
The VLDB Journal (2003) 12: 59–85 / Digital Object Identifier (DOI) 10.1007/s00778-003-0087-z

Business-to-business interactions: issues and enabling technologies

Brahim Medjahed1, Boualem Benatallah2,�, Athman Bouguettaya1,��, Anne H. H. Ngu3, Ahmed K. Elmagarmid4,���

1 Department of Computer Science, Virginia Tech, 7054 Haycock Road, Falls Church, VA 22043 USA; e-mail: {brahim,athman}@vt.edu
2 School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052 Australia;

e-mail: boualem@cse.unsw.edu.au
3 Department of Computer Science, Southwest Texas State University, San Marcos, TX 78666 USA; e-mail: angu@swt.edu
4 Department of Computer Sciences, Purdue University, 250 N. University Street, West Lafayette, IN 47907 USA; e-mail: ake@cs.purdue.edu

Edited by A. Dogac. Received: July 23, 2002 / Accepted: January 6, 2003
Published online: April 3, 2003 – c© Springer-Verlag 2003

Abstract. Business-to-Business (B2B) technologies pre-date
the Web. They have existed for at least as long as the Inter-
net. B2B applications were among the first to take advantage
of advances in computer networking. The Electronic Data In-
terchange (EDI) business standard is an illustration of such
an early adoption of the advances in computer networking.
The ubiquity and the affordability of the Web has made it
possible for the masses of businesses to automate their B2B
interactions. However, several issues related to scale, content
exchange, autonomy, heterogeneity, and other issues still need
to be addressed. In this paper, we survey the main techniques,
systems, products, and standards for B2B interactions.We pro-
pose a set of criteria for assessing the different B2B interaction
techniques, standards, and products.

Keywords: E-commerce – B2B Interactions – EDI – XML –
Components – Workflows – Web services

1 Introduction

The growth of the Web is revolutionizing the way businesses
interact with their partners and customers. Millions of orga-
nizations are moving or have already moved their main oper-
ations to the Web to take advantage of the potential of more
automation, efficient business processes, and global visibility
[27,28]. For instance, Dell’s computer online sales exceeded
$18 million per day in the year 2000 [1]. The current scale of E-
commerce has been phenomenal in several domains, including
healthcare, travel, auto supply chain, e-procurement, shipping,
and warehousing. All predictions agree that E-commerce will

� This author’s work is partially supported by the Australian Re-
search Council’s Discovery Grant DP0211207.
�� This author’s work is supported by the National Science Foun-

dation’s Digital Government Program under grant 9983249-EIA and
by a grant from the Commonwealth Information Security Center
(CISC).
��� This author’s work is supported by the National Science Foun-
dation’s Digital Government Program under grant 9983249-EIA.

be worth billions of dollars in new investments [1]. According
to a recent study by Gartner (a leading research and advisory
firm), the E-commerce market is on track, despite the slow-
down in the economy, to total US$8.5 trillion by the year 2005
[38].

The Web offers a unique opportunity for E-commerce
to take a central stage in the fast growing online economy
[8,16,28]. With the advent of the Web, the first generation
of Web-based E-commerce was born: Business-to-Customer
(B2C) Applications. Examples of B2C applications include
virtual malls, customized news delivery, traffic monitoring,
and route planning. Another quieter E-commerce revolution
with far more dramatic economic implications has been taking
place away from the spotlights: Business-to-Business (B2B)
E-commerce. Examples of B2B applications include procure-
ment, Customer Relationship Management (CRM), billing,
accounting, human resources, supply chain, and manufactur-
ing. B2B E-commerce far exceeds B2C E-commerce both
in the volume of transactions and rate of growth [34]. De-
spite the dot-com debacle that shook the US economy, B2B
E-commerce is still strong and predictions agree that B2B
E-commerce future looks even brighter [34]. While B2B E-
commerce has been around for at least as long as the Internet,
it reached its full potential with the emergence of the Web as
a conduit for efficient B2B transacting. Numerous organiza-
tions started using the Web as a means to automate relation-
ships with their business partners. This has elicited the forma-
tion of alliances in which businesses joined their applications,
databases, and systems to share costs, skills and resources in
offering value-added services. The ultimate goal of B2B E-
commerce is therefore to have inter- and intra-enterprise ap-
plications evolve independently, yet allow them to effectively
and conveniently use each other’s functionality.

An important challenge in B2B E-commerce is interac-
tion. Interaction is defined as consisting of interoperation and
integration with both internal and external enterprise applica-
tions [35]. This has been a central concern because B2B ap-
plications are composed of autonomous, heterogeneous, and
distributed components. Interactions among loosely coupled
and tightly coupled systems has been, over the past 20 years,
an active research topic in areas such as databases, knowledge-

60 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

Fig. 1. Architecture of a B2B interaction framework

based systems, and digital libraries [15]. Interactions in B2B
E-commerce offer unique challenges because of issues such
as scalability, volatility (dynamism), autonomy, heterogeneity,
and legacy systems. B2B E-commerce requires the integration
and interoperation of both applications and data. Disparate
data representations between partners’ systems must be dealt
with. Interaction is also required at a higher level for connect-
ing (i) front-end with back-end systems, (ii) proprietary/legacy
data sources, applications, processes, and workflows to the
Web, and (iii) trading partners’ systems.

The aim of this work is to survey the main issues and solu-
tions to B2B E-commerce interactions. Previous work dealing
with interoperation in loosely coupled systems mostly focused
on databases and digital libraries [80,73]. Recent surveys ad-
dressing B2B E-commerce (e.g., [3,17,26,29,54,81]) were
mostly fragmented and lacked a holistic view of the prob-
lem. In this paper, we propose a framework for comparing
B2B interaction technologies. The framework identifies the
interaction layers, i.e., communication, content, and business
process. It also proposes a set of dimensions to study B2B
interaction solutions. Additionally, the work covered in those
surveys did not specifically focus on B2B interactions. In this
paper, we take a broad approach to study B2B interactions.

The survey’s organization reflects the historical evolution
of B2B solutions and supporting technologies. In Sect. 2, we
define the different interaction layers in B2B E-commerce.
We then identify a set of dimensions for comparing B2B so-
lutions across these layers. In Sect. 3, we study several popu-
lar B2B E-commerce approaches, namely, EDI, components,
and workflows. These approaches are evaluated against a pre-
defined set of dimensions. In Sect. 4, we survey and evalu-
ate the trends in B2B enabling techniques that include XML-
based frameworks and Web services. In Sect. 5, we discuss a
few representative research projects that enable B2B interac-
tions. In Sect. 6, we overview some of the most popular B2B
deployment platforms. Finally, Sect. 7 provides a tabular com-
parison summary of B2B enabling technologies, prototypes,
and commercial platforms.

2 Overview of B2B interaction frameworks

In the first part of this section, we present a typical architecture
of a B2B interaction framework. We then identify the different
layers that make up such framework. Finally, we define the di-
mensions for assessing B2B architectures across these layers.
These dimensions are used as a benchmark for evaluating B2B
E-commerce interaction solutions.

