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Abstract—Advances in the media and entertainment industries, including streaming audio and digital TV, present new challenges for

managing and accessing large audio-visual collections. Current content management systems support retrieval using low-level

features, such as motion, color, and texture. However, low-level features often have little meaning for naive users, who much prefer to

identify content using high-level semantics or concepts. This creates a gap between systems and their users that must be bridged for

these systems to be used effectively. To this end, in this paper, we first present a knowledge-based video indexing and content

management framework for domain specific videos (using basketball video as an example). We will provide a solution to explore video

knowledge by mining associations from video data. The explicit definitions and evaluation measures (e.g., temporal support and

confidence) for video associations are proposed by integrating the inherent feature of video data. Our approach uses video processing

techniques to find visual and audio cues (e.g., court field, camera motion activities, and applause), introduces multilevel sequential

association mining to explore associations among the audio and visual cues, classifies the associations by assigning each of them with

a class label, and uses their appearances in the video to construct video indices. Our experimental results demonstrate the

performance of the proposed approach.

Index Terms—Video mining, multimedia systems, database management, knowledge-based systems.
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1 INTRODUCTION

ORGANIZATIONS with large digital assets have a need to
retrieve meaningful information from their digital

collections. Applications such as digital libraries, video-on-
demand systems, and interactive video applications intro-
duce new challenges in managing large collections of audio-
visual content. To help users find and retrieve relevant video
more effectively and to facilitate new and better ways of
entertainment, advanced technologies must be developed
for indexing, filtering, searching, and mining the vast
amount of videos. Motivated by these demands, many video
research efforts have been made on exploring more efficient
content management systems. A simple framework is to
partition continuous video frames into discrete physical
shots and extract low-level features from video shots to
support activities like searching, indexing [42], [43], or
retrieval [1]. Unfortunately, a single shot which is separated
from its context has less capability of conveying semantics.
Moreover, the index considering only visual similarities

ignores the temporal information among shots. Conse-
quently, the constructed cluster nodes may contain shots
that have considerable variances both in semantics and
visual content and, therefore, do not make much sense to
human perception. The solution to this problem is to explore
video knowledge to construct a database indexing structure
which can facilitate database management and access.
However, despite the fact that video was invented for more
than 50 years ago and has been widely accepted as an
excellent and popular tool to represent information, one can
finds that it has never been an easy operation to extract or
explore knowledge from video data [2], [3], [4], [5].

Recently, there has been a trend of employing various

data mining techniques [6], [7], [8], [9], [10], [11], [12], [13],

[14], [15], [16], [17], [18], [19] in exploring knowledge from

large video sets. These efforts are motivated by successful

data mining algorithms and by the tremendous appeal of

efficient video database management. Consequently, many

video mining approaches have been proposed, which can

be roughly classified into three categories:

1. Special pattern detection [6], [7], [8], [9], [16], [17],
[18], which detects special patterns that have been
modeled in advance, and these patterns are usually
characterized as video events (e.g., dialog, or
presentation).

2. Video clustering and classification [10], [11], [12],
[15], [19], which clusters and classifies video units
into different categories. For example, in [10], [11],
video clips are grouped into different topic groups,
where the topic information is extracted from the
transcripts of the video.
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3. Video association mining, where associations from
video units are used to explore video knowledge
[13], [14].

An intuitive solution for video mining is to apply
existing data mining techniques [20], [21], [22] to video
data directly. Nevertheless, as we can see from the three
types of video mining techniques above, except [13], [14]
which have integrated traditional sequential association
mining techniques, most others provide their own mining
algorithms. The reason is that almost all existing data
mining approaches deal with various databases (like
transaction data sets) in which the relationship between
data items is explicitly given. Video and image databases
(or other multimedia data) are different from them. The
greatest distinction between video and image databases is
that the relationship between any two of their items cannot
be explicitly (or precisely) figured out. Although we may
now retrieve video frames (and even physical shots) with
satisfactory results, acquiring relationships among video
frames (or shots) is still an open problem. This inherent
complexity has suggested that mining knowledge from
multimedia materials is even harder than from general
databases [7], [23], [24], [44].

In this paper, we first introduce a knowledge-based
video indexing framework to facilitate video database
management and access. To explore video knowledge in
supporting this framework, we propose a solution for a new
research topic, video association mining, in which video
processing and existing data mining algorithms are seam-
lessly integrated to mine video knowledge. We will system-
atically address the definitions and evaluation measures
(temporal distance, temporal support, and confidence) for
video associations by taking the distinct features of video
data into consideration and by proposing a solution in
mining sequential patterns from the video stream that
usually consists of multiple information sources (e.g.,
image, audio, and caption text). We use basketball videos
as our test bed because sports video generates large interest
and high impact worldwide.

The paper is organized as follows: In Section 2, we
present a knowledge-based video indexing framework and
introduce the system architecture for video association
mining. We provide several techniques in Section 3 to
explore visual and audio cues that can help us bridge the
semantic gap between low-level features and video content.
In Section 4, we present a video association mining scheme.
We discuss algorithms to classify video associations and
construct video indexing in Section 5. Section 6 presents the
results of our performance evaluation.

2 KNOWLEDGE-BASED VIDEO INDEXING AND

SYSTEM ARCHITECTURE

There are two widely accepted approaches for accessing
video in databases: shot-based and object-based. In this
paper, we focus on the shot-based approach. In comparison
with traditional video database systems that use low-level
similarities among shots to construct indices, a semantic
video database management framework has been proposed
in Fig. 1, where video semantic units (scenes or story units)
are used to construct database indices [7]. However, this
scheme works on videos with content structure, e.g., movies
and news, where video scenes are used to convey scenarios
and content evolution. For many other videos, such as
sports videos, there are no such story units. Instead, they
contain various interesting events, e.g., a goal or a fast
break, which could be taken as highlights and important
semantics. Accordingly, by integrating the existing frame-
work in Fig. 1, we propose a knowledge-based video
indexing framework for basketball videos, as shown in
Fig. 2. To support efficient video indexing, we need to
address the following three key problems before we can
actually adopt the framework in Fig. 2: 1) How many levels
should be included in the model? 2) Which kinds of
decision rules should be used at each node? 3) Do these
nodes make sense to human beings?

We solve the first and third problems by deriving
knowledge from domain experts (or from extensive ob-
servations) and from the video concept hierarchy. For
basketball videos, we first classify them into a two-level
hierarchy. The first level is the host association of the
games, e.g., NBA, NCAA, and CBA, and the second level
consists of teams of each association, such as LA_Lake and
Houston, where each video can be explicitly classified into
one node. Then, we integrate the inherent structure of video
content to construct lower-level indices. As we have stated
above, extensive observations and existing research efforts
suggest that there are many interesting events in sports
videos that can be used as highlights [16], [25], [26], [29]. For
basketball videos, the events that likely attract most view-
ers’ interests are goals, fast breaks, and free throws, etc. We
can therefore use these events as nodes at the third level of
our indexing structure. At the lowest level, we use the video
shots as index nodes, as shown in Fig. 2, where each shot
may have more than one parent node because some shots
contain several events.

To solve the second problem, we find that the decision
rules for the first two levels (cluster and subcluster) and the
lowest level (shots and frames) are relatively easy and we
can employ domain knowledge and some video shot
segmentation algorithms [1], [27] to get satisfactory results.
Our analysis in Section 3.2 also indicates that, by using the
caption text in basketball videos, we can recognize team

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

Fig. 1. The proposed hierarchical video database model.
Fig. 2. Knowledge-based basketball video database management.



names and their scores. Hence, the decision rules for the
second level can also be accomplished automatically.
Nevertheless, the most challenging task comes from the
decision rules of the third level (events), i.e., mapping
physical shots to various event nodes. In this paper, we will
adopt video association mining to detect sports events. Our
system architecture is given in Fig. 4, where various
features are outlined below:

1. A video association mining algorithm to explore
video knowledge. It also explores a new research
area in video mining, where existing video proces-
sing techniques and data mining algorithms are
seamlessly integrated to explore video content.

2. An association-based video event detection scheme
to detect various sports events for database index-
ing. In comparison with other video event detection
techniques, e.g., special pattern detection [25], the
Hidden Markov Models [16], [29], and classification
rules [28], the association-based technique does not
need to define event models in advance. Instead, the
association mining will help us explore models
(associated patterns) from video.

3. A knowledge-based sports video management
framework to support effective video access. The
inherent hierarchical video classification and index-
ing structure can support a wide range of granular-
ity levels. The organization of visual summaries is
also inherently supported. Hence, a naive user can
browse only a portion of highlights (events) to get a
concise summary.

