cohen separates each string � into words and
each word w is assigned a weight

v�ðwÞ ¼ logðtfw þ 1Þ � logðidfwÞ;

where tfw is the number of times that w appears in the field
and idfw is jDjnw , where nw is the number of records in the
database D that contain w. The tf.idf weight for a word w in
a field is high if w appears a large number of times in the
field (large tfw) and w is a sufficiently “rare” term in the
database (large idfw). For example, for a collection of
company names, relatively infrequent terms such as
“AT&T” or “IBM” will have higher idf weights than more
frequent terms such as “Inc.” The cosine similarity of �1 and
�2 is defined as

simð�1; �2Þ ¼
PjDj

j¼1 v�1
ðjÞ � v�2

ðjÞ
kv�1
k2 � kv�2

k2

:

The cosine similarity metric works well for a large
variety of entries and is insensitive to the location of words,
thus allowing natural word moves and swaps (e.g., “John
Smith” is equivalent to “Smith, John”). Also, the introduc-
tion of frequent words only minimally affects the similarity
of the two strings due to the low idf weight of the frequent
words. For example, “John Smith” and “Mr. John Smith”
would have similarity close to one. Unfortunately, this
similarity metric does not capture word spelling errors,
especially if they are pervasive and affect many of the
words in the strings. For example, the strings “Compter
Science Department” and “Deprtment of Computer Scence”
will have zero similarity under this metric. Bilenko et al.
[18] suggest the SoftTF-IDF metric to solve this problem. In
the SoftTF.IDF metric, pairs of tokens that are “similar”2

(and not necessarily identical) are also considered in the
computation of the cosine similarity. However, the product
of the weights for nonidentical token pairs is multiplied by
the the similarity of the token pair, which is less than one.

3.2.3 Q-Grams with tf.idf

Gravano et al. [49] extended the WHIRL system to handle
spelling errors by using q-grams, instead of words, as
tokens. In this setting, a spelling error minimally affects the
set of common q-grams of two strings, so the two strings
“Gteway Communications” and “Comunications Gateway”

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

1. The q-grams in our context are defined on the character level. In speech
processing and in computational linguistics, researchers often use the term
n-gram to refer to sequences of n words.

2. The token similarity is measured using a metric that works well for
short strings, such as edit distance and Jaro.

have high similarity under this metric, despite the block
move and the spelling errors in both words. This metric
handles the insertion and deletion of words nicely. The
string “Gateway Communications” matches with high
similarity the string “Communications Gateway Interna-
tional” since the q-grams of the word “International” appear
often in the relation and have low weight.

3.3 Phonetic Similarity Metrics

Character-level and token-based similarity metrics focus on
the string-based representation of the database records.
However, strings may be phonetically similar even if they
are not similar in a character or token level. For example,
the word Kageonne is phonetically similar to Cajun despite
the fact that the string representations are very different.
The phonetic similarity metrics are trying to address such
issues and match such strings.

3.3.1 Soundex

Soundex, invented by Russell [50], [51], is the most common
phonetic coding scheme. Soundex is based on the assignment
of identical code digits to phonetically similar groups of
consonants and is used mainly to match surnames. The
rules of Soundex coding are as follows:

1. Keep the first letter of the surname as the prefix
letter and completely ignore all occurrences of W
and H in other positions.

2. Assign the following codes to the remaining letters:

. B;F; P; V ! 1,

. C;G; J;K;Q; S;X;Z ! 2,

. D;T ! 3,

. L! 4,

. M;N ! 5, and

. R! 6.
3. A, E, I, O, U, and Y are not coded but serve as

separators (see below).
4. Consolidate sequences of identical codes by keeping

only the first occurrence of the code.
5. Drop the separators.
6. Keep the letter prefix and the three first codes,

padding with zeros if there are fewer than three
codes.

Newcombe [10] reports that the Soundex code remains
largely unchanged, exposing about two-thirds of the
spelling variations observed in linked pairs of vital records,
and that it sets aside only a small part of the total
discriminating power of the full alphabetic surname. The
code is designed primarily for Caucasian surnames, but
works well for names of many different origins (such as
those appearing on the records of the US Immigration and
Naturalization Service). However, when the names are of
predominantly East Asian origin, this code is less satisfac-
tory because much of the discriminating power of these
names resides in the vowel sounds, which the code ignores.

3.3.2 New York State Identification and Intelligence

System (NYSIIS)

The NYSIIS system, proposed by Taft [52], differs from
Soundex in that it retains information about the position of

vowels in the encoded word by converting most vowels to
the letter A. Furthermore, NYSIIS does not use numbers to
replace letters; instead, it replaces consonants with other,
phonetically similar letters, thus returning a purely alpha
code (no numeric component). Usually, the NYSIIS code for
a surname is based on a maximum of nine letters of the full
alphabetical name, and the NYSIIS code itself is then
limited to six characters. Taft [52] compared Soundex with
NYSIIS, using a name database of New York State, and
concluded that NYSIIS is 98.72 percent accurate, while
Soundex is 95.99 percent accurate for locating surnames.
The NYSIIS encoding system is still used today by the New
York State Division of Criminal Justice Services.

3.3.3 Oxford Name Compression Algorithm (ONCA)

ONCA [53] is a two-stage technique, designed to overcome
most of the unsatisfactory features of pure Soundex-ing,
retaining in parallel the convenient four-character fixed-
length format. In the first step, ONCA uses a British version
of the NYSIIS method of compression. Then, in the second
step, the transformed and partially compressed name is
Soundex-ed in the usual way. This two-stage technique has
been used successfully for grouping similar names together.

3.3.4 Metaphone and Double Metaphone

Philips [54] suggested the Metaphone algorithm as a better
alternative to Soundex. Philips suggested using 16 con-
sonant sounds that can describe a large number of sounds
used in many English and non-English words. Double
Metaphone [55] is a better version of Metaphone, improving
some encoding choices made in the initial Metaphone and
allowing multiple encodings for names that have various
possible pronunciations. For such cases, all possible encod-
ings are tested when trying to retrieve similar names. The
introduction of multiple phonetic encodings greatly en-
hances the matching performance, with rather small over-
head. Philips suggested that, at most, 10 percent of
American surnames have multiple encodings.

3.4 Numeric Similarity Metrics

While multiple methods exist for detecting similarities of
string-based data, the methods for capturing similarities in
numeric data are rather primitive. Typically, the numbers
are treated as strings (and compared using the metrics
described above) or simple range queries, which locate
numbers with similar values. Koudas et al. [56] suggest, as a
direction for future research, consideration of the distribu-
tion and type of the numeric data, or extending the notion
of cosine similarity for numeric data [57] to work well for
duplicate detection purposes.

3.5 Concluding Remarks

The large number of field comparison metrics reflects the
large number of errors or transformations that may occur in
real-life data. Unfortunately, there are very few studies that
compare the effectiveness of the various distance metrics
presented here. Yancey [58] shows that the Jaro-Winkler
metric works well for name matching tasks for data coming
from the US census. A notable comparison effort is the work
of Bilenko et al. [18], who compare the effectiveness of
character-based and token-based similarity metrics. They

ELMAGARMID ET AL.: DUPLICATE RECORD DETECTION: A SURVEY 5

show that the Monge-Elkan metric has the highest average

performance across data sets and across character-based

distance metrics. They also show that the SoftTF.IDF metric

works better than any other metric. However, Bilenko et al.

emphasize that no single metric is suitable for all data sets.

Even metrics that demonstrate robust and high perfor-

mance for some data sets can perform poorly on others.

Hence, they advocate more flexible metrics that can

accommodate multiple similarity comparisons (e.g., [18],

[59]). In the next section, we review such approaches.

4 DETECTING DUPLICATE RECORDS

In the previous section, we described methods that can be

used to match individual fields of a record. In most real-life

situations, however, the records consist of multiple fields,

making the duplicate detection problem much more

complicated. In this section, we review methods that are

used for matching records with multiple fields. The

presented methods can be broadly divided into two

categories:

. Approaches that rely on training data to “learn” how
to match the records. This category includes (some)
probabilistic approaches and supervised machine
learning techniques.

. Approaches that rely on domain knowledge or on
generic distance metrics to match records. This
category includes approaches that use declarative
languages for matching and approaches that devise
distance metrics appropriate for the duplicate
detection task.

The rest of this section is organized as follows: Initially,

in Section 4.1, we describe the notation. In Section 4.2, we

present probabilistic approaches for solving the duplicate

detection problem. In Section 4.3, we list approaches that

use supervised machine learning techniques and, in

Section 4.4, we describe variations based on active learning

methods. Section 4.5 describes distance-based methods and

Section 4.6 describes declarative techniques for duplicate

detection. Finally, Section 4.7 covers unsupervised machine

learning techniques and Section 4.8 provides some con-

cluding remarks.

4.1 Notation

We use A and B to denote the tables that we want to match,

and we assume, without loss of generality, that A and B

have n comparable fields. In the duplicate detection

problem, each tuple pair h�; �i ð� 2 A; � 2 BÞ is assigned

to one of the two classes M and U . The class M contains the

record pairs that represent the same entity (“match”) and the

class U contains the record pairs that represent two

different entities (“nonmatch”).
We represent each tuple pair h�; �i as a random vector

x ¼ ½x1; . . . ; xn�T with n components that correspond to the

n comparable fields of A and B. Each xi shows the level of

agreement of the ith field for the records � and �. Many

approaches use binary values for the xis and set xi ¼ 1 if

field i agrees and let xi ¼ 0 if field i disagrees.