2.1 Architecture of a B2B interaction framework

B2B applications refer to the use of computerized systems
(e.g., Web servers, networking services, databases) for con-
ducting business (e.g., exchanging documents, selling prod-
ucts) among different partners [16]. The building blocks for
B2B applications are provided through a B2B interaction
framework (Fig. 1). These include modules for: (1) defining
and managing internal and external business processes, (2) in-
tegrating those processes, and (3) supporting interactions with
back-end application systems such as ERPs (Enterprise Re-
source Planning) [17].A business process is defined as a multi-
step activity that supports an organization’s mission such as
manufacturing a product and processing insurance claims [17].

We depict in Fig. 1 the main components of a B2B in-
teraction framework. Translation facilities (e.g., application
adapters) may be used to interconnect back-end systems (e.g.,
databases, ERPs) and internal business processes (e.g., work-
flows, applications). An external business process implements
the business logic of an organization with regard to its external
partners such as processing messages sent by trading partners’
systems. Interactions between partners’ external business pro-
cesses may be carried out based on a specific B2B standard
(e.g., EDI [67,101], RossettaNet [76]) or bilateral agreements.
B2B standards define the format and semantics of messages
(e.g., request for quote), bindings to communication proto-
cols (e.g., HTTP, FTP), business process conversations (e.g.,
joint business process), security mechanisms (e.g., encryption,

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 61

Fig. 2. B2B interactions: a running example

non-repudiation), etc. A B2B framework may have to support
several B2B standards and proprietary interaction protocols.

Example. As a running example, we use an application
from the computer manufacturing domain. We consider a
company, called ComputerCompany, that offers com-
plete computer configurations. Assume this company does
not own all the hardware parts (e.g., monitors, processors)
needed for assembling computers. It would interact with
other business partners (e.g., ProcessorProvider) to ac-
quire those parts. Interactions between ComputerCompany
and ProcessorProvider are depicted in Fig. 2.
ComputerCompany wants to purchase processors in
bulk from ProcessorProvider. An employee in
ComputerCompany first issues a request for purchase.
Upon approval of this request, a purchase order is issued and
sent to ProcessorProvider. The purchase order is trans-
formed into a sale order at ProcessorProvider’s order
processing system. After satisfactory credit checking, an or-
der fulfillment is issued by ProcessorProvider and an
invoice is finally sent to ComputerCompany.

2.2 Layers of B2B interaction frameworks

Interactions in B2B applications occur in three layers: com-
munication, content, and business process layers. For ex-
ample, ComputerCompany and ProcessorProvider
need to agree on their joint business process (e.g., deliv-
ery mode, contracts). ProcessorProvider needs also
to “understand” the content of the purchase order sent
by ComputerCompany. Finally, there must be an agreed
upon communication protocol to exchange messages between
ComputerCompany and ProcessorProvider.

The communication layer provides protocols for ex-
changing messages among remotely located partners (e.g.,
HTTP, SOAP). It is possible that partners use different pro-
prietary communication protocols. In this case, gateways
should be used to translate messages between heteroge-
neous protocols. For example, ComputerCompany and
ProcessorProvidermay use Java RMI (Remote Method
Invocation) [82] and IBM’s MQSeries [48], respectively, for

internal communications. The objective of integration at this
layer is to achieve a seamless integration of the communica-
tion protocols.

The content layer provides languages and models to
describe and organize information in such a way that it
can be understood and used. Content interactions require
that the involved systems understand the semantics of con-
tent and types of business documents. For instance, if
ProcessorProvider receives a message that contains
a document, it must determine whether the document rep-
resents a purchase order or request for quotation. Informa-
tion translation, transformation, and integration capabilities
are needed to provide for reconciliation among disparate rep-
resentations, vocabularies, and semantics. The objective of
interactions at this layer is to achieve a seamless integra-
tion of data formats, data models, and languages. For ex-
ample, if ComputerCompany uses xCBL (XML Common
Business Library) [32] to represent business documents and
ProcessorProvider expects documents in cXML (Com-
merce XML) [23], there is a need for a conversion between
these two formats.

The business process layer is concerned with the conversa-
tional interactions (i.e, joint business process) among services.
Before engaging in a transaction, ComputerCompany and
ProcessorProvider need to agree on the procedures of
their joint business process. The semantics of interactions
among ComputerCompany and ProcessorProvider
must be well defined, such that there is no ambiguity as to
what a message may mean, what actions are allowed, what re-
sponses are expected, etc. The objective of interactions at this
layer is to allow autonomous and heterogeneous partners to
come online, advertise their terms and capabilities, and engage
in peer-to-peer interactions with any other partners. Interop-
erability at this higher level is a challenging issue because it
requires the understanding of the semantics of partner business
processes [58].

62 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

2.3 Dimensions for evaluating B2B interaction frameworks

B2B E-commerce covers a wide spectrum of interactions
among business partners. The types of interactions depend
on the usage scenarios, parties involved, and business require-
ments. Each framework makes specific tradeoffs with regard
to the requirements of B2B interactions. It is therefore impor-
tant to determine the relevant requirements and understand
the related tradeoffs when evaluating models of interactions.
In this section, we identify a set of dimensions to study inter-
action issues in B2B E-commerce. We consider the following
dimensions: coupling among partners, heterogeneity, auton-
omy, external manageability, adaptability, security, and scal-
ability.

• Coupling among partners: this dimension refers to the
degree of tightness and duration of coupling among busi-
ness partners. Two partners are tightly coupled if they are
strongly dependent on each other. For example, one part-
ner may control the other, or they may control one another.
Loosely coupled partners exchange business information
on demand. The duration of a B2B relationship may be
transient (also called dynamic) or long term. In transient
relationships, businesses may need to form a fast and short
term partnership (e.g., for one transaction), and then dis-
band when it is no longer profitable to stay together. Busi-
nesses need to dynamically discover partners to team up
with to deliver the required service. In long term relation-
ships, businesses assume an a priori defined partnership.

• Heterogeneity: heterogeneity refers to the degree of dis-
similarity among business partners. The need to access
data across multiple types of systems has arisen due to
the increased level of connectivity and increased com-
plexity of the data types. Applications use different data
structures (e.g., XML, relational databases), standard or
propriety semantics (e.g., standardized ontologies). There
may also be structural heterogeneity at the business pro-
cess layer (e.g., use of APIs, document exchange proto-
cols, inter-enterprise workflows). In addition, organiza-
tions may, from a semantic point of view, use different
strategies for conducting business that depend on business
laws and practices [18].

• Autonomy: autonomy refers to the degree of compliance of
a partner to the global control rules. Partner systems may
be autonomous in their design, communication, and execu-
tion. This means that individual partners select the process
and content description models, programming models, in-
teraction models with the outside world, etc. In a fully au-
tonomous collaboration, each partner is viewed as a black
box, that is able to exchange information (i.e., send and
receive messages). Partners interact via well-defined in-
terfaces allowing them to have more local control over
implementation and operation of services, and flexibil-
ity to change their processes without affecting each other.
Usually, a completely autonomous collaboration may be
difficult to achieve because it may require sophisticated
translation facilities.