By integrating the video knowledge in the indexing
structure, the constructed video database system will make
more sense in supporting the retrieval and browsing for
naive users. As shown in Fig. 3, where we provide four
examples of “foul shots,” it can be seen that the visual
perception of these four shots vary a lot (especially for
Fig. 3a and all others), but Fig. 3a and Fig. 3b both cover the
same event of the same player, which are captured from
different angles. With traditional video indexing mechan-
isms, these four shots will be indexed at different nodes
(because they have different visual perceptions) and
providing Fig. 3a as the query example may never work
out results, like Fig. 3b (even if they do match with each
other in semantics). With knowledge-based indexing, we
can index them as one node (as long as we can detect this
type of event), so the retrieval, browsing, and database
management can be facilitated. When searching from a
database constructed with the proposed indexing structure,
the search engine can either include or exclude any index
level to facilitate different types of queries. For example, if a
user wants to query for a foul shot, regardless of the team
names or the host association of the games (NBA, NCAA,
etc.), the search engine can inherently attain this goal by
ignoring the first two levels of indexing (cluster and
subcluster in Fig. 2) at the search stage.

In the system architecture in Fig. 4, we first parse a video
sequence into physical shots and use a clustering algorithm
to merge visually similar shots into groups. We then use
dominant color detection to identify video groups that
consist of court field shots and classify video shots into two
categories: court and noncourt. We also perform camera
motion extraction, audio signal analysis, and video text
detection and recognition to detect visual and audio cues. A
hybrid sequence is constructed by integrating the temporal
order and the audio and visual cues of each shot. An
association mining scheme is designed to mine sequential
associations from the sequence. Finally, we classify all
mined associations and use them to construct video
indexing.

3 VIDEO PREPROCESSING

To apply existing data mining techniques on video data,
one of the most important steps is to transform video from
nonrelational data into a relational data set. To facilitate this
goal, we adopt a series of algorithms to explore audio and
visual cues. We start with a raw video sequence and output
symbolic sequences that indicate where and what types of
cues appear in the video.

3.1 Video Shot Detection and Classification

Physical video shots that are implicitly related to content
changes among frames are widely used in various video
database systems [1]. To support shot-based video content
access, we have developed a shot cut detection technique
[27], which uses color features in each frame to characterize
content changes among frames. The boundaries of shots are
then determined by a threshold that is determined
adaptively by using a small window (30 frames in our
current work).

After shot segmentation, we try to classify each shot into
two categories: court and noncourt. We first cluster visually
similar shots into groups and then use the dominant color
to identify groups which consist of court field shots because
the court field in most sports can be described by one
distinct dominant color [29]. To facilitate this goal, we use
the 10th frame of each shot as its representative frame (key-
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Fig. 3. Examples of the free throws of “foul shots,” where shot (b) is

captured right after shot (a).

Fig. 4. The architecture of association-based video indexing.



frame)1 and then extract two visual features from each key-
frame (a 3D HSV color histogram and a 10-dimensional
tamura coarseness texture [31]). When constructing a color
histogram, we quantize H, S, and V into 16, 4, and 4 bins,
respectively, so that the histogram of each image is
characterized by a 256-dimensional vector and the total
number of feature dimensions is 266. Given a video in the
database, we assume it contains N shots S1; S2; . . . ; SN and
denote the key-frame of Si by Ki. Suppose Hi;l, l 2 ½0; 255�,
and TCi;n, n 2 ½0; 9� are the normalized color histogram and
texture of Ki. The distance between shots Si and Sj is
defined by (1), where WC and WT indicate the weight of
each feature:

DisðSi; SjÞ ¼Wc 1�
X255
l¼0

minðHi;l; Hj;lÞ
( )

þWT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX9
n¼0
ðTCi;n � TCj;nÞ2

vuut :

ð1Þ

We want to group shots that are similar into a cluster. In
addition, different clusters should have sufficiently different
characteristics. Hence, we adopt a modified split-and-merge
clustering algorithm [32] by sequentially executing two
major procedures: merging and splitting. In the merging
procedure, we iteratively merge the most similar clusters
(defined by (2)) until the distance between the most similar
clusters is larger than a given threshold. Nevertheless, this
merging procedure may generate clusters with a large
intracluster distance (defined by (3)). Accordingly, after the
merging procedure, we turn to the splitting procedure to split
clusters with large visual variances. We iteratively calculate
the intracluster distance for any cluster Ci, the cluster with
its intracluster distance larger than a given threshold is
separated into two clusters until all clusters have their
intracluster distance less than the given threshold.

Let’s denote the ith cluster by Ci and the number of
members in Ci by Ni, where each element ðSl

i; l ¼ 1; . . . ; NiÞ
in the cluster is a shot. The intercluster distance between Ci

and Cj is defined by (2):

dminðCi; CjÞ ¼ min
Sl
i2Ci;S

k
j2Cj;l¼1;...;Ni;k¼1;...;Nj

DisðSl
i; S

k
j Þ: ð2Þ

We then define the intracluster distance of Ci by (3):

dðCiÞ ¼ max
Sl
i2Ci;S

k
i 2Ci; l6¼k; l¼1;...;Ni;k¼1;...;Ni

DisðSl
i; S

k
i Þ: ð3Þ

After we have clustered visually distinct shots into
groups, we can use the dominant color (usually, a tone of
yellow) to identify groups that consist of court field shots.
However, even though the color of the court field is likely a
tone of yellow, the actual color may vary from stadium to
stadium and also change with lighting conditions. There-
fore, we cannot assume any specific value for this dominant
color, but learn it adaptively. We randomly sample
N frames from video sequences (in our system, we set
N ¼ 50). Because sports videos usually focus on the court

field, most of theseN frames will contain the court field. We
then calculate the histogram of the hue component of each
frame (in HSV color space). The histogram of the hue
component is added up over these N frames. We pick up
the peak of this cumulated hue histogram and use the
corresponding hue value as the court field hue color.
Assuming this hue color is denoted by �HH, we calculate the
average saturation and intensity value of the pixels in these
N frames, where the hue color of the pixels is �HH. We denote
the average saturation and intensity by �SS and �II. For each
group Gi (acquired from the former clustering algorithm),
we calculate the dominant hue color of all key-frames in Gi,
denote it by �HHi, and the average saturation and intensity of
the pixels with their hue color equal to �HHi are denoted by �SSi

and �IIi. Then, we use (4) to calculate the distance between Gi

and the template. After we get the distances from all video
groups, we use a simple thresholding method to classify
each group into two exclusive categories: a group consisting
of court filed shots or not:

HsvDisðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�IIi � �IIÞ2 þ ð �SSiÞ2 þ ð �SSÞ2 � 2 �SSi � �SS � cosð�Þ

q
;

ð4Þ

� ¼ j �HHi � �HHj if j �HHi � �HHj < 180�

360� � j �HHi � �HHj if j �HHi � �HHj > 180�:

�
ð5Þ

Generally, since one sports video is captured from one
place, both shot clustering and classification can acquire
relatively good performances. As shown in Fig. 5, we can
find that the shots containing the court are successfully
clustered into groups (and likely characterized by cameras
with different angles or views) because the court field color
plays an important role in similarity evaluation.

3.2 Video Text Detection and Recognition

There are two types of video text: the first is the text shown
in video scenes, referred to as scene text hereafter, and the
second is the text postprocessed and added into the video,
such as team names and their scores, which we call caption
text. For sports videos, caption text is much more important
than scene text because the former directly conveys video
semantics. With caption text, we can acquire the name of
each team and use it to construct the second level index in
Fig. 2. Moreover, as long as we can detect the team scores,
the score change is directly associated to the “goal” events.

In comparison with scene text, the caption text has one
distinct feature: It rarely moves. This distinct feature
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Fig. 5. Video shot clustering results where each icon image represents

one shot (the first row represents the first shot of each group and all

other rows represent each clustered group)

1. For the sake of simplicity, we use this simplest key-frame selection
mechanism. One can also adopt other complicated approaches [30].
Nevertheless, because our purpose is not to characterize the content change
in the video shots, but to classify video shots into different categories, we
find the performance of this simple mechanism works reasonably well.



inspires us to develop a simple but efficient caption text
detection algorithm:

1. Calculate the edge of the current frame Fi, denote the
edge frame by Ei, and then calculate the edge of the
succeeding frame with a step � (in our system, we set
� ¼ 10), i.e, frame Fiþ� and its edge frame Eiþ� .