4.2 Probabilistic Matching Models

Newcombe et al. [8] were the first to recognize duplicate
detection as a Bayesian inference problem. Then, Fellegi
and Sunter [12] formalized the intuition of Newcombe et al.
and introduced the notation that we use, which is also
commonly used in duplicate detection literature. The
comparison vector x is the input to a decision rule that
assigns x to U or to M. The main assumption is that x is a
random vector whose density function is different for each
of the two classes. Then, if the density function for each
class is known, the duplicate detection problem becomes a
Bayesian inference problem. In the following sections, we
will discuss various techniques that have been developed
for addressing this (general) decision problem.

4.2.1 The Bayes Decision Rule for Minimum Error

Let x be a comparison vector, randomly drawn from the
comparison space that corresponds to the record pair h�; �i.
The goal is to determine whether h�; �i 2M or h�; �i 2 U . A
decision rule, based simply on probabilities, can be written
as follows:

h�; �i 2 M if pðMjxÞ � pðU jxÞ
U otherwise:

�
ð2Þ

This decision rule indicates that, if the probability of the
match class M, given the comparison vector x, is larger than
the probability of the nonmatch class U , then x is classified
to M, and vice versa. By using the Bayes theorem, the
previous decision rule may be expressed as:

h�; �i 2 M if lðxÞ ¼ pðxjMÞ
pðxjU Þ �

pðUÞ
pðMÞ

U otherwise:

(
ð3Þ

The ratio

lðxÞ ¼ pðxjMÞ
pðxjUÞ ð4Þ

is called the likelihood ratio. The ratio pðUÞ
pðMÞ denotes the

threshold value of the likelihood ratio for the decision. We
refer to the decision rule in (3) as the Bayes test for minimum
error. It can be easily shown [60] that the Bayes test results in
the smallest probability of error and it is, in that respect, an
optimal classifier. Of course, this holds only when the
distributions of pðxjMÞ, pðxjUÞ and the priors pðUÞ and
pðMÞ are known; this, unfortunately, is very rarely the case.

One common approach, usually called Naive Bayes, to
computing the distributions of pðxjMÞ and pðxjUÞ is to
make a conditional independence assumption and postu-
late that the probabilities pðxijMÞ and pðxjjMÞ are inde-
pendent if i 6¼ j. (Similarly, for pðxijUÞ and pðxjjUÞ.) In that
case, we have

pðxjMÞ ¼
Yn
i¼i

pðxijMÞ

pðxjUÞ ¼
Yn
i¼i

pðxijUÞ:

The values of pðxijMÞ and pðxijUÞ can be computed using a
training set of prelabeled record pairs. However, the
probabilistic model can also be used without using training

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

data. Jaro [61] used a binary model for the values of xi (i.e.,
if the field i “matches” xi ¼ 1, else xi ¼ 0) and suggested
using an expectation maximization (EM) algorithm [62] to
compute the probabilities pðxi ¼ 1jMÞ. The probabilities
pðxi ¼ 1jUÞ can be estimated by taking random pairs of
records (which are with high probability in U).

When the conditional independence is not a reasonable
assumption, then Winkler [63] suggested using the general
expectation maximization algorithm to estimate pðxjMÞ,
pðxjUÞ. In [64], Winkler claims that the general, unsuper-
vised EM algorithm works well under five conditions:

1. the data contain a relatively large percentage of
matches (more than 5 percent),

2. the matching pairs are “well-separated” from the
other classes,

3. the rate of typographical errors is low,
4. there are sufficiently many redundant identifiers to

overcome errors in other fields of the record, and
5. the estimates computed under the conditional

independence assumption result in good classifica-
tion performance.

Winkler [64] shows how to relax the assumptions above
(including the conditional independence assumption) and
still get good matching results. Winkler shows that a semi-
supervised model, which combines labeled and unlabeled
data (similar to Nigam et al. [65]), performs better than
purely unsupervised approaches. When no training data is
available, unsupervised EM works well, even when a
limited number of interactions is allowed between the
variables. Interestingly, the results under the independence
assumption are not considerably worse compared to the
case in which the EM model allows variable interactions.

Du Bois [66] pointed out the importance of the fact that,
many times, fields have missing (null) values and proposed
a different method to correct mismatches that occur due to
missing values. Du Bois suggested using a new comparison
vector x	 with dimension 2n instead of the n-dimensional
comparison vector x such that

x	 ¼ ðx1; x2; . . . ; xn; x1y1; x2y2; . . . ; xnynÞ; ð5Þ

where

yi ¼
1 if the ith field on both records is present;
0 otherwise:

�
ð6Þ

Using this representation, mismatches that occur due to
missing data are typically discounted, resulting in im-
proved duplicate detection performance. Du Bois proposed
using an independence model to learn the distributions of
pðxiyijMÞ and pðxiyijUÞ by using a set of prelabeled training
record pairs.

4.2.2 The Bayes Decision Rule for Minimum Cost

Often, in practice, the minimization of the probability of
error is not the best criterion for creating decision rules as
the misclassifications of M and U samples may have
different consequences. Therefore, it is appropriate to
assign a cost cij to each situation, which is the cost of
deciding that x belongs to the class i when x actually
belongs to the class j. Then, the expected costs rMðxÞ and

rUðxÞ of deciding that x belongs to the class M and U ,
respectively, are:

rMðxÞ ¼ cMM � pðMjxÞ þ cMU � pðUjxÞ
rUðxÞ ¼ cUM � pðMjxÞ þ cUU � pðUjxÞ:

In that case, the decision rule for assigning x to M
becomes:

h�; �i 2 M if rMðxÞ < rUðxÞ
U otherwise:

�
ð7Þ

It can be easily proved [67] that the minimum cost
decision rule for the problem can be stated as:

h�; �i 2 M if lðxÞ > ðcMU�cUU Þ�pðUÞ
ðcUM�cMM Þ�pðMÞ

U otherwise:

�
ð8Þ

Comparing the minimum error and minimum cost
decision rule, we notice that the two decision rules
become the same for the special setting of the cost
functions to cUM � cMM ¼ cMU � cUU . In this case, the cost
functions are termed symmetrical. For a symmetrical cost
function, the cost becomes the probability of error and the
Bayes test for minimum cost specifically addresses and
minimizes this error.

4.2.3 Decision with a Reject Region

Using the Bayes Decision rule when the distribution
parameters are known leads to optimal results. However,
even in an ideal scenario, when the likelihood ratio lðxÞ is
close to the threshold, the error (or cost) of any decision is
high [67]. Based on this well-known and general idea in
decision theory, Fellegi and Sunter [12], suggested adding
an extra “reject” class in addition to the classes M and U .
The reject class contained record pairs for which it is not
possible to make any definite inference and a “clerical
review” is necessary. These pairs are examined manually by
experts to decide whether they are true matches or not. By
setting thresholds for the conditional error on M and U , we
can define the reject region and the reject probability, which
measure the probability of directing a record pair to an
expert for review.

Tepping [11] was the first to suggest a solution
methodology focusing on the costs of the decision. He
presented a graphical approach for estimating the like-
lihood thresholds. Verykios et al. [68] developed a formal
framework for the cost-based approach taken by Tepping
which shows how to compute the thresholds for the three
decision areas when the costs and the priors P ðMÞ and
P ðUÞ are known.

The “reject region” approach can be easily extended to a
larger number of decision areas [69]. The main problem
with such a generalization is appropriately ordering the
thresholds which determine the regions in such a way that
no region disappears.

4.3 Supervised and Semisupervised Learning

The probabilistic model uses a Bayesian approach to
classify record pairs into two classes, M and U . This model
was widely used for duplicate detection tasks, usually as an
application of the Fellegi-Sunter model. While the Fellegi-

ELMAGARMID ET AL.: DUPLICATE RECORD DETECTION: A SURVEY 7

Sunter approach dominated the field for more than two
decades, the development of new classification techniques
in the machine learning and statistics communities
prompted the development of new deduplication techni-
ques. The supervised learning systems rely on the existence
of training data in the form of record pairs, prelabeled as
matching or not.

One set of supervised learning techniques treat each
record pair h�; �i independently, similarly to the probabil-
istic techniques of Section 4.2. Cochinwala et al. [70] used
the well-known CART algorithm [71], which generates
classification and regression trees, a linear discriminant
algorithm [60], which generates a linear combination of the
parameters for separating the data according to their
classes, and a “vector quantization” approach, which is a
generalization of nearest neighbor algorithms. The experi-
ments which were conducted indicate that CART has the
smallest error percentage. Bilenko et al. [18] use SVMlight
[72] to learn how to merge the matching results for the
individual fields of the records. Bilenko et al. showed that
the SVM approach usually outperforms simpler ap-
proaches, such as treating the whole record as one large
field. A typical postprocessing step for these techniques
(including the probabilistic techniques of Section 4.2) is to
construct a graph for all the records in the database, linking
together the matching records. Then, using the transitivity
assumption, all the records that belong to the same
connected component are considered identical [73].