• External manageability: this dimension refers to the de-
gree of external visibility and manageability of partners’
applications. In order to be effectively monitored by ex-
ternal partners, an application must be defined in a way

that facilitates the supervision and control of its execution,
measurement of its performance, and prediction of its sta-
tus and availability. For example, ComputerCompany
may need to get the status (e.g., pending, approved) of
the purchase order sent to ProcessorProvider. This
requires that ProcessorProvider exposes sufficient
information pertaining to measurements and control points
to be used by ComputerCompany. While desirable in
principle, high visibility may require complex descriptions
of partners’applications. However, the overhead to provide
such descriptions may be well justified if it provides other
advantages such as Quality of Service (QoS).

• Adaptability: adaptability refers to the degree to which an
application is able to quickly adapt to changes. B2B ap-
plications operate in a highly dynamic environment where
new services could come on-line, existing services might
be removed, and the content and capabilities of services
may be updated. For example, ComputerCompanymay
decide to partner with a new processor provider for QoS
purposes (e.g., cost, time). Businesses must be able to re-
spond rapidly to changes whereby both operational (e.g.,
server load) and market (e.g., changes of availability sta-
tus, changes of user’s requirements) environment are not
predictable. For example, if ProcessorProvider de-
cides to stop its supply activities (e.g., for local mainte-
nance), ComputerCompany would then need to adapt
to such change. Changes may be initiated to adapt appli-
cations to actual business climate (e.g., economic, policy,
or organizational changes). They may also be initiated to
take advantage of new business opportunities. Since ap-
plications interact with both local back-end systems and
partner applications, it is important to consider the impact
of changes in both local and external applications to en-
sure local and global consistency. In general, the impact
of changes depends on the degree of tightness among ap-
plications.

• Security: security is a major concern for inter-enterprise
applications. Before B2B E-commerce reaches its real
potential, sophisticated security measures must be in
place to boost E-commerce partners confidence that
their transactions are safely handled [103]. For instance,
ProcessorProvider may need to check the authen-
ticity of the purchase order before processing it. B2B ap-
plications must support mutual authentication, fine grain
authentication, communication integrity, confidentiality,
non-repudiation, and authorization. B2B interactions may
be based on limited mutual trust, little or no prior knowl-
edge of partners, and transient collaborative agreements.
Shared information may include limited capabilities of ser-
vices.

• Scalability: scalability refers to the ability of a system to
grow in one or more dimensions such as the volume of
accessible data, the number of transactions that can be
supported in a given unit of time, and the number of rela-
tionships that can be supported. More importantly, changes
in business climate are forcing organizations to merge in
order to be effective in the global market. Thus, the cost
and effort to support new relationships is an important cri-
terion to consider when evaluating interaction solutions
in B2B E-commerce. Clearly, a low cost establishment of
new relationships is desirable. However, in case of long-

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 63

term relationships, the cost of establishing a new relation-
ship is not of great significance.

3 State-of-the-art technologies for B2B interactions

Technologies for B2B E-commerce have been around for al-
most three decades providing businesses, such as the banking
industry, with a secure framework for sharing and exchanging
data electronically. The most widely used and earliest frame-
work is the Electronic Data Interchange (EDI) standard that
runs on dedicated computer networks. Later, advances in soft-
ware technology gave rise to a new breed of affordable soft-
ware for distributed messaging and computing that can se-
curely run on public computer networks: component-based
frameworks. With corporate takeovers and consolidations cou-
pled with the need of agile, just-in-time inter-enterprise coop-
eration on the Web, pressure mounted to provide solutions for
enabling inter-enterprise workflows. Tomorrow’s silver bul-
let applications such as Virtual Enterprises [10,39,40], will
heavily draw on these solutions.

In this section, we overview these technologies in detail.
Note that for the sake of space, other relevant technologies
(e.g., agents [52]) and standards (e.g., SWIFT [84]) are not
covered. An exhaustive list of standards can be found in [17].

3.1 Electronic data interchange (EDI)

EDI [67,101] is commonly defined as the inter-organizational
application-to-application transfer of business documents
(e.g., purchase orders, invoices, shipping notices) between
computers in a compact form. Its primary aim is to mini-
mize the cost, effort, and time incurred by the paper-based
transfer of business documents [2]. EDI documents are struc-
tured according to a standard (e.g., ANSI X12 [101] and
UN/EDIFACT [67]) and machine-processable format.

Figure 3 depicts two trading partners
ComputerCompany and ProcessorProvider ex-
changing business documents via a Value-Added Network
(VAN). The document (e.g., purchase order) must be
created in the business application of the sender (i.e.,
ComputerCompany). The mapper software is used to
describe the relationship between the information elements in
the application and the EDI standard. The EDI translator soft-
ware converts the document into an EDI message according
to the standard used. The translator wraps the EDI message
in an electronic envelope that has an identifier for the receiver
(i.e., ProcessorProvider). The actual transmission of
the electronic envelope is performed by the communication
software. This software maintains the trading partners’ phone
numbers to dial-up and exchange operations. The commu-
nication software can be a separate application or part of
the translator. The VAN reads the identifier on the envelope
and places it in the mailbox of ProcessorProvider. At
the ProcessorProvider side, the reverse process takes
place.

3.1.1 B2B interactions in EDI-based solutions

EDI focuses mostly on interoperability at the communication
and content layers. VANs are used to handle message delivery

Fig. 3. B2B interactions in EDI

and routing among business partners. EDI standards provide
a single homogeneous solution for content interoperability.
They define a set of types for describing business documents.
However, there is a limited (albeit large) number of predeter-
mined documents supported by EDI standards. While these
documents represent a large number of business transactions
(e.g., shipping invoices, health care claim status reports), com-
panies are limited to that set of EDI documents for which
standards already exist [2]. It would be difficult for trading
partners to conduct transactions whose parameters are not in-
cluded in an EDI document. In that regard, EDI is hardly flexi-
ble in its ability to expand the set of supported document types.
The introduction of a new type or changing an existing type
of business transaction may be complex and time consuming
[2]. This kind of change requires modification to the configu-
ration of the translation software and must be validated in the
related standard or EDI guideline committee which usually
takes a long time [2]. For example, the EDI Guideline Con-
sistency Subcommittee (EGCS) is responsible for the content
and maintenance of all TCIF (Telecommunications Industry
Forum) EDI-maintained code lists [5]. Any modification to
these code lists has to be reviewed by the EGCS. The EGCS
is also responsible for notifying the TCIF Secretariat of any
changes in the electronic documentation. Interoperability at
the business process layers is supported through pre-defined
business processes. For example, if ComputerCompany’s
purchase order is accepted then the ComputerCompany ex-
pects a purchase order acknowledgment, an invoice, and the
delivery of the ordered processors in the time frame specified
in the purchase order.

The EDI approach to B2B E-commerce is particularly
strong along the criteria of security and heterogeneity. EDI is
based on document exchange over private or value-added net-
works. Business partners do not concern themselves with those
security issues encountered in public networks. Moreover,
business partners do not need to directly reference each other’s
systems. Therefore, critical security issues are bypassed. All
partners are required to comply with the EDI standard.As a re-
sult, heterogeneity is not a problem. However, understanding
all information in an EDI document is not a simple task. For
example, there are data elements (UNH and UNT) in EDI doc-
uments whose sole purpose is to indicate the start and end of
a message. The impact of local changes is limited as partners
do not directly reference each other’s systems.