2. Compare edge pixels in Ei and Eiþ� . If the edge pixel
in Ei is still the edge pixel in Eiþ� , the current pixel is
a candidate of caption text pixel.

3. After all edge pixels in Ei have been processed, use a
median filter to eliminate noise and all remaining
pixels to form the caption text regions.

If the camera motion is still, we take the locations of the
text regions detected from the most recent moving frame as
the caption text regions in the current frame because, if the
camera is still, all edge pixels in Ei and Eiþ� are the same
and the proposed method may not work. Meanwhile, we
add another constraint: The detected caption text region
should appear in either the top 1

4 or bottom 1
4 of the frame

region. We have observed various basketball videos from
ESPN, FOX, etc., and found that, in almost all situations, the
team names and their scores appear in the top or the bottom
regions of the frame because it has less impact with the
viewers.

After candidate text regions have been detected, we need
to prune out some false candidates and handle the scale
problem. The regions with their height and width less than
given thresholds are eliminated and the horizontal-vertical
ratio of the regions should also be in a certain range. After
that, we use the Bilinear Interpolation algorithm to resize
each candidate region into a certain size of box and
transform the pixels into binary values (black or white)
for recognition.

To recognize caption text, we adopt an existing OCR
(Optical Character Recognition) engine, WOCAR [33],
which takes a binarized image as the input and yields an
ASCII string result. This engine has many function calls to
support applications. More details about video text detec-
tion can be found in [34]. Fig. 6 gives an example of our
caption text detection results. Meanwhile, since we only
detect team names and score numbers, we can develop a
small vocabulary for the OCR engine to improve the
recognition accuracy. We perform the algorithm on every
� ð� ¼ 10Þ frames and use detected team names to construct
the second level index. Once we detect a score change, we
add a symbolic tag at the corresponding place.

3.3 Camera Motion Characterization

Given a shot Si, the camera motions in the shot can also
imply some knowledge. For example, a fast break usually
happens when the camera is still, or pans slowly, then
suddenly speeds up and pans quickly. Hence, we can
explore semantic cues from camera motions in each shot.

However, the camera motions in noncourt field shots have
less knowledge or can even be meaningless. We therefore
only analyze camera motions from court field shots.

To extract camera motions, we have recently developed a
qualitative camera motion extraction method [35]. This
method works on compressed MPEG streams and uses
motion vectors from P-frames to characterize camera
motions. For any two motion vectors in each P-frame, we
first classify their mutual relationship into four categories:
approaching, parallel, diverging, and rotation, as shown in
Fig. 7. Generally, if the camera pans or tilts, the mutual
relationship between any two motion vectors is likely
parallel, as shown in Fig. 9 and, if the camera zooms, the
mutual relationship is likely to be approaching or diverging
(depending on whether the actual motion is zoom-in or
zoom-out). We then construct a 14-bin motion feature
vector to characterize the camera motion in each P-frame.
More details related to the camera motion classification can
be found in [35]. Only certain types of camera motions in
basketball videos could possibly imply useful information
and we therefore classify the camera motion of each
P-frame into the following six categories: Still, Pan (left
and right), Zoom (in and out), and others. A motion
description hierarchy is given in Fig. 8.

In addition to classifying the camera motion, we also
calculate the average motion magnitude of each P-frame by
(6), where MVi is the number of valid motion vectors in the
P-frame i, xiðmÞ and yiðmÞ are the x and y components of
the motion vector m in the frame i. Our objective is to
characterize the speed of motion activities. We roughly
classify the motion magnitude into three categories: slow,
medium, and fast, by specifying a numeric range for each
category. Finally, a temporal filter is adopted to eliminate
falsely detected camera motions. For the MPEG videos used
in our test bed, there are eight P-frames in each second of
stream. So, we use the dominant motion of these eight
P-frames and its magnitude as the camera motion in this
range and collect camera motions and magnitude (in the
original temporal order) to form a symbolic sequence. For
MPEG videos encoded with fewer P-frames, one can use a
longer time span for temporal filtering, because the
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Fig. 6. Video caption text region detection, (a) frame Fi, (b) edge frame Ei, (c) frame Fiþ� , (d), edge frame Eiþ� , (e) the edge pixels which appear in

both Ei and Eiþ� , and (f) detected caption text regions.

Fig. 7. Mutual relationships between two motion vector in each P-frame.



dominant camera motion in sports video usually lasts
several seconds. With the proposed approach, we can
identify three typical camera motions: Pan, Tilt, and Zoom.
All other camera motions are marked as “Others.” For
mining purposes, after camera motion detection all
“Others” tags will be removed from the sequence:

MðiÞ ¼
XMVi

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiðmÞ2 þ yiðmÞ2

q �
MVi: ð6Þ

3.4 Salient Audio Event Detection

In sports videos, some special audio events, e.g., audience
applause and a referee’s whistle, will help us acquire some
semantic cues. Generally, audience applause occurs when
exciting events happen, e.g., shooting and/or a goal, and a
referee’s whistle may imply an interruption or another
special event.

To detect audience cheering, we use the pitch of audio
signal. Basically, pitch is the fundamental frequency that
reveals harmonic properties of audio and is an important
parameter in the analysis and synthesis of speech signals. In
comparison with voice and music, the pitch value of
audience applause is very small. In most cases, this value
in sports videos is zero because, when cheering happens,
the audio signal exhibits a constant high value noise that
likely drowns out other audio signals, e.g., the voice of the
anchorperson or the music. We therefore extract the pitch
for each audio frame. In our system, the audio frame length
is 20ms and the frame shift is 0ms. Because the duration of
cheering usually exceeds 1 second, we apply cheering
detection on each 1-second segment. For each segment, we
calculate the NonZero Pitch Ratio (NZPR), which is defined
as the ratio between the number of frames whose pitch is
not zero and the total number of frames in a segment. For a
cheering segment, its NZPR value likely exhibits a small
value, and a simple threshold scheme can distinguish
cheering segments from others. Fig. 10 shows the results of
NZPR values from a test sports video with one minute
duration, where four cheering events appear at 3s-9s, 20s-
25s, 41s-44s, and 54s-57s.

To detect a referee’s whistle, we use spectrum domain
features. Fig. 11 demonstrates the spectrum of an audio
segment that contains two whistles. The regions with a
circle margin correspond to the spectrum when the referee

whistles. One can find that, in frequency regions between

3500Hz to 4500Hz, the energy of a whistle is much higher

than others. We then calculate the energy ratio between

frequency 3500Hz and 4500Hz for each audio frame to

detect whistles. We split the whole frequency into

B subbands. Given audio frame i and subband j, we define

the band energy ratio (BER) by (7), where DFTi;k is the

Discrete Fourier Transformation of the audio frame i and E is

the order of DFT coefficients. In our system, the sampling

rate for audio signals is 22050Hz and B is 12. Thus, the

frequency of the fifth subband is 3675 � 4594Hz. Then, we

calculate the segment band energy ratio of the fifth subband

ðSBER5Þ during a short time period (0.5s) by (8), where AF

is the total number of audio frames in this period. Fig. 12

shows the results of SBER5 values from a test sports video

of about 200 seconds in length. The regions with a circle

margin correspond to whistle events. We can then involve

some thresholding mechanisms to find out the location of

those whistle events.

BERi;j ¼
XE

Bj

e¼E
Bðj�1Þ

DFTi;e

�XE

e¼1 DFTi;e; ð7Þ

SBER5 ¼
1

AF

XAF
i¼1

BERi;5: ð8Þ
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Fig. 8. Camera motion description hierarchy.

Fig. 9. (a) Camera pan operation and (b) and (c) the corresponding

motion vectors.

Fig. 10. Nonzero pitch ratio from an audio signal.

Fig. 11. Spectrum of an audio signal with whistle.

Fig. 12. Segment band energy ratio of the fifth subband from an audio

with multiple whistle events.



4 ASSOCIATION MINING FROM VIDEO DATA

Generally, there are two types of videos in our daily life:
videos with some content structure and videos without any
content structure. The former are videos such as movies and
news where scenarios are used to convey video content. In
[13], [14], we have proposed techniques to mine associations
from this type of videos. However, for videos without
content structure, e.g., sports videos, associations may still
exist where the associations could be characterized as a
series of sequentially related actions. For example, in
basketball videos, a series of actions, such as Camera pan
! Camera still ! Camera zoom-in ! Applause !
Scoreboard change, likely appear sequentially, because they
usually accompany a goal event. Mining associations from
these videos, which do not have content structure, will not
only facilitate knowledge acquisition, but also help us in
realizing intelligent video management. In this section, we
discuss techniques for video association mining, where the
definitions and measures for video associations, and the
sequential pattern search procedure are extensively studied.