The transitivity assumption can sometimes result in
inconsistent decisions. For example, h�; �i and h�; �i can be
considered matches, but h�; �i not. Partitioning such
“inconsistent” graphs with the goal of minimizing incon-
sistencies is an NP-complete problem [74]. Bansal et al. [74]
propose a polynomial approximation algorithm that can
partition such a graph, automatically identifying the
clusters and the number of clusters in the data set. Cohen
and Richman [75] proposed a supervised approach in
which the system learns from training data how to cluster
together records that refer to the same real-world entry. The
main contribution of this approach is the adaptive distance
function, which is learned from a given set of training
examples. McCallum and Wellner [76] learn the clustering
method using training data; their technique is equivalent to
a graph partitioning technique that tries to find the min-cut
and the appropriate number of clusters for the given data
set, similarly to the work of Bansal et al. [74].

The supervised clustering techniques described above
have records as nodes for the graph. Singla and
Domingos [77] observed that, by using attribute values
as nodes, it is possible to propagate information across
nodes and improve duplicate record detection. For
example, if the records hGoogle;MountainV iew;CAi
and hGoogleInc:;MountainV iew;Californiai are deemed
equal, then CA and California are also equal and this
information can be useful for other record comparisons.
The underlying assumption is that the only differences
are due to different representations of the same entity
(e.g., “Google” and “Google Inc.”) and that there is no
erroneous information in the attribute values (e.g., by
mistake someone entering Bismarck;ND as the location

of Google headquarters). Pasula et al. [78] propose a
semisupervised probabilistic relational model that can
handle a generic set of transformations. While the model
can handle a large number of duplicate detection
problems, the use of exact inference results in a
computationally intractable model. Pasula et al. propose
using a Markov Chain Monte Carlo (MCMC) sampling
algorithm to avoid the intractability issue. However, it is
unclear whether techniques that rely on graph-based
probabilistic inference can scale well for data sets with
hundreds of thousands of records.

4.4 Active-Learning-Based Techniques

One of the problems with the supervised learning techni-
ques is the requirement for a large number of training
examples. While it is easy to create a large number of
training pairs that are either clearly nonduplicates or clearly
duplicates, it is very difficult to generate ambiguous cases
that would help create a highly accurate classifier. Based on
this observation, some duplicate detection systems used
active learning techniques [79] to automatically locate such
ambiguous pairs. Unlike an “ordinary” learner that is
trained using a static training set, an “active” learner
actively picks subsets of instances from unlabeled data,
which, when labeled, will provide the highest information
gain to the learner.

Sarawagi and Bhamidipaty [15] designed ALIAS, a
learning-based duplicate detection system, that uses the
idea of a “reject region” (see Section 4.2.3) to significantly
reduce the size of the training set. The main idea behind
ALIAS is that most duplicate and nonduplicate pairs are
clearly distinct. For such pairs, the system can automatically
categorize them in U and M without the need of manual
labeling. ALIAS requires humans to label pairs only for
cases where the uncertainty is high. This is similar to the
“reject region” in the Fellegi and Sunter model, which
marked ambiguous cases as cases for clerical review.

ALIAS starts with small subsets of pairs of records
designed for training which have been characterized as
either matched or unique. This initial set of labeled data
forms the training data for a preliminary classifier. In the
sequel, the initial classifier is used for predicting the status
of unlabeled pairs of records. The initial classifier will make
clear determinations on some unlabeled instances but lack
determination on most. The goal is to seek out from the
unlabeled data pool those instances which, when labeled,
will improve the accuracy of the classifier at the fastest
possible rate. Pairs whose status is difficult to determine
serve to strengthen the integrity of the learner. Conversely,
instances in which the learner can easily predict the status
of the pairs do not have much effect on the learner. Using
this technique, ALIAS can quickly learn the peculiarities of
a data set and rapidly detect duplicates using only a small
number of training data.

Tejada et al. [59], [80] used a similar strategy and
employed decision trees to teach rules for matching records
with multiple fields. Their method suggested that, by
creating multiple classifiers, trained using slightly different
data or parameters, it is possible to detect ambiguous cases
and then ask the user for feedback. The key innovation in
this work is the creation of several redundant functions and

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

the concurrent exploitation of their conflicting actions in
order to discover new kinds of inconsistencies among
duplicates in the data set.

4.5 Distance-Based Techniques

Even active learning techniques require some training data
or some human effort to create the matching models. In the
absence of such training data or the ability to get human
input, supervised and active learning techniques are not
appropriate. One way of avoiding the need for training data
is to define a distance metric for records which does not need
tuning through training data. Using the distance metric and
an appropriate matching threshold, it is possible to match
similar records without the need for training.

One approach is to treat a record as a long field and use
one of the distance metrics described in Section 3 to
determine which records are similar. Monge and Elkan
[47], [73] proposed a string matching algorithm for
detecting highly similar database records. The basic idea
was to apply a general purpose field matching algorithm,
especially one that is able to account for gaps in the strings,
to play the role of the duplicate detection algorithm.
Similarly, Cohen [81] suggested using the tf.idf weighting
scheme (see Section 3.2), together with the cosine similarity
metric to measure the similarity of records. Koudas et al.
[56] presented some practical solutions to problems en-
countered during the deployment of such a string-based
duplicate detection system at AT&T.

Distance-based approaches that conflate each record in
one big field may ignore important information that can be
used for duplicate detection. A simple approach is to
measure the distance between individual fields, using the
appropriate distance metric for each field, and then
compute the weighted distance [82] between the records.
In this case, the problem is the computation of the weights
and the overall setting becomes very similar to the
probabilistic setting that we discussed in Section 4.2. An
alternative approach, proposed by Guha et al. [83] is to
create a distance metric that is based on ranked list
merging. The basic idea is that if we compare only one
field from the record, the matching algorithm can easily
find the best matches and rank them according to their
similarity, putting the best matches first. By applying the
same principle for all the fields, we can get, for each record,
n ranked lists of records, one for each field. Then, the goal is
to create a rank of records that has the minimum aggregate
rank distance when compared to all the n lists. Guha et al.
map the problem into the minimum cost perfect matching
problem and develop then efficient solutions for identifying
the top-k matching records. The first solution is based on
the Hungarian Algorithm [84], a graph-theoretic algorithm
that solves the minimum cost perfect matching problem.
Guha et al. also present the Successive Shortest Paths
algorithm that works well for smaller values of k and is
based on the idea that it is not required to examine all
potential matches to identify the top-k matches. Both of the
proposed algorithms are implemented in T-SQL and are
directly deployable over existing relational databases.

The distance-based techniques described so far treat
each record as a flat entity, ignoring the fact that data is
often stored in relational databases, in multiple tables.

Ananthakrishna et al. [85] describe a similarity metric that
uses not only the textual similarity, but the “co-
occurrence” similarity of two entries in a database. For
example, the entries in the state column “CA” and
“California” have small textual similarity; however, the
city entries “San Francisco,” “Los Angeles,” “San Diego,”
and so on, often have foreign keys that point both to
“CA” and “California.” Therefore, it is possible to infer
that “CA” and “California” are equivalent. Ananthakrish-
na et al. show that, by using “foreign key co-occurrence”
information, they can substantially improve the quality of
duplicate detection in databases that use multiple tables
to store the entries of a record. This approach is
conceptually similar to the work of Perkowitz et al. [26]
and of Dasu et al. [27], which examine the contents of
fields to locate the matching fields across two tables (see
Section 2).

Finally, one of the problems of the distance-based
techniques is the need to define the appropriate value for
the matching threshold. In the presence of training data, it is
possible to find the appropriate threshold value. However,
this would nullify the major advantage of distance-based
techniques, which is the ability to operate without training
data. Recently, Chaudhuri et al. [86] proposed a new
framework for distance-based duplicate detection, obser-
ving that the distance thresholds for detecting real duplicate
entries are different from each database tuple. To detect the
appropriate threshold, Chaudhuri et al. observed that
entries that correspond to the same real-world object but
have different representation in the database tend 1) to
have small distances from each other (compact set prop-
erty), and 2) to have only a small number of other neighbors
within a small distance (sparse neighborhood property).
Furthermore, Chaudhuri et al. propose an efficient algo-
rithm for computing the required threshold for each object
in the database and show that the quality of the results
outperforms approaches that rely on a single, global
threshold.

4.6 Rule-Based Approaches

A special case of distance-based approaches is the use of
rules to define whether two records are the same or not.
Rule-based approaches can be considered as distance-based
techniques, where the distance of two records is either 0 or
1. Wang and Madnick [16] proposed a rule-based approach
for the duplicate detection problem. For cases in which
there is no global key, Wang and Madnick suggest the use
of rules developed by experts to derive a set of attributes
that collectively serve as a “key” for each record. For
example, an expert might define rules such as

By using such rules, Wang and Madnick hoped to
generate unique keys that can cluster multiple records that
represent the same real-world entity. Lim et al. [87] also
used a rule-based approach, but with the extra restriction

ELMAGARMID ET AL.: DUPLICATE RECORD DETECTION: A SURVEY 9

that the result of the rules must always be correct.
Therefore, the rules should not be heuristically defined
but should reflect absolute truths and serve as functional
dependencies.