64 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

Although several EDI implementations have shown im-
pressive results as set in the example of SEWP [66], the cost
of establishing a new relationship usually requires a significant
overhead. Because EDI is based on proprietary and expensive
networks, organizations, predominantly small and medium,
could not afford EDI. They were de facto excluded from be-
ing partners with larger organizations that mandate the use of
EDI [2,53]. Typically,VAN services entail three types of costs:
account start-up costs, usage of variable costs, and VAN-to-
VAN interconnect costs for the number of characters in each
document [53]. The final cost of an EDI solution depends on
several factors such as the expected volume of documents, eco-
nomics of the EDI translation software, and implementation
time. Maintenance fees and VAN charges can vary consider-
ably and as such affect the cost of EDI systems. Some VAN
providers do their billing on a per document basis. Others
charge based on the number of characters in each document
[53]. It has been reported that 90% of the Fortune 500 com-
panies in the United States use EDI; only 6% of the other 10
million companies can make that claim [2]. Efforts to reduce
the cost of using VAN networks include Internet-based EDI
solutions such as EDIINT [50] and OBI [70].

Each EDI deployment involves negotiation and agreement
on a set of implementation conventions describing the exten-
sions to the standard documents and actual formats that would
be exchanged. This negotiation and agreement process repre-
sents a significant cost in EDI deployment. To address this
issue, EDIFACT and ANSI X.12 have undertaken an effort
to standardize sets of documents for various industries. For
example, ANSI X.12 has recently released a set of standard
EDI document definitions for the health care industry. Using
these industry standard document definitions, the customiza-
tions required per relationship can be reduced, although per-
relationship work is generally still required.Additionally, once
implementation conventions are decided upon, custom inte-
gration work must be performed at both partner organizations
for the existing enterprise systems to process the EDI docu-
ments. This typically involves purchasing a commercial EDI
system, integrating it with the enterprise systems, and writing
custom code to translate the EDI system document definitions
to the corresponding enterprise system records.

3.1.2 Internet-based EDI initiatives

EDI has been extended in many directions. For instance,
business documents in EDI standards have been mapped to
XML documents (e.g., XML/EDI [102]). More specifically,
the combination of EDI and Internet technologies seems to
overcome several shortcomings of the traditional EDI (e.g.,
VAN charges). Indeed, several organizations are already us-
ing EDI for transacting over the Internet. For example, EDI
purchase orders and invoices are now routinely exchanged via
the Internet by NASA, Sun Microsystems, and Cisco systems.
Major Internet-based EDI initiatives include EDIINT (EDI
over the Internet) [50] and OBI (Open Buying on the Internet)
[70].

EDIINT [50] – EDIINT is essentially the same as traditional
EDI, but uses the Internet as a communication medium instead
of VANs. The aim is mainly to reduce EDI communication

charges due to the use of VANs. EDIINT was initiated by the
Uniform Code Council (UCC) to standardize the method to ex-
change EDI documents over the Internet. EDIINT is similar
to EDI in terms of interoperability at the content and business
process layers. At the communication layer, the first EDIINT
standard (emerged in 2000) was EDIINT AS1 (Applicability
Statement 1). EDIINTAS1 set the rules to exchange EDI docu-
ments using SMTP protocol. The second standard (completed
in 2001) was EDIINT AS2 standard. It supported communi-
cation of EDI documents using the HTTP protocol.

Initially, there was reluctance to use the Internet for ex-
changing critical business information due to concerns about
security. To deal with this problem, EDIINT AS2 speci-
fies standard mechanisms for securing documents using PGP
(Pretty Good Privacy) encryption and digital signatures [49].
The standards referenced by EDIINT AS2 include RFC1847
and MIME Security with PGP [49]. EDIINT offers lower entry
cost than EDI since it is Internet-based. However, the quality of
service (e.g., automatic error detection and correction) associ-
ated with VANs is lost. EDIINT offers similar characteristics
as EDI with respect to the other dimensions (i.e, coupling,
heterogeneity, autonomy, external manageability, and adapt-
ability).

OBI [70] – OBI is a standard that leverages EDI to define
an Internet-based procurement framework. It is clearly stated
that OBI aims to complement EDI standards, not replace them.
OBI is intended for high-volume, low-dollar amount transac-
tions, which account for 80% of the purchasing activities in
most organizations. At the communication level, OBI uses
HTTP protocol for exchanging messages. OBI relies on the
ANSI X12 EDI standard to describe the content of order doc-
uments. Order documents are encapsulated in OBI objects.
OBI objects also encapsulate other non-EDI messages such as
buyers’and sellers’digital signatures. OBI does not introduce a
specific model for describing locally maintained information
(e.g., product and price information). This information may
be described in the partner’s database. At the business process
level, OBI defines a simple and pre-defined operational pro-
tocol for Internet-based purchasing. This protocol consists of
a number of commonly agreed upon activities (e.g., select a
supplier, create order) for purchasing non-strategic material
(e.g., office supplies, laboratory supplies). In fact, this proto-
col only specifies the way partner OBI systems interact. It is
the responsibility of each partner to integrate its internal appli-
cations (catalogs, inventory and order management systems,
etc) with OBI servers.

OBI makes a strong attempt to provide a robust security
infrastructure. It uses the SSL (Secure Sockets Layer) [68]
over HTTP for securing communications. It also uses dig-
ital signatures and digital certificates for ensuring message
authenticity and integrity. OBI rates higher than EDI with
regard to the scalability and adaptability dimensions. First,
the extensibility of order documents is not an important
requirement. OBI targets simple and pre-defined purchasing
transactions. Second, it offers lower entry cost as it is an
Internet-based framework. OBI offers similar properties as
EDI and EDIINT with regard to the other dimensions (i.e.,
coupling, heterogeneity, autonomy, and external manageabil-
ity).

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 65

Fig. 4. Component-based B2B E-
commerce

3.2 Components

Components are program modules that can be independently
developed and delivered [12,85]. They may be newly devel-
oped or wrap existing functionalities provided by databases,
legacy systems, or packages. Although most of the fundamen-
tal ideas that define object technology are applicable to com-
ponents, components are not necessarily created using object-
oriented tools and languages [61,43]. For example, compo-
nents may be realized using a functional language, an assem-
bly language, or any other programming language [85].

The development of component-based applications gen-
erally requires the interconnection of geographically dis-
tributed components. The availability of a middleware that
provides more effective ways of programming is important
to the development of distributed component-based appli-
cations. A component middleware is an infrastructure that
supports the creation, deployment, and interactions among
components [88]. Figure 4 depicts ComputerCompany’s
and ProcessorProvider’s applications assembled from
components. Each component represents an independent unit
of a business functionality such as payment, purchasing,
billing, and shipping. The different components work to-
gether to serve the needs of ComputerCompany’s and
ProcessorProvider’s business processes. They are built
on top of a set of basic services. Functions provided by these
services include distributed communication, security, transac-
tions, and naming schema.