4.1 Video Data Transformation

With the techniques in Section 3, the original video
sequence is transformed into four separated symbolic
streams: court field (CF), camera motion (CM), scoreboard
(SB), and audio events (AE), as shown in Fig. 13. Our next
step is to conduct mining activities on these streams. To this
end, there are two solutions: Treat data streams separately
or combine them together as a single stream. Oates and
Cohen [36] proposed a mechanism which treats multiple
streams separately when conducting the mining activity,
where the objective is to find the cooccurrence of the
patterns that appear in the multiple streams. However, this
method requires that the streams which take part in the
mining activity be synchronized, where each stream
produces the same amount of symbols in the same amount
of time. In our situation, the multiple streams extracted
from video data obviously do not satisfy this requirement.
Intuitively, combining multiple streams into a single stream

appears to be an easier way for data mining purposes
because mining from one stream is obviously easier than
mining from multiple sources and many research efforts
have been conducted to find patterns, e.g., periodic patterns
[37], [45], from a data stream. However, we need to
guarantee that there is no information loss when combining
multiple streams, which means that, after the data
combination, we should maintain the original temporal
order information of each separate stream in the combined
stream. To this end, we adopt the following approach to
combine multiple symbolic steams into a single hybrid (HB)
stream: 1) For video and audio cues which happen at
different time slots, we put all their tags together, with each
tag placed at a corresponding place in its original stream. 2)
If multiple tags happen at the same time, e.g., a scoreboard
change and a camera motion happen at the same time, we
use the same order to combine them in all situations, e.g., a
scoreboard change always precedes a camera motion. An
example of video data transformation is shown in Fig. 13,
where information from four separate streams is combined
to form a hybrid stream.2 With such a mechanism, the
temporal order information in each separate stream is well
maintained in the transferred hybrid stream and combining
multiple streams into a single stream will not lose
information for effective association mining from data
streams.

We have adopted a hierarchical camera motion descrip-
tion in Fig. 8, so we have to generalize an HB stream for
multilevel association mining. Our generalization is accom-
plished by assigning a symbol to each type of tag, as shown
in Table 1. For events with a hierarchy, we generalize them
into a set of characters with each character indicating a
state. For example, for “E12,” “E” denotes camera pan, “1”
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Fig. 13. Video data transformation and generalization.

TABLE 1
A Mapping Table to Generalize Video Data

2. We mark only one CF tag for each video shot, which is placed at the
beginning of the shot, because a shot either belongs to the court field or not.
Inside each shot, we will analyze its content and explore other video and
audio cues. This is the reason that some video shots receive several tags, as
shown in shot 2 of Fig. 13. This is different from the statements in
Section 3.1, where only one key-frame is extracted from each shot to classify
a video shot into a noncourt shot or a court shot.



indicates the panning direction, and “2” represents the
motion magnitude. In Fig. 13, the last row gives a general-
ized HB stream.

4.2 Definitions and Terminology

Based on the above observations, we define a video
association as a sequential pattern with {X1::Xi::XL; X

t
i <

Xt
j for any i < j}, where Xi is a video item (see Definition 1

below), L denotes the length of the association,
X1 \ :: \Xi:: \XL ¼ �, Xt

i denotes the temporal order of
Xi, and Xt

i < Xt
j indicates that Xi happens before Xj. For

simplicity, we use fXg as the abbreviation for a video
association.

Generally, two measures (support and confidence) have
been used to evaluate the quality of an association.
However, these measures do not consider temporal
information of the items in the association. For video
associations, the temporal distance (see Definition 5 below)
between neighboring items implies some useful informa-
tion: The smaller the temporal distance between neighbor-
ing items, the larger is their correlation. For example, if two
neighboring shots contain applause and scoreboard change,
respectively, we naturally believe that they are correlated.
However, the applause that happens several shots (e.g.,
three more shots) before the scoreboard change rarely
indicates any correlation between them. That is, for
associations with a large temporal distance between
neighboring items, their items usually have a weaker
correlation and, therefore, can imply almost no knowledge.
Accordingly, instead of using the traditional support
measure, we adopt a temporal support (TS) to evaluate the
support of each association. Moreover, several other
definitions are also given below:

1. A video item is a basic unit in association mining. In
this paper, it denotes a symbolic tag acquired from
video processing techniques, i.e., a symbolic unit in
the hybrid video stream.

2. An L-ItemAssociation is an association that consists of
L sequential items. For example, “AB” is a 2-Item-
Association and “ABC” is a 3-ItemAssociation.

3. An ItemSet is an aggregation which consists of video
associations. More specifically, an L-ItemSet is an
aggregation of all L-ItemAssociations, each of which is
an L-ItemAssociation.

4. L-LItemSet is an aggregation of all L-ItemAssociations
whose temporal support (see Definition 7 below) is no
less than a given threshold.

5. Given a transformed hybrid video stream, the
temporal distance (TD) between two items is the
temporal identification difference of the shots that
contain these two items. For example, in the hybrid
stream demonstrated in Fig. 14, the first time the
pattern fABg appears, their temporal distance
TDfABg is 0 because they happen in the same shot.
The second time fABg appears, TDfABg equals 1
because A and B happen in two neighboring shots
and the temporal identification difference between
the neighboring shots is 1.

6. The temporal distance threshold (TDT) specifies the
upper bound that the temporal distance must comply
with, i.e., no larger than this threshold. Take the
pattern fABg in Fig. 14, for example, when
TDT ¼ 1, TDfABg ¼ 2 will not satisfy because
TDfABg ¼ 2 is larger than the given TDT value.

7. Given a temporal distance threshold (TDT) TDT ¼ T ,
the temporal support (TS) of an association
fX1 . . .XLg is defined as the number of times this
association appears sequentially in the sequence. In
addition, each time this association appears, the
temporal distance between any two neighboring
items of the association should satisfy the given
TDT (i.e., no more than T shots). In Fig. 14, when
TDT ¼ 1 (i.e., ignoring the temporal distance), the
temporal support for fABg is TSfABg ¼ 3. How-
ever, when we set TDT ¼ 1, TSfABg becomes 2
because the last time fABg appears, its temporal
distance ðTDfABg ¼ 2Þ does not satisfy the given
TDT . It is obvious that the smaller the TDT , the
stronger the semantic correlations among the mined
associations are.

Given TDT ¼ T , the confidence of an association

fX1; :; XLg is defined as the ratio between the temporal

support of fXg (when TDT ¼ T ) and the number of

maximal possible occurrences of the association fXg.
Because the maximal possible occurrences of the association

are determined by the number of occurrences of the item

with the minimal support, the confidence of the association

is defined by (9). The examples of the confidence evaluation

have been provided in Fig. 14, where different TDT values

result in different confidences for the same association. The

larger the confidence value, the more confidently the

association holds:

ConffXgTDT¼T ¼ TSfXgTDT¼T
�
MinðTSðX1Þ; ::; TSðXLÞÞ:

ð9Þ

4.3 Video Association Mining

4.3.1 Multilevel Associations

We have introduced a hierarchy in Fig. 8 (which can also be

interpreted as a taxonomy) to characterize camera motions.

When a taxonomy exists, the supports of associations at

lower levels are lower than associations at higher levels.

Accordingly, some solutions have been proposed to mine

multilevel associations [38]. The motivation behind these

algorithms is simple and intuitive: For all hierarchical items,

their ancestors at higher levels are added into data sets and

a data mining algorithm is executed on new data sets for

multiple times to mine multilevel associations. As shown in

Table 2, given a generalized HB sequence in Tables 2a, 2b,

and 2c, show the 1-ItemSet at level 1 and level 2,

respectively. As we can see, only the descendants of the

large ItemSet at level 1 are considered as candidates for

level 2 large 1-ItemSet.
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Fig. 14. Example of video association evaluation in terms of temporal

support and confidence



4.3.2 The Mining Algorithm

Our video association mining algorithm consists of the

following phases:

1. Transform. This phase adopts various techniques to
explore visual and audio cues and transforms video
data into a relational data set D.

2. L-LItemSet. In this phase, we mine video associa-
tions with various levels and lengths. We first find
an L-ItemSet and then use the L-ItemSet and user-
specified thresholds to find L-LItemSet. We itera-
tively execute this phase until no more nonempty
L-LItemSet can be found.