Hernández and Stolfo [14] further developed this idea
and derived an equational theory that dictates the logic of
domain equivalence. This equational theory specifies an
inference about the similarity of the records. For example, if
two people have similar name spellings and these people
have the same address, we may infer that they are the same
person. Specifying such an inference in the equational
theory requires declarative rule language. For example, the
following is a rule that exemplifies one axiom of the
equational theory developed for an employee database:

Note that “similar to” is measured by one of the string
comparison techniques (Section 3), and “matches” means to
declare that those two records are matched and therefore
represent the same person.

AJAX [88] is a prototype system that provides a
declarative language for specifying data cleaning programs,
consisting of SQL statements enhanced with a set of
primitive operations to express various cleaning transfor-
mations. AJAX provides a framework wherein the logic of a
data cleaning program is modeled as a directed graph of
data transformations starting from some input source data.
Four types of data transformations are provided to the user
of the system. The mapping transformation standardizes
data, the matching transformation finds pairs of records
that probably refer to the same real object, the clustering
transformation groups together matching pairs with a high
similarity value, and, finally, the merging transformation
collapses each individual cluster into a tuple of the resulting
data source.

It is noteworthy that such rule-based approaches which
require a human expert to devise meticulously crafted
matching rules typically result in systems with high
accuracy. However, the required tuning requires extremely
high manual effort from the human experts and this effort
makes the deployment of such systems difficult in practice.
Currently, the typical approach is to use a system that
generates matching rules from training data (see Sections 4.3
and 4.4) and then manually tune the automatically
generated rules.

4.7 Unsupervised Learning

As we mentioned earlier, the comparison space consists of
comparison vectors which contain information about the
differences between fields in a pair of records. Unless some
information exists about which comparison vectors corre-
spond to which category (match, nonmatch, or possible-
match), the labeling of the comparison vectors in the
training data set should be done manually. One way to
avoid manual labeling of the comparison vectors is to use
clustering algorithms and group together similar compar-
ison vectors. The idea behind most unsupervised learning

approaches for duplicate detection is that similar compar-
ison vectors correspond to the same class.

The idea of unsupervised learning for duplicate detec-
tion has its roots in the probabilistic model proposed by
Fellegi and Sunter (see Section 4.2). As we discussed in
Section 4.2, when there is no training data to compute the
probability estimates, it is possible to use variations of the
Expectation Maximization algorithm to identify appropriate
clusters in the data.

Verykios et al. [89] propose the use of a bootstrapping
technique based on clustering to learn matching models.
The basic idea, also known as cotraining [90], is to use very
few labeled data, and then use unsupervised learning
techniques to appropriately label the data with unknown
labels. Initially, Verykios et al. treat each entry of the
comparison vector (which corresponds to the result of a
field comparison) as a continuous, real variable. Then, they
partition the comparison space into clusters by using the
AutoClass [91] clustering tool. The basic premise is that
each cluster contains comparison vectors with similar
characteristics. Therefore, all the record pairs in the cluster
belong to the same class (matches, nonmatches, or possible-
matches). Thus, by knowing the real class of only a few
vectors in each cluster, it is possible to infer the class of all
vectors in the cluster and, therefore, mark the correspond-
ing record pairs as matches or not. Elfeky et al. [92]
implemented this idea in TAILOR, a toolbox for detecting
duplicate entries in data sets. Verykios et al. show that the
classifiers generated using the new, larger training set have
high accuracy, and require only a minimal number of
prelabeled record pairs.

Ravikumar and Cohen [93] follow a similar approach
and propose a hierarchical, graphical model for learning to
match record pairs. The foundation of this approach is to
model each field of the comparison vector as a latent binary
variable which shows whether the two fields match or not.
The latent variable then defines two probability distribu-
tions for the values of the corresponding “observed”
comparison variable. Ravikumar and Cohen show that it
is easier to learn the parameters of a hierarchical model than
to attempt to directly model the distributions of the real-
valued comparison vectors. Bhattacharya and Getoor [94]
propose using the Latent Dirichlet Allocation generative
model to perform duplicate detection. In this model, the
latent variable is a unique identifier for each entity in the
database.

4.8 Concluding Remarks

There are multiple techniques for duplicate record detec-
tion. We can divide the techniques into two broad
categories: ad hoc techniques that work quickly on existing
relational databases and more “principled” techniques that
are based on probabilistic inference models. While prob-
abilistic methods outperform ad hoc techniques in terms of
accuracy, the ad hoc techniques work much faster and can
scale to databases with hundreds of thousands of records.
Probabilistic inference techniques are practical today only
for data sets that are one or two orders of magnitude
smaller than the data sets handled by ad hoc techniques. A
promising direction for future research is to devise
techniques that can substantially improve the efficiency of

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

approaches that rely on machine learning and probabilistic
inference.

A question that is unlikely to be resolved soon is the
question of which of the presented methods should be used
for a given duplicate detection task. Unfortunately, there is
no clear answer to this question. The duplicate record
detection task is highly data-dependent and it is unclear if
we will ever see a technique dominating all others across all
data sets. The problem of choosing the best method for
duplicate data detection is very similar to the problem of
model selection and performance prediction for data mining:
We expect that progress on that front will also benefit from
the task of selecting the best method for duplicate detection.

5 IMPROVING THE EFFICIENCY OF DUPLICATE

DETECTION

So far, in our discussion of methods for detecting whether
two records refer to the same real-world object, we have
focused mainly on the quality of the comparison techniques
and not on the efficiency of the duplicate detection process.
Now, we turn to the central issue of improving the speed of
duplicate detection.

An elementary technique for discovering matching
entries in tables A and B is to execute a “nested-loop”
comparison, i.e., to compare every record of table A with
every record in table B. Unfortunately, such a strategy
requires a total of jAj � jBj comparisons, a cost that is
prohibitively expensive even for moderately sized tables. In
Section 5.1, we describe techniques that substantially reduce
the number of required comparisons.

Another factor that can lead to increased computation
expense is the cost required for a single comparison. It is not
uncommon for a record to contain tens of fields. Therefore,
each record comparison requires multiple field compar-
isons and each field comparison can be expensive. For
example, computing the edit distance between two long
strings �1 and �2, respectively, has a cost of Oðj�1j � j�2jÞ; just
checking if they are within a prespecified edit distance
threshold k can reduce the complexity to Oðmaxfj�1j; j�2jg �
kÞ (see Section 3.1). We examine some of the methods that
can be used to reduce the cost of record comparison in
Section 5.2.

5.1 Reducing the Number of Record Comparisons

5.1.1 Blocking

One “traditional” method for identifying identical records
in a database table is to scan the table and compute the
value of a hash function for each record. The value of the
hash function defines the “bucket” to which this record is
assigned. By definition, two records that are identical will
be assigned to the same bucket. Therefore, in order to locate
duplicates, it is enough to compare only the records that fall
into the same bucket for matches. The hashing technique
cannot be used directly for approximate duplicates since
there is no guarantee that the hash value of two similar
records will be the same. However, there is an interesting
counterpart of this method, named blocking.

As discussed above with relation to utilizing the hash
function, blocking typically refers to the procedure of

subdividing files into a set of mutually exclusive subsets
(blocks) under the assumption that no matches occur across
different blocks. A common approach to achieving these
blocks is to use a function such as Soundex, NYSIIS, or
Metaphone (see Section 3.3) on highly discriminating fields
(e.g., last name) and compare only records that have
similar, but not necessarily identical, fields.

Although blocking can substantially increase the speed
of the comparison process, it can also lead to an increased
number of false mismatches due to the failure of comparing
records that do not agree on the blocking field. It can also
lead to an increased number of missed matches due to
errors in the blocking step that placed entries in the wrong
buckets, thereby preventing them from being compared to
actual matching entries. One alternative is to execute the
duplicate detection algorithm in multiple runs, using a
different field for blocking each time. This approach can
substantially reduce the probability of false mismatches,
with a relatively small increase in the running time.

5.1.2 Sorted Neighborhood Approach

Hernández and Stolfo [14] describe the so-called sorted
neighborhood approach. The method consists of the follow-
ing three steps:

. Create key: A key for each record in the list is
computed by extracting relevant fields or portions of
fields.

. Sort data: The records in the database are sorted by
using the key found in the first step. A sorting key is
defined to be a sequence of attributes, or a sequence
of substrings within the attributes, chosen from the
record in an ad hoc manner. Attributes that appear
first in the key have a higher priority than those that
appear subsequently.

. Merge: A fixed size window is moved through the
sequential list of records in order to limit the
comparisons for matching records to those records
in the window. If the size of the window is w records,
then every new record that enters that window is
compared with the previous w� 1 records to find
“matching” records. The first record in the window
slides out of it.

The sorted neighborhood approach relies on the assump-
tion that duplicate records will be close in the sorted list,
and therefore will be compared during the merge step. The
effectiveness of the sorted neighborhood approach is highly
dependent upon the comparison key that is selected to sort
the records. In general, no single key will be sufficient to
sort the records in such a way that all the matching records
can be detected. If the error in a record occurs in the
particular field or portion of the field that is the most
important part of the sorting key, there is a very small
possibility that the record will end up close to a matching
record after sorting.

To increase the number of similar records merged,
Hernández and Stolfo implemented a strategy for executing
several independent runs of the sorted-neighborhood
method (presented above) by using a different sorting key
and a relatively small window each time. This strategy is
called the multipass approach. This method is similar in

ELMAGARMID ET AL.: DUPLICATE RECORD DETECTION: A SURVEY 11

spirit to the multiple-run blocking approach described
above. Each independent run produces a set of pairs of
records that can be merged. The final results, including the
transitive closure of the records matched in different passes,
are subsequently computed.