Three major component middleware frameworks have
been developed during the past decade:

• CORBA (Common Object Request Broker Architecture)
[72]: CORBA is the standard promoted by the OMG (Ob-
ject Management Group), an international industry con-
sortium. It is part of a general architecture called the Ob-
ject Management Architecture (OMA). The backbone of
CORBA is the Object Request Broker (ORB) which allows
communication between client and server components.

• DCOM (Distributed Component Object Model) [62]:
DCOM is Microsoft’s technology for distributed compo-
nents. It is an extension of COM, Microsoft’s component
software architecture. COM and its DCOM extension are

merged into a single runtime which provides both local
and remote access.

• EJB (Enterprise Java Beans) [75]: EJB is one of several
technologies which make up Sun’s J2EE (Java 2 Platform,
Enterprise Edition) specification. It provides a component
model for the Java programming language. In EJB, pieces
of business logic or functions can be written in Java and
encapsulated to become components known as beans. The
container is the core of the EJB component model. It pro-
vides a runtime environment that hosts and controls the
beans.

The component-based approach for B2B E-commerce is
more appropriate for a small number of partners within an
enterprise [22]. However, with companies being merged and
acquired at the current rate, there is a need to address B2B
interactions within an enterprise. Components mainly cover
interactions at the communication layer. They exhibit limited
capabilities dealing with interactions at the content layer. They
focus on the syntactic integration to wrap heterogeneous ap-
plications. At the business process layer, applications (e.g.,
ordering a processor for ComputerCompany) may be as-
sembled from independently developed components (e.g., in-
ventory, payment, purchasing). However, businesses generally
would need to develop ad hoc solutions for defining intra and
inter-enterprise business processes.

3.2.1 CORBA-based B2B E-commerce

At the communication layer, the use of ORBs in CORBA hides
the underlying complexity of network communications from
application developers. When a client issues a method invoca-
tion on a server component, the ORB intercepts the invocation
and routes it across the network to the appropriate server. It is
also possible that components distributed on different ORBs
communicate over the Internet through the Internet Inter-ORB
Protocol (IIOP).

CORBA provides a trader service through which busi-
nesses can find each other by assigning a set of properties
to each component. However, these properties are simply de-
fined as (name,value) pairs. They do not provide support for

66 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

semantic description of components. Recent efforts have been
made to add semantic features to CORBA through the ECDTF
(Electronic Commerce Domain Task Force) reference model
which includes a semantic data facility [72]. However, the
model is still at its very early stage. Additionally, very little
work has been done so far to define a specification for the
semantic data facility.

CORBA enables tightly coupled and long term business
relationships between components. Once interfaces are ex-
pressed in IDL (Interface Definition Language), they are com-
piled by an IDL compiler into stubs and skeletons. The stub,
used on the client side, invokes remote operations via the ORB
to the corresponding skeleton on the server side. The skeleton
gets the call parameters, invokes the actual operation imple-
mentation, collects results, and returns values back to the client
through the ORB. Efforts are being made to add messaging
capabilities to CORBA [22]. The new messaging specifica-
tion defines a number of asynchronous and time-independent
invocation modes for CORBA. It allows both static and dy-
namic invocations to use all modes. The use of message driven
interactions among components allows the support of loosely
coupled relationships. CORBA components are mostly based
on static operation invocation. Although the Dynamic Invoca-
tion Interface (DII) in CORBA allows components to learn
about other components’ operations at run time, the utility of
DII is yet to be exploited due to its complexity.

Components shield application developers from imple-
mentation details. Interfaces are the only considerations busi-
nesses must make when interacting with each other. Busi-
ness partners have the latitude to implement their interfaces in
ways that best fit their internal needs and requirements. Each
CORBA component has an IDL that includes the name of the
operations to be called by clients together with the name and
types of all parameters and return values. However, all par-
ticipants in a certain market need to agree on a predefined
interface. This means that businesses are bound to interfaces
published by their trading partners. In terms of heterogeneity,
CORBA was designed to be independent of implementation
languages, operating systems, and other factors that normally
affect interactions. Components can be implemented using di-
verse programming language such Java, C++, and Smalltalk.

External manageability is partially addressed in CORBA
through the event service. The CORBA event service allows
components to inform each other of the occurrence of specific
events. It divides components into suppliers and consumers.
Suppliers generate notifications of events while consumers
register to be notified about the occurrence of events so that
they can perform specific actions in response of those events.

CORBA provides little or no support for adaptability. As
mentioned before, businesses are tightly bound to interfaces
published by their trading partners. Hence, any change to a
partner’s interface may need the corresponding interface to be
re-compiled. To date, CORBA does not provide mechanism
to respond rapidly to changes in component interfaces.

Security is addressed in CORBA through the CORBA se-
curity service. This service provides a number of mechanisms
such as authentication, authorization, and encryption of mes-
sages to build secure B2B applications. Major CORBA ven-
dors provide implementations of the security service.

The complexity of CORBA development increases the cost
of entry in CORBA-based solutions for B2B E-commerce.

For example, developers in CORBA must generate binary
code packages and deploy them on client sides when building
new applications or when modifying the interfaces of exist-
ing applications. Although the dynamic invocation interface
in CORBA alleviates this problem, programming calls with
such interface is fairly complicated.

3.2.2 DCOM-based B2B E-commerce

Similarly to CORBA, DCOM-based solutions for B2B E-
commerce mainly deal with interactions at the communication
layer. They present little or no support for interactions at the
content and business process layers. For a DCOM client to ac-
cess an operation of another component at the communication
layer, it must use virtual lookup tables to obtain a pointer to
that operation. The DCOM runtime environment ensures that
the pointer is local to the invoking process by using proxies
[56].

DCOM components enable tightly coupled and long term
business relationships. Proxies need to be created at the client
side to communicate with stubs on the serving end [56]. The
operation invocation process is static in DCOM which pre-
vents establishing dynamic relationships among components.
In terms of heterogeneity, current DCOM implementations are
mostly based on Windows platforms although some experi-
mentation have been done to port DCOM to other platforms
(e.g., UNIX). In addition, the languages that are mostly used to
write DCOM components are Microsoft J++ (Microsoft’s im-
plementation of Java), C, C++, and Visual Basic. Additionally,
DCOM’s IDL is neither CORBA nor DCE (Distributed Com-
puting Environment) compliant [56]. Security in DCOM relies
on the Windows NT security model. Although this allows de-
velopers to build secure applications on Windows platforms,
it is not clear how security will be provided when DCOM is
used on other platforms. DCOM has similar characteristics
as CORBA with respect to autonomy, external manageability,
adaptability, and scalability.

3.2.3 EJB-based B2B E-commerce

At the communication layer, EJB uses Java RMI [82] to enable
interactions among beans. The use of RMI makes the location
of the server transparent to the client. Similarly to CORBA
and DCOM, EJB is fairly limited in terms of interactions at
the content and business process layers.