3. Collection and Postprocessing. This phase collects
and postprocesses video associations for different
applications.

We have discussed techniques for Phase 1 and Phase 3
directly relates to applications of video associations, which
is trivial from the data mining point of view. Therefore, we
focus on Phase 2 only, where its main procedure is shown
in Fig. 15. Throughout this section, we use the notions that l
denotes the level of associations (the maximal level of
associations max_level is 3 in our system) andD½l� represents
the filtered data set at level l. I½l; k� and L½l; k� are the
aggregations of k-ItemSet and k-LItemSet at level l, respec-
tively. fXg:Itemk means the kth item of the association fXg.

Basically, Phase 2 consists of two stages: 1) In the first
stage, the algorithm filters the data set at level l and uses the
filtered data set D½l� to construct 1-ItemSet and 1-LItemSet

at level l, as shown on lines 2 to 4 in Fig. 15. 2) Then, the
algorithm uses the constructed 1-LItemSet and the candi-
date generation procedure (Fig. 16) to progressively mine
k-ItemAssociations, k ¼ 2; 3; . . . ; at level l, until the con-
structed k-LItemSet at level l is empty. Then, the algorithm
turns to next level lþ 1 and mines associations at this level.

As shown in Fig. 15, for each level l, we first filter the
data set D, Filter DatasetðD; lÞ, to process items that are no
larger than level l. For example, when l ¼ 2, this procedure
filters items fE13; E12g as fE1; E1g and the higher the
level, the more subtle the filtered item is. The filtered
sequence is put into a new data set D½l�. We then use D½l� to
generate 1-ItemAssociations at level l (denoted by I½l; 1�) by
using function Get 1 ItemSetðD½l�; lÞ. We use the generated
1-ItemSet and the user specified minimal support minSup½l�
to generate 1-LItemSet at level l (denoted by L½l; 1�) with
procedure Get 1 LItemSetðD½l�; I½l; 1�;minSup½l�Þ. The gen-
erated 1-LItemSet consists of associations in 1-ItemSet
which satisfy the user-specified minimal support
minSup½l�. Because 1-ItemAssocitions do not involve any
temporal distance, we ignore TDT when constructing the
1-LItemSet. We then use the generated 1-LItemSet at level l
to mine associations with larger lengths. This is facilitated
by adopting an Apriori-like algorithm which uses multiple
passes to generate candidates and evaluate their supports.

In each pass, we use the LItemSet from the previous pass
to generate the candidate ItemSet and then measure the
temporal support of generated candidates by making a pass
over the databaseD½l�. At the end of the pass, the support of
each candidate is used to determine the frequent ItemSet.

Candidate generation for each pass is similar to the
method in [12]. It takes the set of all k� 1-ItemAssociations
in L½l; k� 1� and all their items as input and works as
shown in Fig. 16. The items in L½l; k� 1� first join together to
form new candidates. To this end, for any two distinct k�
1-ItemAssociations fpg and fqg in L½l; k� 1�, if their first
k� 2 items are the same (as shown on line 3 in Fig. 16), we
will generate a new k-ItemAssociation fXg. The first k� 2
items of fXg are the same as that of fpg and the k� 1th and
kth items of fXg are the k� 1th item of fpg and fqg,
respectively (as shown on line 5 in Fig. 16). Then, fXg is
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TABLE 2
Multilevel Association Mining: (a) A Generalized HB Sequence,

(b) 1-ItemSet at Level 1, and (c) 1-ItemSet at Level 2

Fig. 15. Pseudocode for multilevel video association mining.



taken as a candidate and put in I½l; k�. We iteratively repeat
the same procedure until all elements in L½l; k� 1� have
been evaluated. After that, we prune out the candidates in
I½l; k� whose subsequences are not in L½l; k� 1� because, if a
subsequence of an association is not frequent, this associa-
tion will not be frequent neither. All remaining candidates
are taken as associations in I½l; k�. Table 3 provides an
example of candidate generation, where the fourth column
gives the 3-LItemSet and the fifth column is the join results
(candidates) from the 3-LItemSet. After pruning out
sequences whose subsequences are not in the 3-LItemSet,
the sequences shown in the sixth column will be left. For
example, fABDCg is pruned out because its subsequence
fBDCg is not in the 3-LItemSet.

4.3.3 Search Patterns from Hybrid Stream with

Constraints

To mine video associations, the most important procedure
is to search the appearances of the candidate pattern in the
data stream, and this problem is complicated by users’
constraint on the temporal distance (TDT ) between items of
the pattern. For example, with the HB stream in Fig. 17a,
when searching the appearance for pattern fAEFBGg,
many other approaches [37], [39] usually adopt a sliding
window (e.g., w1 and w2 in Fig. 17a) to evaluate whether the
pattern appears in the window or not. Such a windowing
procedure has two obvious disadvantages: 1) Users have no
control with the temporal distance between the items of the
pattern, i.e., this approach ignores the temporal distances in
the pattern, and 2) users have to well define the width of the
window, otherwise the pattern may never fall into any
window.

Accordingly, we need to design a new search mechanism
by considering the temporal distance between neighboring
items of the pattern. The simplest solution for this problem
is to adopt a waiting-and-matching [46] method: We start

from the first item of the pattern fAEFBGg and scan the
data stream until the certain item appears; at any state, if the
temporal distance between items violates the TDT , the search
procedure restarts. In Fig. 17a, “choice 1” of fAEFBGg
represents the results from this method. This approach,
however, could miss targets if the user specifies a relatively
small TDT . In Fig. 17a, if we set TDT ¼ 2, the waiting-and-
matching mechanism will fail to find the pattern because the
temporal support between “BG” in “choice 1” is 3, which is
larger than TDT ¼ 2. However, there are other choices that
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Fig. 16. Pseudocode for candidate generation.

TABLE 3
An Example of Video Association Mining, where fXgCS Indicates an Association

X denotes the items of the association, S and C indicate the temporal support, and confidence of the association, respectively (for simplicity, we
assume each video shot has only one symbolic tag and the HB stream has only one level).

Fig. 17. Search candidates from a hybrid stream, where Xj
i represents

the index information of the item X (j means in which shot the item
appears and i indicates the order of the item in the stream). (a) An
example of hybrid stream. (b) Search procedure (TDT=2).



fAEFBGg actually satisfies TDT ¼ 2, e.g., “choice 2” and
“choice3.”

Motivated by the above observations, we propose a new
algorithm for searching special patterns from data stream
with constraints. The intuitive idea behind this scheme is to
push an item backward as much as we can (without
violating the TDT ), so we can maximize the possibility that,
under the constraint of TDT , the pattern may appear in the
stream. The algorithm consists of following major steps:

1. Given a pattern fX1; X2::; XLg, a hybrid stream D,
and a user-specified TDT , we call the objective
pattern in D fX1; X2::; XLg. For each item Xi in the
objective pattern, we construct a list Oi to record the
appearances of Xi in D and initialize the list with
O1  �; ::; Oi  �; ; ::; OL  �; .

2. Starting from the first item of the objective
pattern, for each item Xi; i ¼ 1; ::L, we search the
first appearance of Xi from D (and ignore the
appearance of any other item Xj, j > i). If item Xi

appears in D, we put the index (sequence index
and shot index) of the appearance into the list Oi.
As demonstrated in Fig. 17b, O1  O1 [A1

1;
O2  O2 [ E1

3 , and so on. This procedure con-
tinues until all items Xi; i ¼ 1; ::; L, have at least
one member in their list Oi; i ¼ 1; ::; L.

3. When searching the appearance of the current
item Xi, if any former item (including Xi itself)
Xj, j � i appears in D again, we put the index of
Xj in the list Oj as long as the appearance of Xj

satisfies the TDT . As shown at “status in B2
6” in

Fig. 17b, when searching for the appearance of
“G,” another “B” comes. Denote Ok

i by the
kth member in the list Oi, and Ti by the number
of members in Oi, so OTi

i is the last member in
Oi. To evaluate whether the appearance of Xj

satisfies the constraint of TDT , we calculate two
measures: a) the temporal distance between Xj and
the latest appearance of its neighboring item O

Tj�1
j�1 ,

TDðXj;O
Tj�1
j�1 Þ and b) the temporal distance between

the current location of Xj and the last member in
Oi�1, TDðXj;O

Ti�1
i�1 Þ. If TDðXj;O

Tj�1
j�1 Þ � TDT , we

add the index of Xj into its list Oj and continue
the procedure; otherwise, Oj remains unchanged.
Meanwhile, if TDðXj;O

Ti�1
i�1 Þ > TDT , it will indi-

cate that, even if we assume the item Xi does
appear at the current location of Xj, the temporal
distance with its neighboring item Xi�1 still
violates the constraint of TDT , so there is no
need to search the appearance of Xi any further.
We will restart searching the appearance of the
objective pattern from the location of the last
member in O1. Meanwhile, all lists should be
initialized with O1  �; ::; Oi  �; ::OL  �.