5.1.3 Clustering and Canopies

Monge and Elkan [73] try to improve the performance of a
basic “nested-loop” record comparison by assuming that
duplicate detection is transitive. This means that if � is
deemed to be a duplicate of � and � is deemed to be a
duplicate of �, then � and � are also duplicates. Under the
assumption of transitivity, the problem of matching records
in a database can be described in terms of determining the
connected components of an undirected graph. At any time,
the connected components of the graph correspond to the
transitive closure of the “record matches” relationships
discovered so far. Monge and Elkan [73] use a union-find
structure to efficiently compute the connected components
of the graph. During the Union step, duplicate records are
“merged” into a cluster and only a “representative” of the
cluster is kept for subsequent comparisons. This reduces the
total number of record comparisons without substantially
reducing the accuracy of the duplicate detection process.
The concept behind this approach is that, if a record � is not
similar to a record � already in the cluster, then it will not
match the other members of the cluster either.

McCallum et al. [95] propose the use of canopies for
speeding up the duplicate detection process. The basic idea
is to use a cheap comparison metric to group records into
overlapping clusters called canopies. (This is in contrast to
blocking that requires hard, nonoverlapping partitions.)
After the first step, the records are then compared pairwise,
using a more expensive similarity metric that leads to better
qualitative results. The assumption behind this method is
that there is an inexpensive similarity function that can be
used as a “quick-and-dirty” approximation for another,
more expensive function. For example, if two strings have a
length difference larger than 3, then their edit distance
cannot be smaller than 3. In that case, the length comparison
serves as a cheap (canopy) function for the more expensive
edit distance. Cohen and Richman [75] propose the tf.idf
similarity metric as a canopy distance and then use multiple
(expensive) similarity metrics to infer whether two records
are duplicates. Gravano et al. [45] propose using the string
lengths and the number of common q-grams of two strings
as canopies (filters according to [45]) for the edit distance
metric, which is expensive to compute in a relational
database. The advantage of this technique is that the canopy
functions can be evaluated efficiently using vanilla SQL
statements. In a similar fashion, Chaudhuri et al. [96]
propose using an indexable canopy function for easily
identifying similar tuples in a database. Baxter et al. [97]
perform an experimental comparison of canopy-based
approaches with traditional blocking and show that the
flexible nature of canopies can significantly improve the
quality and speed of duplicate detection.

5.1.4 Set Joins

Another direction toward efficiently implementing data
cleaning operations is to speed up the execution of set

operations: A large number of similarity metrics, discussed
in Section 3, use set operations as part of the overall
computation. Running set operations on all pair combina-
tions is a computationally expensive operation and is
typically unnecessary. For data cleaning applications, the
interesting pairs are only those in which the similarity value
is high. Many techniques use this property and suggest
algorithms for fast computation of set-based operations on a
set of records.

Cohen [81] proposed using a set of in-memory inverted
indexes together with an A 	 search algorithm to locate the
top-k most similar pairs, according to the cosine similarity
metric. Soffer et al. [98], mainly in the context of information
retrieval, suggest pruning the inverted index, removing
terms with low weights since they do not contribute much
to the computation of the tf.idf cosine similarity. Gravano
et al. [49] present a SQL-based approach that is analogous to
the approach of Soffer et al. [98] and allows fast computa-
tion of cosine similarity within an RDBMS. Mamoulis [99]
presents techniques for efficiently processing a set join in a
database, focusing on the containment and non-zero-over-
lap operators. Mamoulis shows that inverted indexes are
typically superior to approaches based on signature files,
confirming earlier comparison studies [100]. Sarawagi and
Kirpal [101] extend the set joins approach to a large number
of similarity predicates that use set joins. The Probe-Cluster
approach of Sarawagi and Kirpal works well in environ-
ments with limited main memory and can be used to
compute efficiently a large number of similarity predicates,
in contrast to previous approaches which were tuned for a
smaller number of similarity predicates (e.g., set contain-
ment, or cosine similarity). Furthermore, Probe-Cluster
returns exact values for the similarity metrics, in contrast
to previous approaches which used approximation techni-
ques.

5.2 Improving the Efficiency of Record Comparison

So far, we have examined techniques that reduce the
number of required record comparisons without compro-
mising the quality of the duplicate detection process.
Another way of improving the efficiency of duplicate
detection is to improve the efficiency of a single record
comparison. Next, we review some of these techniques.

When comparing two records, after having computed
the differences of only a small portion of the fields of two
records, it may be obvious that the pair does match,
irrespective of the results of further comparison. Therefore,
it is paramount to determine the field comparison for a pair
of records as soon as possible to avoid wasting additional,
valuable time. The field comparisons should be terminated
when even complete agreement of all the remaining fields
cannot reverse the unfavorable evidence for the matching of
the records [13]. To make the early termination work, the
global likelihood ratio for the full agreement of each of the
identifiers should be calculated. At any given point in the
comparison sequence, the maximum collective favorable
evidence, which could be accumulated from that point
forward, will indicate what improvement in the overall
likelihood ratio might conceivably result if the comparisons
were continued.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

Verykios et al. [89] propose a set of techniques for
reducing the complexity of record comparison. The first
step is to apply a feature subset selection algorithm for
reducing the dimensionality of the input set. By using a
feature selection algorithm (e.g., [102]) as a preprocessing
step, the record comparison process uses only a small
subset of the record fields, which speeds up the comparison
process. Additionally, the induced model can be generated
in a reduced amount of time and is usually characterized by
higher predictive accuracy. Verykios et al. [89] also suggest
using a pruning technique on the derived decision trees that
are used to classify record pairs as matches or mismatches.
Pruning produces models (trees) of smaller size that not
only avoid overfitting and have a higher accuracy, but also
allow for faster execution of the matching algorithm.

6 DUPLICATE DETECTION TOOLS

Over the past several years, a range of tools for cleaning
data has appeared on the market and research groups have
made available to the public software packages that can be
used for duplicate record detection. In this section, we
review such packages, focusing on tools that have open
architecture and allow the users to understand the under-
lying mechanics of the matching mechanisms.

The Febrl system3 (Freely Extensible Biomedical Record
Linkage) is an open-source data cleaning toolkit, and it has
two main components: The first component deals with data
standardization and the second performs the actual
duplicate detection. The data standardization relies mainly
on hidden-Markov models (HMMs); therefore, Febrl typi-
cally requires training to correctly parse the database
entries. For duplicate detection, Febrl implements a variety
of string similarity metrics, such as Jaro, edit distance, and
q-gram distance (see Section 3). Finally, Febrl supports
phonetic encoding (Soundex, NYSIIS, and Double Meta-
phone) to detect similar names. Since phonetic similarity is
sensitive to errors in the first letter of a name, Febrl also
computes phonetic similarity using the reversed version of
the name string, sidestepping the “first-letter” sensitivity
problem.

TAILOR [92] is a flexible record matching toolbox which
allows the users to apply different duplicate detection
methods on the data sets. The flexibility of using multiple
models is useful when the users do not know which
duplicate detection model will perform most effectively on
their particular data. TAILOR follows a layered design,
separating comparison functions from the duplicate detec-
tion logic. Furthermore, the execution strategies which
improve the efficiency are implemented in a separate layer,
making the system more extensible than systems that rely
on monolithic designs. Finally, TAILOR reports statistics,
such as estimated accuracy and completeness, which can
help the users better understand the quality of a given
duplicate detection execution over a new data set.

WHIRL4 is a duplicate record detection system available
for free for academic and research use. WHIRL uses the
tf.idf token-based similarity metric to identify similar strings

within two lists. The Flamingo Project5 is a similar tool that
provides a simple string matching tool that takes as input
two string lists and returns the strings pairs that are within
a prespecified edit distance threshold. WizSame by WizSoft
is also a product that allows the discovery of duplicate
records in a database. The matching algorithm is very
similar to SoftTF.IDF (see Section 3.2): Two records match if
they contain a significant fraction of identical or similar
words, where similar are the words that is within edit
distance one.

BigMatch [103] is the duplicate detection program used
by the US Census Bureau. It relies on blocking strategies
to identify potential matches between the records of two
relations and scales well for very large data sets. The only
requirement is that one of the two relations should fit in
memory, and it is possible to fit in memory even relations
with 100 million records. The main goal of BigMatch is
not to perform sophisticated duplicate detection, but
rather to generate a set of candidate pairs that should
be then processed by more sophisticated duplicate
detection algorithms.

Finally, we should note that, currently, many database
vendors (Oracle, IBM, and Microsoft) do not provide
sufficient tools for duplicate record detection. Most of the
efforts until now has focused on creating easy-to-use ETL
tools that can standardize database records and fix minor
errors, mainly in the context of address data. Another typical
function of the tools that are provided today is the ability to
use reference tables and standardize the representation of
entities that are well-known to have multiple representa-
tions. (For example, “TKDE” is also frequently written as
“IEEE TKDE” or as “Transactions on Knowledge and Data
Engineering.”) A recent, positive step is the existence of
multiple data cleaning operators within Microsoft SQL
Server Integration Services, which is part of Microsoft SQL
Server 2005. For example, SQL server now includes the
ability to perform “fuzzy matches” and implements “error-
tolerable indexes” that allow fast execution of such approx-
imate lookups. The adopted similarity metric is similar to
SoftTF.IDF, described in Section 3.2. Ideally, the other major
database vendors would also follow suit and add similar
capabilities and extend the current ETL packages.