Similarly to CORBA and DCOM, EJB caters for tightly
coupled and long term business relationships. Developers
must define an RMI remote interface for each bean. The RMI
compiler generates a stub for each remote interface. The stub
is installed on the client system and provides a local proxy for
the client. The stub implements all the remote interfaces and
transparently delegates all method calls across the network
to the remote bean. A new specification of EJB (EJB Ver-
sion 2) has recently been made available. It uses JMS (Java
Messaging Service) to add support for message driven beans,
extending the EJB component model to support both tightly
and loosely coupled applications [22]. Static operation invo-
cation is found in most EJB implementations. However, some
implementations such as JBoss integrate more dynamic fea-
tures.

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 67

In EJB, each bean has a remote interface which defines the
methods that carry out the business logic of the bean. The EJB
remote interface provides functions that are similar to those
provided by CORBA and DCOM IDL. Hence, EJB is similar
to CORBA and DCOM in terms of autonomy. EJB does not
support heterogeneous platforms although it is fully based on
Java. Indeed, most of the current EJB implementations do
not offer direct interoperability with non-Java platforms. In
addition, communicating between components deployed on
heterogeneous application servers, such as invoking a BEA
WebLogic component from an IBMWebSphere server, requires
operations in degraded mode.

Several implementations of an event service have also been
provided for EJB to support external manageability. An exam-
ple of EJB’s event service is the Drala Event Broker [30]. EJB
provides some support for adaptability by associating a de-
ployment descriptor to each bean. The descriptor describes
the way in which a bean interacts with its environment. Ap-
plication developers declaratively define contracts in their de-
scriptors. This contract describes the type of services (such as
the form of transaction management) required by the bean. It
can be changed independently of the business logic.

The EJB container provides security features to EJB com-
ponents. Each deployment descriptor contains declarations
about the access control for the corresponding enterprise bean.
When a client calls an operation of that bean, the container is
responsible for checking that the requester has the right to
invoke that operation by accessing an access control list. Fi-
nally, EJB offers similar properties as CORBA and DCOM
with respect to scalability.

3.3 Workflows

Workflow management is concerned with the declarative def-
inition, enactment, administration, and monitoring of busi-
ness processes. A business process (or workflow process)
consists of a collection of activities related by data and con-
trol flow relationships (Fig. 5). An activity is typically per-
formed by executing a program, enacting a human/machine
action, or invoking another process (called sub-process). Pro-
grams, persons, machines, and data used to perform work-
flow processes are called workflow resources. For exam-
ple, ComputerCompany’s business process includes sev-
eral activities such as issuing a purchase request, approv-
ing it, and issuing a purchase order. The information sent
from ComputerCompany’s Issue Purchase Request activ-
ity to the Approval Process activity includes the characteris-
tics of the processor to be ordered (e.g., CPU speed). The
scripting of activities and resource policies through business
process analysis, modeling, and definition tools defines a busi-
ness process definition (workflow schema) [25]. The workflow
enactment service enables different parts of the business pro-
cess to be enacted by providing interfaces to users, applica-
tions, and databases distributed across the workflow domain
(Fig. 5).

Workflow is a key technology for automating business pro-
cesses that involve access to several applications. This makes
workflow technology one of the most important candidates for
integrating, automating and monitoring processes [20]. How-
ever, traditional workflow systems are based on the premise

that the success of an enterprise requires the management of
business processes in their entirety. Indeed, an increasing num-
ber of organizations have already automated their internal
process management using workflows and enjoyed substan-
tial benefits in doing so. Current business processes within
an organization are integrated and managed either using ERP
systems (e.g., SAP/R3, Baan, PeopleSoft) or various work-
flow systems such as IBM’s MQSeries or integrated manually
in on-demand basis. However, B2B E-commerce requires the
flexible support of cross-enterprise relationships. Traditional
workflow systems are ineffective when we consider the needs
of B2B E-commerce, with its complex partnerships, possibly
among a large number of highly evolving processes.

Current efforts (e.g., the Business Process Initiative -
BPMI.org) promise to deliver next generation workflow sys-
tems (Inter-Enterprise Workflow Systems – IEWSs) that have
the ability to thread together cross-organizational business
processes, supporting the integration of diverse users, applica-
tions, and systems [103]. IEWSs focus mainly on interactions
at the business process layer. Their purpose is to automate busi-
ness processes that interconnect and manage communication
among disparate systems. Early projects in this direction fo-
cus mostly on the integration of a known and small number of
tightly coupled business processes [39–41,24]. Recent work-
flow projects focus on loosely coupled processes (e.g., eFlow
[19] andWISE [55]). They consider some critical requirements
of B2B E-commerce such as adaptability and external man-
ageability.

3.3.1 The workflow reference model

There are numerous workflow specification languages that
are based on different paradigms. Usually, each commercial
Workflow Management System (WfMS) implements its own
specification language, with little attention paid to offering
uniformity among products. To address this issue, the Work-
flow Management Coalition (WfMC) has defined theWorkflow
Reference Model [42]. The model includes a standardized set
of interfaces and data interchange formats between workflow
systems’components. The WfMC’s model puts more emphasis
on the syntactic integration of workflow processes. It provides
little support for inter-enterprise business processes.

Standardization efforts based on the WfMC’s model have
been proposed. The OMG Workflow Management Facility has
developed the jointFlow [51] standard. This standard trans-
lates the WfMC standards (except process definition) into an
object-oriented framework and embeds this framework into
the existing CORBA infrastructure. The object model pro-
vided by jointFlow has been used for the development of two
standards: the Simple Workflow Access Protocol (SWAP) [14]
and Wf-XML message set [100]. SWAP introduces an Internet-
based protocol to instantiate, control, and monitor workflow
processes. It defines a binding of WfMC standards using an
HTTP-based interaction protocol. Wf-XML defines the XML
data content required to communicate between workflow en-
gines. However, the method of transport of these messages
(HTTP, SMTP, CORBA IIOP, etc.) is left to the solution
provider.

68 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

Fig. 5. Workflow system characteristics

3.3.2 Distributed workflow systems

The emphasis in Distributed Workflow Systems (DWSs) is
on partitioning the overall workflow specification into sev-
eral sub-workflows, each encompassing all the activities
that are to be executed by a given entity within an orga-
nization [65]. DWSs impose that each organization partic-
ipating in a distributed workflow deploy a full-fledged ex-
ecution engine, capable of interpreting the workflow def-
inition. The same workflow model must be adopted by
each participant in the global workflow. This approach
assumes that global and sub-business processes use the
same process definition and data exchange model. This is
a quite restrictive assumption in the context of B2B E-
commerce where: (i) partners may use disparate data and
process representation models (e.g., ComputerCompany
uses EDI and ProcessorProvider uses RosettaNet); and
(ii) private business processes may require access to pro-
prietary/legacy data sources and applications (e.g., Oracle
database for ComputerCompany and SAP application for
ProcessorProvider). In addition, DWSs assume a tight
coupling model among the distributed sub-workflows. Thus,
modifications to back-end applications, sub-workflows, and
global workflow need to be coordinated. The cost of estab-
lishing a new relationship may be significant as business pro-
cesses must be modeled and deployed in concert across all
participants. DWSs are appropriate for the development of a
business process of a single organization that needs to integrate
multiple distributed sub-workflows.