4. As long as the lists of all items ðO1; O2; ::; OLÞ have at
least one member, we cease the current search
procedure because an appearance of the pattern
have been located so far. As shown at “status at
G4

14 . . . ” in Fig. 17b, we will start from the last
member in OL (actually, there is only one member in
OL), denote it by O�L, and check all members in OL�1
in an inverse order (backward) to find the member

that appears before O�L and has the smallest temporal
distance with O�L. We denote this member by O�L�1
and then find the member from OL�2 that appears
before O�L�1 and has the smallest temporal distance
with O�L�1. We repeat the same procedure until the
appearances of all items have been located. The
sequence fO�1; ::; O�Lg will provide actual locations of
the pattern, as shown in Fig. 17b. Then, we initialize
all lists with O1  �; ::; Oi  �; ::OL  � and restart
to locate the next appearance of the pattern from the
location next to O�L.

As shown in Fig. 17a, no matter what TDT value (1, 2, or

3) users specify, our algorithm will exactly locate only one

location for fAEFBGg, which is “choice 3.” However, with

the waiting-and-matching approach, only “choice 1” could be

found and, if we set TDT ¼ 1, it will miss the appearance of

the pattern because, in this case, “choice 1” does not satisfy

the TDT . Therefore, our algorithm has a higher accuracy

than the waiting-and-matching mechanism. And, because we

only scan stream D once, the complexity of the algorithm is

OðNÞ for one objective pattern, where N is the length of D.

5 VIDEO ASSOCIATION CLASSIFICATION

To apply video associations in video indexing, we need to
classify each association into a corresponding category
(event) and use detected events to construct video indices.
Some research efforts have addressed the problem of
association rule classification, but little literature has been
found on classifying sequential associations. We adopt the
nearest neighbor search-based strategy as follows: We first
mine associations from training videos. For each associa-
tion, we manually go through the training data to evaluate
what types of events associate with the appearance of this
association. We count the number and the types of events
from all appearances and select the event with the largest
number to label the association. Accordingly, each associa-
tion will receive one class label. For each association, fXg,
in the test set, we calculate its distance with associations in
the training set and the class label of the association in the
training set which has the smallest distance with fXg is
used to label fXg. In the case that multiple associations
have the same smallest distance with fXg, all their class
labels are used to label fXg. To calculate the distance
between sequential associations, we take the temporal order
and the length of the associations into consideration and use
the Longest Common Subsequence (LCS) [40] between two
associations to evaluate the association distances.

Given two associations, assuming fXg1 ¼ fX1; . . . ; XPg
denotes the association with a length, P , and the other

association is denoted by fXg2 ¼ fX1; . . .XQg with length

Q. For example,

fXg1 ¼ fA;B;E;D;Gg

and fXg2 ¼ fB;A;E;G;A;Dg. The Dynamic Programming

[40] has OðPQÞ time complexity and space requirement to

find the largest common subsequence between fXg1 and

fXg2. 3 Then, the distance between fXg1 and fXg2 is
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3. In the example above, there are two LCS subsequences
LCSffXg1; fXg2g ¼ ffA;E;Gg; fB;E;Ggg.



defined by (10), where jLCSffXg1; fXg2gj represents the

length of the largest common subsequence:

SeqAssocDffXg1; fXg2g ¼ 1� jLCSffXg1; fXg2gj
MinðP;QÞ ; ð10Þ

Actually, this distance is determined by the maximal
number of sequentially matched items between the associa-
tions fXg1 and fXg2. The larger the number, the smaller
their distance is.

6 EXPERIMENTAL RESULTS

In this section, we present the results of an extensive
performance analysis we have conducted to 1) evaluate the
video processing techniques in Section 3, 2) evaluate the
video association mining and association-based indexing
algorithms in Sections 4 and 5, and 3) analyze the
performance of our knowledge-based indexing framework.
We evaluate our algorithms with eight basketball videos
(NBA and NCAA) captured from ESPN and Fox and all
commercials in the videos are removed.

6.1 Video Preprocessing Results

For the sake of conciseness, we only present results of shot
classification and audio events detection. One can refer to
other references [34], [35] for performances of video text
and camera motion detection.

6.1.1 Video Shot Clustering and Classification

In Section 3.1, we have clustered video shots into groups
and classified each group into two categories: The first
consists of court field shots ðGroupAÞ and the second
consists of noncourt field shots ðGroupBÞ. To evaluate the
performance of our clustering algorithm, we manually
classify video groups into these two categories and then
count the number of shots in GroupA which do belong to
GroupA (i.e., shots which contain a court field and are
clustered into a group which mainly consists of court field
shots) and denote this number by FA. We also count the
number of shots in GroupB which do belong to GroupB and
denote this number by FB. The clustering accuracy of each
category is defined by (11), where STNA and STNB

represent the number of shots contained in groups which
belong to GroupA and GroupB, respectively:

AccuracyA ¼ FA=STNA; AccuracyB ¼ FB=STNB: ð11Þ

To evaluate the performance of the group classification,
we count the number of groups that belong to GroupA and
GroupB and denote these two numbers by GPNumA and
GPNumB, respectively. Also, we denote the number of

groups which belong to GroupA and are correctly classified
as GroupA by GFA and, similarly, the number of groups
belonging to GroupB and are correctly classified as GroupB
is denoted by GFB. The accuracy of group classification is
defined by (12).

GAccuracyA ¼ GFA=GPNumA;

GAccuracyB ¼ GFB=GPNumB:
ð12Þ

We perform experiments on four videos and present
their results in Table 4. The results in Table 4 indicate that
the proposed clustering algorithm is very successful on
basketball videos. On average, the accuracy of GroupA and
GroupB are 0.914 and 0.898, respectively, that is, only a
small percentage of shots are falsely clustered into the
wrong cluster. We have used this algorithm to test other
types of videos, e.g., movies, news, and medical videos, and
found the results from the basketball videos are remarkably
better. One reason is that a basketball video is usually
captured from cameras at different locations and views of
the same stadium. Hence, the proposed features and
distance functions can efficiently address visual differences.
As shown in Fig. 5, court field shots are likely to be merged
into groups, with each group being characterized by the
camera from a certain view.

With the results in Table 5, we can find that the dominant
color can be used to classify court shots in basketball videos.
In all GroupA groups, the accuracy is satisfactory because
court field shots do exhibit a distinct dominant color.
However, we notice that more GroupB groups are falsely
classified as GroupA. The reason is that these groups likely
contain some specially edited shots. For example, a tag
“look back” indicates that the subsequent shots are a review
and the “tag” shot likely contains the “yellow” dominant
color, as shown on the fourth row of Fig. 5. Fortunately, the
number of these types of shots is very limited and, on the
other hand, these shots do not have other valuable visual or
audio cues. Even if we falsely classify them as court shots,
they won’t bring much trouble into our algorithms.

6.1.2 Salient Audio Event Detection

To evaluate the performance of the proposed salient audio
event detection in Section 3.4, we apply our methods on one
NBA video (which lasts about 70 minutes). We manually go
through the video to evaluate each detected audio event
and present the results in Table 6. One can find that, by
adopting the proposed pitch feature, we can distinguish
applause from other events with a satisfactory result, where
the average precision and recall are 80.6 percent and
76.3 percent, respectively. However, the precision of the
whistle detection algorithm is pessimistic (52.5 percent),
although the recall of this method is very successful with
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TABLE 4
Video Shot Clustering Results

TABLE 5
Video Shot Classification Results



97 percent. Further analysis shows that, in basketball
videos, other events, such as the trumpets of cheering
squads or the audience and the grating between players’
shoes and the floor, have similar behaviors as whistles
because their energy concentrates on a small frequency
region for a short time. The proposed whistle detection
algorithm therefore also takes these events as whistle.
Consequently, the precision of whistles becomes relatively
poor, but we can still attain a very good recall value.