7 FUTURE DIRECTIONS AND CONCLUSIONS

In this survey, we have presented a comprehensive survey
of the existing techniques used for detecting nonidentical
duplicate entries in database records. The interested reader
may also want to read a complementary survey by Winkler
[104] and the special issue of the IEEE Data Engineering
Bulletin on data quality [105].

As database systems are becoming more and more
commonplace, data cleaning is going to be the cornerstone
for correcting errors in systems which are accumulating
vast amounts of errors on a daily basis. Despite the breadth
and depth of the presented techniques, we believe that there
is still room for substantial improvement in the current
state-of-the-art.

First of all, it is currently unclear which metrics and
techniques are the current state-of-the-art. The lack of
standardized, large-scale benchmarking data sets can be a

ELMAGARMID ET AL.: DUPLICATE RECORD DETECTION: A SURVEY 13

3. http://sourceforge.net/projects/febrl.
4. http://www.cs.cmu.edu/~wcohen/whirl/. 5. http://www.ics.uci.edu/~flamingo/.

big obstacle for the further development of the field as it is
almost impossible to convincingly compare new techniques
with existing ones. A repository of benchmark data sources
with known and diverse characteristics should be made
available to developers so they may evaluate their methods
during the development process. Along with benchmark
and evaluation data, various systems need some form of
training data to produce the initial matching model.
Although small data sets are available, we are not aware
of large-scale, validated data sets that could be used as
benchmarks. Winkler [106] highlights techniques on how to
derive data sets that are properly anonymized and are still
useful for duplicate record detection purposes.

Currently, there are two main approaches for duplicate

record detection. Research in databases emphasizes rela-

tively simple and fast duplicate detection techniques that

can be applied to databases with millions of records. Such

techniques typically do not rely on the existence of training

data and emphasize efficiency over effectiveness. On the

other hand, research in machine learning and statistics aims

to develop more sophisticated matching techniques that

rely on probabilistic models. An interesting direction for

future research is to develop techniques that combine the

best of both worlds.
Most of the duplicate detection systems available today

offer various algorithmic approaches for speeding up the

duplicate detection process. The changing nature of the

duplicate detection process also requires adaptive methods

that detect different patterns for duplicate detection and

automatically adapt themselves over time. For example, a

background process could monitor the current data,

incoming data, and any data sources that need to be

merged or matched, and decide, based on the observed

errors, whether a revision of the duplicate detection process

is necessary or not. Another related aspect of this challenge

is to develop methods that permit the user to derive the

proportions of errors expected in data cleaning projects.
Finally, large amounts of structured information are now

derived from unstructured text and from the Web. This

information is typically imprecise and noisy; duplicate

record detection techniques are crucial for improving the

quality of the extracted data. The increasing popularity of

information extraction techniques is going to make this

issue more prevalent in the future, highlighting the need to

develop robust and scalable solutions. This only adds to the

sentiment that more research is needed in the area of

duplicate record detection and in the area of data cleaning

and information quality in general.

REFERENCES

[1] A. Chatterjee and A. Segev, “Data Manipulation in Heterogeneous
Databases,” ACM SIGMOD Record, vol. 20, no. 4, pp. 64-68, Dec.
1991.

[2] IEEE Data Eng. Bull., S. Sarawagi, ed., special issue on data
cleaning, vol. 23, no. 4, Dec. 2000.

[3] J. Widom, “Research Problems in Data Warehousing,” Proc. 1995
ACM Conf. Information and Knowledge Management (CIKM ’95),
pp. 25-30, 1995.

[4] A.Z. Broder, S.C. Glassman, M.S. Manasse, and G. Zweig,
“Syntactic Clustering of the Web,” Proc. Sixth Int’l World Wide
Web Conf. (WWW6), pp. 1157-1166, 1997.

[5] J. Cho, N. Shivakumar, and H. Garcia-Molina, “Finding Repli-
cated Web Collections,” Proc. 2000 ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’00), pp. 355-366, 2000.

[6] R. Mitkov, Anaphora Resolution, first ed. Longman, Aug. 2002.
[7] A. McCallum, “Information Extraction: Distilling Structured Data

from Unstructured Text,” ACM Queue, vol. 3, no. 9, pp. 48-57,
2005.

[8] H.B. Newcombe, J.M. Kennedy, S. Axford, and A. James,
“Automatic Linkage of Vital Records,” Science, vol. 130,
no. 3381, pp. 954-959, Oct. 1959.

[9] H.B. Newcombe and J.M. Kennedy, “Record Linkage: Making
Maximum Use of the Discriminating Power of Identifying
Information,” Comm. ACM, vol. 5, no. 11, pp. 563-566, Nov. 1962.

[10] H.B. Newcombe, “Record Linking: The Design of Efficient
Systems for Linking Records into Individual and Family
Histories,” Am. J. Human Genetics, vol. 19, no. 3, pp. 335-359,
May 1967.

[11] B.J. Tepping, “A Model for Optimum Linkage of Records,” J. Am.
Statistical Assoc., vol. 63, no. 324, pp. 1321-1332, Dec. 1968.

[12] I.P. Fellegi and A.B. Sunter, “A Theory for Record Linkage,” J. Am.
Statistical Assoc., vol. 64, no. 328, pp. 1183-1210, Dec. 1969.

[13] H.B. Newcombe, Handbook of Record Linkage. Oxford Univ. Press,
1988.

[14] M.A. Hernández and S.J. Stolfo, “Real-World Data Is Dirty: Data
Cleansing and the Merge/Purge Problem,” Data Mining and
Knowledge Discovery, vol. 2, no. 1, pp. 9-37, Jan. 1998.

[15] S. Sarawagi and A. Bhamidipaty, “Interactive Deduplication
Using Active Learning,” Proc. Eighth ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (KDD ’02), pp. 269-278, 2002.

[16] Y.R. Wang and S.E. Madnick, “The Inter-Database Instance
Identification Problem in Integrating Autonomous Systems,” Proc.
Fifth IEEE Int’l Conf. Data Eng. (ICDE ’89), pp. 46-55, 1989.

[17] W.W. Cohen, H. Kautz, and D. McAllester, “Hardening Soft
Information Sources,” Proc. Sixth ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (KDD ’00), pp. 255-259, 2000.

[18] M. Bilenko, R.J. Mooney, W.W. Cohen, P. Ravikumar, and S.E.
Fienberg, “Adaptive Name Matching in Information Integration,”
IEEE Intelligent Systems, vol. 18, no. 5, pp. 16-23, Sept./Oct. 2003.

[19] R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit: Practical
Techniques for Extracting, Cleaning, Conforming, and Delivering Data.
John Wiley & Sons, 2004.

[20] IEEE Data Eng. Bull., E. Rundensteiner, ed., special issue on date
transformation, vol. 22, no. 1, Jan. 1999.

[21] A. McCallum, D. Freitag, and F.C.N. Pereira, “Maximum Entropy
Markov Models for Information Extraction and Segmentation,”
Proc. 17th Int’l Conf. Machine Learning (ICML ’00), pp. 591-598,
2000.

[22] V.R. Borkar, K. Deshmukh, and S. Sarawagi, “Automatic
Segmentation of Text into Structured Records,” Proc. 2001 ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’01), pp. 175-
186, 2001.

[23] E. Agichtein and V. Ganti, “Mining Reference Tables for
Automatic Text Segmentation,” Proc. 10th ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining (KDD ’04), pp. 20-29,
2004.

[24] C. Sutton, K. Rohanimanesh, and A. McCallum, “Dynamic
Conditional Random Fields: Factorized Probabilistic Models for
Labeling and Segmenting Sequence Data,” Proc. 21st Int’l Conf.
Machine Learning (ICML ’04), 2004.

[25] V. Raman and J.M. Hellerstein, “Potter’s Wheel: An Interactive
Data Cleaning System,” Proc. 27th Int’l Conf. Very Large Databases
(VLDB ’01), pp. 381-390, 2001.

[26] M. Perkowitz, R.B. Doorenbos, O. Etzioni, and D.S. Weld,
“Learning to Understand Information on the Internet: An
Example-Based Approach,” J. Intelligent Information Systems,
vol. 8, no. 2, pp. 133-153, Mar. 1997.

[27] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk,
“Mining Database Structure; or, How to Build a Data Quality
Browser,” Proc. 2002 ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’02), pp. 240-251, 2002.

[28] V.I. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” Doklady Akademii Nauk SSSR, vol. 163,
no. 4, pp. 845-848, 1965, original in Russian—translation in Soviet
Physics Doklady, vol. 10, no. 8, pp. 707-710, 1966.

[29] G. Navarro, “A Guided Tour to Approximate String Matching,”
ACM Computing Surveys, vol. 33, no. 1, pp. 31-88, 2001.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

[30] G.M. Landau and U. Vishkin, “Fast Parallel and Serial Approx-
imate String Matching,” J. Algorithms, vol. 10, no. 2, pp. 157-169,
June 1989.