3.3.3 Collaborative process management

Inter-enterprise business processes management features the
separation between public and private processes [17,25]. A
public process defines an external message exchange of an or-
ganization with its partners according to a message exchange
protocol such as EDI and RosettaNet. A private process de-
scribes internal executable activities that support the activi-
ties of public processes. For example, Order Processor and
Check Credit are, respectively, public and private processes of
ProcessorProvider. Public and private processes inter-
act through process wrappers. Process wrappers consist of pre-

defined activities that can be used in a private business process
to send/receive messages to/from public business processes.
For example, if a public process uses xCBL [32] to repre-
sent business documents, and the private business process ex-
pects documents in cXML [23], the conversion between these
two formats is handled by a wrapper. Private processes may
also interact with back-end applications through application
adapters. In this approach there is no requirement that local
process management engines (e.g., engines which are respon-
sible for managing private business processes) be identical. It
is possible for example, that one engine is based on IBM’s
MQSeries [48] and another based on HP’s Process Manager
[44].

The separation between back-end applications, public,
and private processes has the advantage that local changes
(i.e, those that concern only private processes) have no im-
pact on public processes and back-end applications. However,
changes related to interactions (e.g., changing the formats of
incoming and outgoing messages) between a public process
(or a back-end application) and a private business process may
require the modification of some wrappers. The separation
between components of a B2B application (public processes,
private processes, business rules, and back-end systems) con-
tributes to the scalability of this approach. The support of a
new interaction protocol (e.g., EDI) requires only the creation
of a new public process and process wrappers. The support of
new a back-end application requires the creation of new ap-
plication adapters. The creation of a new relationship with a
new partner may require a few adjustments. If the new partner
does not comply to an already supported interaction protocol,
a new public process must be created to support the protocol
used by the new partner. The support of a new back-end appli-
cation requires only the creation of a new application adapter.
The above discussion shows that the addition of interaction
protocols, back-end applications, or partners does not require
the modification of private business processes.

The separation between public and private business pro-
cess provides for a greater degree of autonomy and bridging
of heterogeneity. With regard to security, IEWs may leverage
techniques used in other frameworks (i.e, document-based or
component-based B2B frameworks). External manageability

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 69

Fig. 6. XML-based frameworks for B2B interactions

can be provided by adding specific activities in public pro-
cesses.

4 Trends in supporting B2B interactions

The exponential growth of the Web opened opportunities for
businesses to transact across all types of boundaries (geo-
graphical, national, business category, etc.). It is noteworthy
that the traditional approaches for B2B interactions were not
devised for the Web. Therefore, early research had focused
on providing a lingua franca for B2B E-commerce that went
beyond HTML to reflect the richness of the data being ad-
vertised/published. Such an effort resulted in the development
of XML (eXtensible Markup Language) [92]. However, XML
was not developed to define semantics, description of message
exchange sequences, or definition of correct interpretations of
exchanged messages [17]. To address this issue, standardiza-
tion committees defined XML-based B2B interaction frame-
works (or standards). A parallel effort is the work on the Se-
mantic Web [11]. The idea behind the Semantic Web is to read-
ily make more semantics available over the Web and enable
machines to automatically process applications. Web services
are slated to play a major role in enabling the Semantic Web.
They would provide value added services to users and busi-
nesses. In this section, we overview major XML-based B2B
interaction frameworks and Web services technologies.

4.1 XML-based B2B interaction frameworks

A large number of contemporary B2B interaction standards are
based on XML, an emerging standard for data representation
and exchange on the Internet. They aim at overcoming some
of the limitations of traditional EDI standards (e.g., high costs
in terms of expensive VAN infrastructure and EDI software).
For example, several commercial and public XML processing
and integration tools (e.g., DOM parser [91]) are available.

An XML document consists of nested data items called
elements which can have sub-elements and attributes. It is
associated with a type generally defined as a DTD (Docu-
ment Type Definition) [92] or XML Schema [97]. The type
describes the structure of the document and the relation-
ships between the various elements that form the docu-
ment. Encoding business information (e.g., service requests
and responses) in an XML document with a common XML

Schema eliminates the need for one-to-one information trans-
lation. An organization would create and publish XML docu-
ments that describe its offers, requirements, assumptions, and
terms for doing business. Partners would then interact with
each other after inspecting and understanding each other’s
descriptions. For example, ProcessorProvider would
provide ComputerCompany with the possibility of order-
ing processors by submitting a purchase order. As a result,
ProcessorProvider would commit to send back an in-
voice and a shipping notice. The vision behind this approach
is to allow the use of services on the Web without dedicated
transformation and mediation facilities or custom integration
of partners’ systems. Business partners would form a trading
community based on their capabilities to produce and con-
sume those XML documents. The business process of the
trading community is specified by the shared document def-
initions. The partners are interconnected in terms of largely
agreed upon documents. The business logic implementation
at a partner side is invisible to other trading partners. In gen-
eral, a complete XML-based integration requires standardized
domain-specific ontologies (such as an agreed upon DTD or
XML Schema), mappings between different ontology descrip-
tions, and means for processing XML documents and invoking
appropriate services (e.g., workflows and legacy systems) to
handle requests.

There is a large number of XML-based frameworks for
B2B interactions (Fig. 6). In what follows, we describe a rep-
resentative set of XML-based interaction frameworks. An ex-
haustive list of XML-based B2B standardization efforts can
be found in [69]. Existing frameworks mostly deal with en-
abling B2B interactions at the content (e.g., eCO, cXML) and
business process (e.g., RosettaNet, ebXML) layers. However
these frameworks sometimes overlap or even compete with
each other [17]. The issue of interoperability has thus shifted
from the level of applications to the level of standards. A trad-
ing partner has to deal with several standards at the same time.
In case one trading partner exchanges messages across indus-
tries, the variety of standards is likely to increase even more
[17]. One solution to deal with such problem has been de-
scribed in [17] through the use B2B protocol and integration
engines. These execute actual message exchanges according
to various standards.

70 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

4.1.1 eCO

eCO [32] aims at providing means to businesses to discover
and access services regardless of the E-commerce standards
and protocols each potential partner adopts. At the content
level, eCO introduces xCBL (XML Common Business Li-
brary) to define business documents. xCBL consists of a set
of XML core documents that are used to represent common
interactions in business transactions. It does not target vertical
industry domains. It attempts to provide a generic framework
for describing the content of core business documents. The
main motivation for establishing core documents is that some
concepts are common to all business domains and thus can be
expressed in a common format. Examples of such core docu-
ments are: purchase orders, invoices, date, time, and curren-
cies. Business partners may use and extend these documents
(e.g., adding new elements) to develop their own business doc-
uments. For example,ProcessorProvider can use xCBL
to create an XML document of its search catalog by customiz-
ing the generic xCBL catalog DTD with specific information
about the search method (e.g., by CPU speed). Businesses are
not limited to a specific set of pre-defined documents. How-
ever, this may hamper interoperability since companies would
need to be aware of newly created documents.