6.2 Video Association Mining

6.2.1 The impact of TDT

To figure out the relationship between TDT and the
features of mined associations, we set TDT with different
values T (T ¼ 0, 1, 3, 5, 7, 9, and1) and assess associations.
For each mined association, we go through the video data to
check whether each appearance of the association covers the
happening of any event (ignoring the type of the event). We
have defined four types of events for basketball videos,
goal, foul, fast break, and successful defense. We define the
EventCoverage ðECÞ of the association as the ratio between
the frequency of the association covering the happening of
an event and the frequency of the association’s appearances.
The higher the EC, the better the association addresses the
sports event information. Meanwhile, we have analyzed in
Fig. 14 that the smaller the TDT , the less temporal support
of mined associations because the appearances of many
associations do not satisfy the constraint of TDT , so these
associations are likely to be pruned out with the decrease of
TDT . This indicates that TDT also acts as a factor for
pruning associations and we need to evaluate the relation-
ship between the percentage of the pruned association and
the value of TDT because, if TDT is very sensitive to this
percentage value (e.g., a small amount of decrease in TDT
results in a significant change with this percentage), we
should provide a solution on how to select a suitable TDT
value. For this purpose, we define the PruningRate ðPRÞ as
the ratio between the numbers of associations when TDT is
T (T ¼ 0, 1, 3, 5, 7, 9) and 1, respectively. We run
experiments on six basketball videos and present results in
Fig. 18.

Fig. 18 demonstrates that, when the TDT increases, the
associations likely become worse in addressing events.
However, in the beginning part, the EC increases with the
increase of TDT . For example, when TDT ¼ 1, EC has a
larger value than when TDT ¼ 0. But, after that, EC begins
to drop. As we have introduced in Section 4.2, when
TDT ¼ 0, the appearance of all associations should happen
in one shot, which usually fails to mine associations a cross
adjacent shots. For example, a goal event usually crosses
two or three shots. One shot contains the goal action and
applause, the following shot shows close-up frames of the

shooter, and the scoreboard change may happen in the third
shot. Hence, comparing TDT ¼ 1 and TDT ¼ 0, EC has a
little increase because more associations are mined out.
However, comparing TDT ¼ 1 and TDT ¼ 3, the decline
on EC is dramatic. One possible reason is that sports events
rarely cross more than three shots. When TDT ¼ 3 or
larger, the appearances of some associations are actually
useless in addressing sports events.

Fig. 18 also indicates that, in general, the smaller the
TDT , the smaller is the number of mined associations.
When comparing TDT ¼ 1 with TDT ¼ 1, about one third
of associations are pruned out. It indicates that TDT acts as
an important factor in mining valuable video associations.
A mining algorithm that ignores temporal information
likely produces a large number of associations which
cannot address video content and tend to be useless. A
suitable TDT is important in mining valuable associations
from different types of video. We set TDT ¼ 2 in our
system because our observation suggests that most sports
events happen within three adjacent shots.

6.2.2 Association-Based Events Detection

To evaluate the performance of the association-based event
detection scheme, we use four videos as the training set and
two videos as the test set and present the average test results
in Table 7. Here,AN is the actual number of events contained
in the video and DN and TN denote the numbers of events
which have been detected and correctly detected, respec-
tively. Precision and Recall are defined in (13):

Precision ¼ TN=DN; Recall ¼ TN=AN: ð13Þ
The results from Table 7 indicate that the proposed

event detection strategy is promising in detecting three
types of events (goal, foul, and fast break). Further
analysis shows that these events have relatively distinct
characteristics and can be characterized by various visual
and audio cues. Among these three types of events, the
results on “Foul” are relatively poor. Actually, we find

ZHU ET AL.: VIDEO DATA MINING: SEMANTIC INDEXING AND EVENT DETECTION FROM THE ASSOCIATION PERSPECTIVE 13

TABLE 6
Salient Audio Events Detection Results

Fig. 18. The impact of TDT values and association mining results.

TABLE 7
Basketball Video Events Detection Results



that almost all associations related to a foul contain
referees’ whistles and the camera motions, but such
associations have been found to cover the events when a
referee whistle is to resume the game. Hence, the
precision of the foul is relatively poor in comparison
with the goal and the fast break. Meanwhile, we find the
results from the successful defense to be the worst among
the four types of events. One reason is that this type of
event is quite arbitrary and it’s hard to characterize and
distinguish it from other kinds of events, e.g., a steal or a
miss. Meanwhile, the other three types of events have at
least one unique tag that likely always associates with the
happening of each event. The unique tags of a goal, foul,
and fast break are a scoreboard change, a whistle of the
referee, and a speeding up of the camera motion.
However, for a successful defense, there is no such
unique tag. Hence, the results of this type of event are the
worst. But, the average results from Table 7 suggest that
the proposed schemes are still promising to explore event
information from sports videos.

6.2.3 Association-Based Video Retrieval

The results from the above sections have demonstrated the
ability of video associations in covering video knowledge
and our further analysis indicates that, due to the advantage
of video associations in exploring the inherent correlations
among video units, we can use associations to facilitate
video retrieval. To demonstrate this fact, we design the
following experiments:

Association-based database structures. For all videos
in the database, we first adopt association mining to
explore video associations (no association classification is
involved at this stage). After that, we take the appearance
of each association as one unit, and use the frames that
correspond to the appearance of the association as the
representative frames of the unit. So, each unit in the
database is characterized by a set of representative frames
K1; . . . ; KN . Instead of taking video shots as basic units of
the retrieval, we use the frame regions corresponding to
the video associations as the basic units.

Query generation and process. To generate query
examples, we randomly select one video from the database
and browse its content. Once we find an interesting
continuous frame region,4 we mark this region and use it
to retrieve from the database. To this end, we use a simple
mechanism to select representative frames from the selected
region: 1) The first frame ðF1Þ of the region is always taken
as the first representative frame R1 and we also take it as the
reference frame RF so far; 2) starting from the second
frame, for each following frame Fl, we compare the
difference between Fl and RF and, if their distance is
larger than a threshold (which is controlled by users), we
take Fl as a representative frame Rk and also take Fl as the
reference frame RF so far; and (c), (a), and (b) are iteratively
executed until all frames in the query region are processed.
When comparing users’ query (which consists of a set of
representative frames R1; ::RM ) with a unit in the database
(each unit is denoted by a set of representative frames
K1; ::; KN ), we adopt the similarity function defined by (14),
where DisðÞ is defined by (1). Actually, (14) is the average
similarity of representative frames in the query region and

their most similar representative frames of the unit in the
database:

QuerySim ¼ 1�

PM
l¼1

MinfDisðRl;KjÞ; j ¼ 1; . . . ; Ng

M
: ð14Þ

System performance measures. For comparison, we also
perform retrieval on a shot-based database, where basic
units of the retrieval are video shots and one key-frame (the
10th frame) is selected to characterize the content of each
shot. Each time the user triggers a query, we use the same
query region to retrieve from the database by using the
above two mechanisms, respectively. Note that, with the
shot-based approach, the retrieved units are video shots,
but, with the association-based scheme, the results are
frame regions corresponding to associations. We evaluate
the retrieval accuracy, (15), in the top-K results, where a
“relevant unit” means a unit (or shot) with similar content
as the query region:

Accuracy ¼ # of relevant units in top K returns

K
: ð15Þ

With (15), the unit which is longer in length has a
higher possibility of being “relevant” to the query. But,
this is actually less attractive from the users’ point of
views because users need to explore the results to find
the part they are actually interested in. An intuitive sense
is that users prefer the units with a short length but
which are still relevant to the query. So, we provide the
following two measures, Average Unit length Ratio ðAURÞ
and Average Relevant unit length Ratio ðARRÞ, which are
defined by (16):

AUR ¼ Avg # of frames in top K returns

#of frames in the query region
;

ARR ¼ Avg # of frames in relevant return units

#of frames in the query region
:

ð16Þ

System performance analysis. We perform retrieval on
eight sports videos where query regions are taken from the
videos which are already in the database. We execute
queries for about 80 times and, for each query, we will
adjust K to get different results, and report the results in
Fig. 19 and Table 8.

As we can see from Fig. 19, when using video
associations to construct the database, the retrieval results
are significantly better than the shot-based approach. Take
K ¼ 20 as an example (the system allows a return of
20 results). The result from the association-based approach
is 8 percent better than the shot-based database. This
improvement becomes more significant when the values of
K increase. This indicates that, by integrating video
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4. Most likely, the selected region should contain an interesting event,
which implies users’ query interests. In our experiments, the selected region
contains one of the four events in Table 6, but this query region does not
necessarily cover the whole event.