[31] S.B. Needleman and C.D. Wunsch, “A General Method Applicable
to the Search for Similarities in the Amino Acid Sequence of Two
Proteins,” J. Molecular Biology, vol. 48, no. 3, pp. 443-453, Mar.
1970.

[32] E.S. Ristad and P.N. Yianilos, “Learning String Edit Distance,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 5,
pp. 522-532, May 1998.

[33] M.S. Waterman, T.F. Smith, and W.A. Beyer, “Some Biological
Sequence Metrics,” Advances in Math., vol. 20, no. 4, pp. 367-387,
1976.

[34] T.F. Smith and M.S. Waterman, “Identification of Common
Molecular Subsequences,” J. Molecular Biology, vol. 147, pp. 195-
197, 1981.

[35] S.F. Altschula, W. Gisha, W. Millerb, E.W. Meyersc, and D.J.
Lipmana, “Basic Local Alignment Search Tool,” J. Molecular
Biology, vol. 215, no. 3, pp. 403-410, Oct. 1990.

[36] R. Baeza-Yates and G.H. Gonnet, “A New Approach to Text
Searching,” Comm. ACM, vol. 35, no. 10, pp. 74-82, Oct. 1992.

[37] S. Wu and U. Manber, “Fast Text Searching Allowing Errors,”
Comm. ACM, vol. 35, no. 10, pp. 83-91, Oct. 1992.

[38] J.C. Pinheiro and D.X. Sun, “Methods for Linking and Mining
Heterogeneous Databases,” Proc. Int’l Conf. Knowledge Discovery
and Data Mining (KDD ’98), pp. 309-313, 1998.

[39] M.A. Jaro, “Unimatch: A Record Linkage System: User’s Manual,”
technical report, US Bureau of the Census, Washington, D.C.,
1976.

[40] W.E. Winkler and Y. Thibaudeau, “An Application of the Fellegi-
Sunter Model of Record Linkage to the 1990 US Decennial
Census,” Technical Report Statistical Research Report Series
RR91/09, US Bureau of the Census, Washington, D.C., 1991.

[41] J.R. Ullmann, “A Binary n-Gram Technique for Automatic
Correction of Substitution, Deletion, Insertion, and Reversal
Errors in Words,” The Computer J., vol. 20, no. 2, pp. 141-147, 1977.

[42] E. Ukkonen, “Approximate String Matching with q-Grams and
Maximal Matches,” Theoretical Computer Science, vol. 92, no. 1,
pp. 191-211, 1992.

[43] K. Kukich, “Techniques for Automatically Correcting Words in
Text,” ACM Computing Surveys, vol. 24, no. 4, pp. 377-439, Dec.
1992.

[44] E. Sutinen and J. Tarhio, “On Using q-Gram Locations in
Approximate String Matching,” Proc. Third Ann. European Symp.
Algorithms (ESA ’95), pp. 327-340, 1995.

[45] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas, S.
Muthukrishnan, and D. Srivastava, “Approximate String Joins in
a Database (Almost) for Free,” Proc. 27th Int’l Conf. Very Large
Databases (VLDB ’01), pp. 491-500, 2001.

[46] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas, S.
Muthukrishnan, L. Pietarinen, and D. Srivastava, “Using
q-Grams in a DBMS for Approximate String Processing,” IEEE
Data Eng. Bull., vol. 24, no. 4, pp. 28-34, Dec. 2001.

[47] A.E. Monge and C.P. Elkan, “The Field Matching Problem:
Algorithms and Applications,” Proc. Second Int’l Conf. Knowledge
Discovery and Data Mining (KDD ’96), pp. 267-270, 1996.

[48] W.W. Cohen, “Integration of Heterogeneous Databases without
Common Domains Using Queries Based on Textual Similarity,”
Proc. 1998 ACM SIGMOD Int’l Conf. Management of Data (SIGMOD
’98), pp. 201-212, 1998.

[49] L. Gravano, P.G. Ipeirotis, N. Koudas, and D. Srivastava, “Text
Joins in an RDBMS for Web Data Integration,” Proc. 12th Int’l
World Wide Web Conf. (WWW12), pp. 90-101, 2003.

[50] R.C. Russell Index, U.S. Patent 1,261,167, http://patft.uspto. gov/
netahtml/srchnum.htm, Apr. 1918.

[51] R.C. Russell Index, U.S. Patent 1,435,663, http://patft.uspto. gov/
netahtml/srchnum.htm, Nov. 1922.

[52] R.L. Taft, “Name Search Techniques,” Technical Report Special
Report No. 1, New York State Identification and Intelligence
System, Albany, N.Y., Feb. 1970.

[53] L.E. Gill, “OX-LINK: The Oxford Medical Record Linkage
System,” Proc. Int’l Record Linkage Workshop and Exposition,
pp. 15-33, 1997.

[54] L. Philips, “Hanging on the Metaphone,” Computer Language
Magazine, vol. 7, no. 12, pp. 39-44, Dec. 1990, http://
www.cuj.com/documents/s=8038/cuj0006philips/.

[55] L. Philips, “The Double Metaphone Search Algorithm,” C/C++
Users J., vol. 18, no. 5, June 2000.

[56] N. Koudas, A. Marathe, and D. Srivastava, “Flexible String
Matching against Large Databases in Practice,” Proc. 30th Int’l
Conf. Very Large Databases (VLDB ’04), pp. 1078-1086, 2004.

[57] R. Agrawal and R. Srikant, “Searching with Numbers,” Proc. 11th
Int’l World Wide Web Conf. (WWW11), pp. 420-431, 2002.

[58] W.E. Yancey, “Evaluating String Comparator Performance for
Record Linkage,” Technical Report Statistical Research Report
Series RRS2005/05, US Bureau of the Census, Washington, D.C.,
June 2005.

[59] S. Tejada, C.A. Knoblock, and S. Minton, “Learning Domain-
Independent String Transformation Weights for High Accuracy
Object Identification,” Proc. Eighth ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (KDD ’02), 2002.

[60] T. Hastie, R. Tibshirani, and J.H. Friedman, The Elements of
Statistical Learning. Springer Verlag, Aug. 2001.

[61] M.A. Jaro, “Advances in Record-Linkage Methodology as Applied
to Matching the 1985 Census of Tampa, Florida,” J. Am. Statistical
Assoc., vol. 84, no. 406, pp. 414-420, June 1989.

[62] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Like-
lihood from Incomplete Data via the EM Algorithm,” J. Royal
Statistical Soc., vol. B, no. 39, pp. 1-38, 1977.

[63] W.E. Winkler, “Improved Decision Rules in the Felligi-Sunter
Model of Record Linkage,” Technical Report Statistical Research
Report Series RR93/12, US Bureau of the Census, Washington,
D.C., 1993.

[64] W.E. Winkler, “Methods for Record Linkage and Bayesian
Networks,” Technical Report Statistical Research Report Series
RRS2002/05, US Bureau of the Census, Washington, D.C., 2002.

[65] K. Nigam, A. McCallum, S. Thrun, and T.M. Mitchell, “Text
Classification from Labeled and Unlabeled Documents Using
EM,” Machine Learning, vol. 39, nos. 2/3, pp. 103-134, 2000.

[66] N.S.D. Du Bois Jr., “A Solution to the Problem of Linking
Multivariate Documents,” J. Am. Statistical Assoc., vol. 64, no. 325,
pp. 163-174, Mar. 1969.

[67] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis.
Wiley, 1973.

[68] V.S. Verykios, G.V. Moustakides, and M.G. Elfeky, “A Bayesian
Decision Model for Cost Optimal Record Matching,” VLDB J.,
vol. 12, no. 1, pp. 28-40, May 2003.

[69] V.S. Verykios and G.V. Moustakides, “A Generalized Cost
Optimal Decision Model for Record Matching,” Proc. 2004 Int’l
Workshop Information Quality in Information Systems, pp. 20-26,
2004.

[70] M. Cochinwala, V. Kurien, G. Lalk, and D. Shasha, “Efficient Data
Reconciliation,” Information Sciences, vol. 137, nos. 1-4, pp. 1-15,
Sept. 2001.

[71] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classifica-
tion and Regression Trees. CRC Press, July 1984.

[72] T. Joachims, “Making Large-Scale SVM Learning Practical,”
Advances in Kernel Methods—Support Vector Learning, B. Schölkopf,
C.J.C. Burges, and A.J. Smola, eds., MIT-Press, 1999.

[73] A.E. Monge and C.P. Elkan, “An Efficient Domain-Independent
Algorithm for Detecting Approximately Duplicate Database
Records,” Proc. Second ACM SIGMOD Workshop Research Issues in
Data Mining and Knowledge Discovery (DMKD ’97), pp. 23-29, 1997.

[74] N. Bansal, A. Blum, and S. Chawla, “Correlation Clustering,”
Machine Learning, vol. 56, nos. 1-3, pp. 89-113, 2004.

[75] W.W. Cohen and J. Richman, “Learning to Match and Cluster
Large High-Dimensional Data Sets for Data Integration,” Proc.
Eighth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (KDD ’02), 2002.

[76] A. McCallum and B. Wellner, “Conditional Models of Identity
Uncertainty with Application to Noun Coreference,” Advances in
Neural Information Processing Systems (NIPS ’04), 2004.

[77] P. Singla and P. Domingos, “Multi-Relational Record Linkage,”
Proc. KDD-2004 Workshop Multi-Relational Data Mining, pp. 31-48,
2004.

[78] H. Pasula, B. Marthi, B. Milch, S.J. Russell, and I. Shpitser,
“Identity Uncertainty and Citation Matching,” Advances in Neural
Information Processing Systems (NIPS ’02), pp. 1401-1408, 2002.

[79] D.A. Cohn, L. Atlas, and R.E. Ladner, “Improving Generalization
with Active Learning,” Machine Learning, vol. 15, no. 2, pp. 201-
221, 1994.

ELMAGARMID ET AL.: DUPLICATE RECORD DETECTION: A SURVEY 15

[80] S. Tejada, C.A. Knoblock, and S. Minton, “Learning Object
Identification Rules for Information Integration,” Information
Systems, vol. 26, no. 8, pp. 607-633, 2001.

[81] W.W. Cohen, “Data Integration Using Similarity Joins and a
Word-Based Information Representation Language,” ACM Trans.
Information Systems, vol. 18, no. 3, pp. 288-321, 2000.

[82] D. Dey, S. Sarkar, and P. De, “Entity Matching in Heterogeneous
Databases: A Distance Based Decision Model,” Proc. 31st Ann.
Hawaii Int’l Conf. System Sciences (HICSS ’98), pp. 305-313, 1998.

[83] S. Guha, N. Koudas, A. Marathe, and D. Srivastava, “Merging the
Results of Approximate Match Operations,” Proc. 30th Int’l Conf.
Very Large Databases (VLDB ’04), pp. 636-647, 2004.

[84] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory,
Algorithms, and Applications, first ed. Prentice Hall, Feb. 1993.

[85] R. Ananthakrishna, S. Chaudhuri, and V. Ganti, “Eliminating
Fuzzy Duplicates in Data Warehouses,” Proc. 28th Int’l Conf. Very
Large Databases (VLDB ’02), 2002.

[86] S. Chaudhuri, V. Ganti, and R. Motwani, “Robust Identification of
Fuzzy Duplicates,” Proc. 21st IEEE Int’l Conf. Data Eng. (ICDE ’05),
pp. 865-876, 2005.

[87] E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson, “Entity
Identification in Database Integration,” Proc. Ninth IEEE Int’l Conf.
Data Eng. (ICDE ’93), pp. 294-301, 1993.

[88] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita,
“Declarative Data Cleaning: Language, Model, and Algorithms,”
Proc. 27th Int’l Conf. Very Large Databases (VLDB ’01), pp. 371-380,
2001.

[89] V.S. Verykios, A.K. Elmagarmid, and E.N. Houstis, “Automating
the Approximate Record Matching Process,” Information Sciences,
vol. 126, nos. 1-4, pp. 83-98, July 2000.

[90] A. Blum and T. Mitchell, “Combining Labeled and Unlabeled
Data with Co-Training,” COLT ’98: Proc. 11th Ann. Conf.
Computational Learning Theory, pp. 92-100, 1998.

[91] P. Cheeseman and J. Sturz, “Bayesian Classification (Autoclass):
Theory and Results,” Advances in Knowledge Discovery and Data
Mining, pp. 153-180, AAAI Press/The MIT Press, 1996.

[92] M.G. Elfeky, A.K. Elmagarmid, and V.S. Verykios, “TAILOR: A
Record Linkage Tool Box,” Proc. 18th IEEE Int’l Conf. Data Eng.
(ICDE ’02), pp. 17-28, 2002.

[93] P. Ravikumar and W.W. Cohen, “A Hierarchical Graphical Model
for Record Linkage,” 20th Conf. Uncertainty in Artificial Intelligence
(UAI ’04), 2004.

[94] I. Bhattacharya and L. Getoor, “Latent Dirichlet Allocation Model
for Entity Resolution,” Technical Report CS-TR-4740, Computer
Science Dept., Univ. of Maryland, Aug. 2005.

[95] A. McCallum, K. Nigam, and L.H. Ungar, “Efficient Clustering of
High-Dimensional Data Sets with Application to Reference
Matching,” Proc. Sixth ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (KDD ’00), pp. 169-178, 2000.

[96] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust and
Efficient Fuzzy Match for Online Data Cleaning,” Proc. 2003 ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’03), pp. 313-
324, 2003.

[97] R. Baxter, P. Christen, and T. Churches, “A Comparison of Fast
Blocking Methods for Record Linkage,” Proc. ACM SIGKDD ’03
Workshop Data Cleaning, Record Linkage, and Object Consolidation,
pp. 25-27, 2003.

[98] A. Soffer, D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici,
and Y.S. Maarek, “Static Index Pruning for Information Retrieval
Systems,” Proc. 24th Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval, (SIGIR ’01), pp. 43-50, 2001.

[99] N. Mamoulis, “Efficient Processing of Joins on Set-Valued
Attributes,” Proc. 2003 ACM SIGMOD Int’l Conf. Management of
Data (SIGMOD ’03), pp. 157-168, 2003.

[100] J. Zobel, A. Moffat, and K. Ramamohanarao, “Inverted Files
versus Signature Files for Text Indexing,” ACM Trans. Database
Systems, vol. 23, no. 4, pp. 453-490, Dec. 1998.

[101] S. Sarawagi and A. Kirpal, “Efficient Set Joins on Similarity
Predicates,” Proc. 2004 ACM SIGMOD Int’l Conf. Management of
Data (SIGMOD ’04), pp. 743-754, 2004.

[102] D. Koller and M. Sahami, “Hierarchically Classifying Documents
Using Very Few Words,” Proc. 14th Int’l Conf. Machine Learning
(ICML ’97), pp. 170-178, 1997.

[103] W.E. Yancey, “Bigmatch: A Program for Extracting Probable
Matches from a Large File for Record Linkage,” Technical Report
Statistical Research Report Series RRC2002/01, US Bureau of the
Census, Washington, D.C., Mar. 2002.

[104] W.E. Winkler, “Overview of Record Linkage and Current
Research Directions,” Technical Report Statistical Research Report
Series RRS2006/02, US Bureau of the Census, Washington, D.C.,
2006.

[105] IEEE Data Eng. Bull., N. Koudas, ed., special issue on date quality,
vol. 29, no. 2, June 2006.

[106] W.E. Winkler, “The State of Record Linkage and Current Research
Problems,” Technical Report Statistical Research Report Series
RR99/04, US Bureau of the Census, Washington, D.C., 1999.

Ahmed K. Elmagarmid received the BS
degree in computer science from the University
of Dayton and the MS and PhD degrees from
The Ohio State University in 1977, 1981, and
1985, respectively. He has been with the
Department of Computer Science at Purdue
University since 1988, where he is now the
director of the Cyber Center at Discovery Park.
He served as a corporate chief scientist for
Hewlett-Packard, on the faculty of the Pennsyl-

vania State University, and as an industry adviser for corporate strategy
and product roadmaps. Professor Elmagarmid has been a database
consultant for the past 20 years. He received a Presidential Young
Investigator award from the US National Science Foundation and the
distinguished alumni awards from The Ohio State University and the
University of Dayton in 1988, 1993, and 1995, respectively. Professor
Elmagarmid has served on several editorial boards and has been active
in many of the professional societies. He is a member of the ACM, the
AAAS, and a senior member of the IEEE.

Panos G. Ipeirotis received the BSc degree
from the Computer Engineering and Informatics
Department (CEID) at the University of Patras,
Greece, in 1999 and the PhD degree in
computer science from Columbia University in
2004. He is an assistant professor in the
Department of Information, Operations, and
Management Sciences at the Leonard N. Stern
School of Business at New York University. His
area of expertise is databases and information

retrieval, with an emphasis on management of textual data. His research
interests include Web searching, text and Web mining, data cleaning,
and data integration. He is the recipient of the Microsoft Live Labs
Award, the “Best Paper” award for the IEEE ICDE 2005 Conference,
and the “Best Paper” award for the ACM SIGMOD 2006 Conference. He
is a member of the IEEE Computer Society.

Vassilios S. Verykios received the diploma
degree in computer engineering from the Uni-
versity of Patras, Greece, and the MS and PhD
degrees from Purdue University in 1992, 1997,
and 1999, respectively. In 1999, he joined the
faculty of information systems in the College of
Information Science and Technology at Drexel
University, Pennsylvania, as a tenure track
assistant professor. Since 2005, he has been
an assistant professor in the Department of

Computer and Communication Engineering at the University of
Thessaly, in Volos, Greece. He has also served on the faculty of the
Athens Information Technology Center, Hellenic Open University, and
University of Patras, Greece. His main research interests include
knowledge-based systems, privacy and security in advanced database
systems, data mining, data reconciliation, parallel computing, and
performance evaluation of large-scale parallel systems. Dr. Verykios
has published more than 40 papers in major referred journals and in the
proceedings of international conferences and workshops, and he has
served on the program committees of several international scientific
events. He has consulted for Telcordia Technologies, ChoiceMaker
Technologies, Intracom SA, and LogicDIS SA. He has also been a
visiting researcher for CERIAS, the Department of Computer Sciences
at Purdue University, the US Naval Research Laboratory, and the
Research and Academic Computer Technology Institute in Patras,
Greece. He is a member of the IEEE Computer Society.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