Fig. 19. Average retrieval accuracy comparison.



associations, we can actually improve video retrieval
systems by providing users with the results which are
semantically related to their queries. Despite the improve-
ment from the association-based mechanism, we are
actually surprised that the results from the shot-based
approach are much better than what we thought. For
example, when K ¼ 10, about 60 percent of the retrieved
shots are actually relevant to users’ queries. Nevertheless,
further analysis indicates that, for sports videos, each “court
field shot” is actually quite long, which likely covers user’s
query by chance. The results from Table 8 indicate this fact.
As we can see, on average, with the shot-based approach,
the returned units (video shots) are over 10 times longer
than users’ query. It indicates that users will have to explore
the retrieval results to find the part they are actually
interested in (and, because the result shots are long, they
have a high possibility of matching users’ query). With the
association-based mechanism, the retrieved units are likely
close to the length of the query, so the users may “directly”
find out the content they want. We noticed that, when
increasing the value K, both AUR and ARR from two
approaches tend to decrease. One possible reason is that,
with the increase of K, the average length of the retrieved
units is actually closer to the average length of all units in
the database and lots of short units (or shots) in the video
will have an impact to the average length of the retrieval
results.

6.3 Knowledge-Based Video Indexing

Once video association mining and classification have been
finalized, we can directly use associations to support
category-based hierarchical video browsing and knowl-
edge-based video indexing for efficient video retrieval and
content management. In this section, we first analyze the
complexity of the proposed indexing framework, and then
evaluate its performance on real-world data.

6.3.1 Complexity Analysis

With the general knowledge-based indexing framework
demonstrated in Fig. 1, the search time Te for retrieving
video from a large-scale database is the sum of two
components: 1) time Ts for comparing the relevant video
shots in the database and 2) time Tr for ranking the relevant
results. If no database indexing structure is used for
organizing this search procedure, the total retrieval time is:

Te ¼ Ts þ Tr ¼ NT � Tm þOðNT log NT Þ; ð17Þ

where NT is the number of videos in the database, Tm is the
basic time to calculate the m-dimensional feature-based
distance between two video shots, and OðNT logNT Þ is the
time to rank NT elements.

Our knowledge-based multilevel video indexing struc-
ture can provide fast retrieval because only the relevant

database management units are compared with the query
example. Moreover, the dimension reduction techniques
can be utilized to guarantee that only the discriminating
features are selected for video representation and indexing
and, thus, the basic time for calculating the feature-based
similarity distance is also reduced. With the proposed video
indexing structure, assume Mc, Msc, and Ms are the
numbers of the nodes at the cluster level, the most relevant
subcluster, and the scene levels, respectively, Mo is the
number of video shots that reside in the most relevant scene
node. Assume further that Tc, Tsc, Ts, and To are the basic
times for calculating the similarity distances in the
corresponding feature subspace. (It is obvious that Tc, Tsc,
Ts, To � Tm because only the discriminating features are
used.) Then, the total retrieval time for our cluster-based
indexing system T 0e is given by (18):

T 0e ¼Mc � Tc þMsc � Tsc þMs � Ts þMo � To þOðMo logMoÞ;
ð18Þ

where OðMo logMoÞ is the total time for ranking the
relevant shots residing in the corresponding scene node.
Since ðMc þMsc þMs þMoÞ 	 NT , ðTc; Tsc; Ts; ToÞ � Tm,
thus T 0e 	 Te.

6.3.2 Knowledge-Based Indexing Results

To demonstrate the performance of the proposed knowl-
edge-based video indexing framework, we compare the
CPU cost of video retrieval between the proposed indexing
framework and exhaustive search. We did not compare our
work with other indexing techniques such as R-tree [42],
SR-tree [43] etc., because all these indexing techniques are
efficient when the feature dimension is relatively low. As
suggested by Cui et al. [41], when the number of
dimensions is over 30, the exhaustive search turns to be
the best, given that the data in the data set is uniformly
distributed. In our case, each key-frame is represented by a
266-dimensional vector and this number is much higher
than 30.

Database indexing structures. When evaluating the
performance of the proposed indexing structure, we repeat
the experiment in Section 6.2.3 (association-based video
retrieval) with the following modification: After association
mining from all videos, we adopt association classification
to classify each association (note that Section 6.2.3 does not
conduct this step). Then, we use the semantic category of
the identified associations and the index structure in Fig. 2
to construct our database.

Query generation and process. When users specify a
query frame region from a video which does not exist in the
database, we first preprocess the video to mine and classify
associations and then use the associations in the region to
find video units in the database which have the same
category as the query and, after that, we use (14) to find the
most similar units and return the results (if the query video
already exists in the database, we can directly use the video
associations, which have been mined before, to facilitate the
query). In the case where the user-specified region does not
contain any association, we will use the same approach in
Section 6.2.3 to retrieve from the database (i.e., we ignore
the index structure and execute an exhaustive search).

System performance measures. For comparative studies,
we implement and compare with the exhaustive search
mechanism, i.e., exactly the same approach in Section 6.2.3.
Whenever users trigger a query, the same query region is
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used for two approaches to retrieve from the database. We
use average CPU time expense to evaluate two methods,
where, for knowledge-based indexing, the CPU time
includes the time to mine and classify associations (this
one time overhead expense is paid off the first time we
select the query from a new video).

System performance analysis. Obviously, the actual
CPU expense is determined by four most important factors:

1. the number of the levels of the index structure in
Fig. 2,

2. the size of the feature subset in evaluating the
distance,

3. the size of the semantic concept at each index level,
and

4. the complexity of the query (the longer the query
association, the higher is the CPU cost).

We execute retrieval about 300 times in total and evaluate
the average CPU cost. For each query, we count the
association length in the query region and the correspond-
ing query time, and provide results in Fig. 20, where the y-
axis represents the CPU cost and the x-axis denotes the
length of the query associations.

The experimental results in Fig. 20 demonstrate that,
with the increase of the length of the query associations,
both mechanisms suffer from the increase of the CPU
expense because a longer length of associations implies
more complex query patterns and more time is needed for
response. Although exhaustive search does not use associa-
tions, the longer the length of the query associations, the
more complicated the content of the query region and the
more representative frames will be detected for exhaustive
search and, accordingly, is more time for retrieval involved.
As shown in Fig. 20, with the proposed knowledge-based
indexing framework, we can significantly improve the
efficiency of a video retrieval system, where the more
complicated the query, the more improvement can be
achieved. As we can see, when the length of the association
in the user’s query is 7, the proposed index framework is
about 3 times better than exhaustive search. On average, the
system improvement is about 2.2 times better in comparison
with exhaustive search. Currently, we have only imple-
mented two levels and four concept categories in the index
structure and we believe that, by integrating more levels
and concepts, the contribution of the proposed index
framework can be more significant.

7 CONCLUSIONS AND REMARKS

In this paper, we have proposed a solution for a new
research area of video mining—video association mining.

We have used video associations to construct a knowledge-
based video indexing structure to support efficient video
database management and access. We have introduced
various techniques to extract visual and audio semantic
cues and combined them into one hybrid stream by
considering their original temporal order in the video.
Consequently, the video data is transformed into a
relational data set. We have employed a sequential multi
level association mining strategy to mine associated video
items and take them as video associations. We have
adopted a scheme to classify associations into different
categories, where each association can possibly indicate the
happening of one type of event. The knowledge-based
video indexing structure is accomplished by mining and
classifying associations from video data. We have presented
experimental results to demonstrate the performance of the
proposed schemes. We believe we have explored a new
research area to discover video knowledge for efficient
video database management.

While the strategies presented in this paper are specific
to basketball videos, mining associations for video knowl-
edge exploration is an essential idea we want to convey
here. From this point of view, further research could be
conducted on the following aspects: 1) Extend the current
framework to other domains and evaluate the performance
of the video mining algorithm in environments with more
events. We believe the most promising domain is the
surveillance video, where the routine vehicles in security
areas normally comply with some associations like enter!
stop ! drop off ! leave and a vehicle which does not
comply with this association might be problematic and
deserves further investigation. However, due to the
inherent differences between different video domains
(e.g., the concept of shot and video text do not exist in
surveillance videos), we may need more activities to
analyze the video content details for association mining,
e.g., extract trails and status of moving objects to character-
ize associations. 2) We have adopted various video
processing techniques to explore visual and audio cues for
association mining and it will inevitably incur information
loss from the original video sequences to transferred
symbolic streams; more studies are needed to address this
issue in the mining activities. 3) The mining algorithms in
this paper are mainly derived from the existing data mining
schemes (with some extensions for video mining scenarios);
extensive studies are needed to explore efficient mining
algorithms which are unique for mining knowledge from
video data.
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