At the business process level, eCO focuses more on pro-
viding common building blocks for interactions among busi-
nesses. Businesses can advertise their online services as Busi-
ness Interface Definitions (BIDs). BIDs are XML descriptions
that specify business services in terms of documents they ac-
cept and produce. It does not mandate a global business pro-
cess definition. eCO uses xCBL as a basis to define both the
interfaces of processes and content of data elements. Since
every partner is forced to use the same tag to define the same
type of information, the structural heterogeneity is not a prob-
lem. As in any standard, there is, however, a non-trivial is-
sue: the meaning and types of services and their interfaces
can vary among businesses although a group of partners in
a specific marketplace may select to adopt common conven-
tions. In generic frameworks such as eCO, it is difficult to
address semantic heterogeneity because of the wide range
of E-commerce applications. One solution is to use several
domain-specific schemas (or ontologies) including horizon-
tal (i.e., across domains such as computer manufacturing and
healthcare) and vertical (i.e., within a specific domain) do-
mains. This solution requires the support of data normaliza-
tion, mapping, and conversion between schemas or ontologies.

Although, eCO requires that services be described using
XML schemas, it does address, albeit in a limited way, the
issue of autonomy. eCO separates the description of services
and their implementations. Note that a marketplace may adopt
some common conventions for describing services. This may
as a result, negatively impact on the partners’ autonomy. For
example, a change in the name of a tag, requires all partners
to make that specific change at the same time. In eCO, the
use of security mechanisms is optional. However, as with any
document-based approach (e.g., EDI), business partners do
not need to directly access each other’s systems. The estab-
lishment of a new relationship with an existing partner does
not require any additional work. The creation of a new ser-
vice requires the provision of its description (types, interfaces,
etc.). It also requires the integration of the interfaces of the

service with internal applications. The integration cost in an
XML-based approach tends to be less significant than other ap-
proaches because of widely available XML processing tools.
The eCO framework rates high in adaptability. The impact of
local changes is limited as partner systems are loosely cou-
pled. In addition, eCO offers extensibility to accommodate
changes.

4.1.2 BizTalk

The BizTalk1 approach [13] for enabling B2B interactions is
based on leveraging several standards and technologies in-
cluding the Simple Object Access Protocol (SOAP), XML, and
Multipurpose Internet Mail Extensions (MIME). It relies on a
centralized schema repository and layered logical architecture.
The schema repository provides means to publish and vali-
date XML-based schemas (e.g., verify their compliance with
BizTalk), and manage their evolution (e.g., schema version-
ing) and relationships (e.g., specialization). The architecture
consists of three layers: application, BizTalk Framework Com-
pliant (BFC) server, and transport.Applications communicate
with each other by sending business documents through BFC
servers (one per end). BFC servers send BizTalk messages to
each other via multiple communication protocols.

At the communication level, BizTalk leverages existing
communication protocols such as HTTP, SMTP, and Microsoft
Message Queue (MSMQ). Currently, BizTalk provides trans-
port bindings for HTTP and SMTP. At the content level,
BizTalk does not promote any specific language or standard.
Instead, it refers to external XML-based schemas for describ-
ing the content and structure of business documents. BizTalk
differentiates between documents and messages. A BizTalk
document contains message-handling instructions (e.g., rout-
ing, identification, delivery, tracking, remote procedure call)
and attached business documents (e.g., purchase order, in-
voice). Message-handling instructions are described using a
standardized set of XML elements and attributes called Biz-
Tags. In essence, a BizTalk document is a variation of a SOAP
message. Business documents are well-formed XML docu-
ments containing business data. A BizTalk message is the unit
of communication between BFC servers. It contains a pri-
mary BizTalk document and one or more attachments (e.g.,
other BizTalk documents, XML documents). It also contains
transport-specific headers (e.g., HTTP binding headers). At
the business process level, BizTalk offers a special BizTag
that may be used to include information about the business
process that provides the processing context of a BizTalk doc-
ument. BizTalk Orchestration is proposed as a technology to
define and execute inter-enterprise processes. However, this
effort is still in its infancy.

BizTalk’s centralized repository provides interesting fea-
tures such as schema validation and control. However, it falls
short on support for scalability. The BizTalk framework sup-
ports S/MIME (version 3) for securing BizTalk messages. Fi-
nally, BizTalk is unique in defining specific BizTags (e.g., de-
livery and commitment receipts) to ensure reliable delivery of
BizTalk documents. This feature provides a starting point for
supporting external manageability.

1 This discussion is based on the BizTalk Framework 2.0.

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 71

4.1.3 cXML

cXML (Commerce XML) [23] consists of an XML-based
schema language and a protocol for online purchasing trans-
actions. It targets business transactions that involve non-
production Maintenance, Repair, and Operating (MRO) goods
and services. In a nutshell, cXML can be considered as a sim-
plified XML and Internet-based version of EDI. cXML as-
sumes the existence of intermediaries (E-commerce hubs) that
act as trusted third parties between procurement systems and
supplier systems. The functions provided by an E-commerce
hub (e.g., Ariba Network, Extricity Software) are similar to
those provided by the BizTalk repository. However, cXML
does not prescribe a specific intermediary architecture.

cXML supports two communication models: request-
response and one-way. The request-response provides for syn-
chronous communication through HTTP. The one-way pro-
vides for asynchronous communication through HTTP or
other protocols. Currently, the one-way model supports HTTP
and URL Form Encoding.

At the content level, cXML defines a set of XML DTDs to
describe procurement documents in the same spirit as xCBL
(e.g., order request, order response). It provides the follow-
ing elements for describing product catalogs: Supplier, Index,
and Contract. The supplier element describes general infor-
mation about a supplier (e.g., address, ordering methods). The
index element describes the supplier’s inventory (e.g., product
description, part numbers, classification codes). The contract
element describes the negotiation agreements between a buyer
and a supplier on product attributes (e.g., price, quantity). Cat-
alogs can be static or dynamic. In the cXML terminology a
dynamic catalog is called a punchout.

At the business process level, the cXML approach is sim-
ilar to OBI’s (see Sect. 3.1.2). cXML defines a generic pro-
curement protocol. This protocol consists of a number of com-
monly agreed upon online procurement activities (e.g., prod-
uct selection, order request, order approval, order transmis-
sion, order routing). E-commerce hubs provide means for cat-
alog and purchase order management (e.g, catalog publishing
and subscription, automated purchase order routing and track-
ing).

cXML offers similar properties to those in OBI, namely,
heterogeneity, autonomy, and adaptability. cXML appears to
rate higher than OBI with regard to scalability because the
integration cost in an XML-based approach tends to be less
significant than other approaches. cXML addresses security
by including authentication information in message headers.
One advantage of cXML approach is economy of scale and
ease of managing business relationships. Both suppliers and
buyers only need to manage relationships with the trusted in-
termediary rather than with all their business partners.

4.1.4 RosettaNet

RosettaNet [76] aims at standardizing product descriptions and
business processes in information technology supply chain
applications. RosettaNet’s supply chain includes information
technology products (e.g., boards, systems, peripherals, fin-
ished systems) and electronic components (e.g., chips, con-
nectors). RosettaNet focuses on three key areas of standard-
ization to automate B2B interactions. First, the vocabulary

needs to be aligned. The RosettaNet Business Dictionary con-
tains vocabulary that can be used to describe business proper-
ties (e.g., business name, address, tax identifier). The Roset-
taNet Technical Dictionary contains properties that can be
used to describe characteristics of products (e.g., computer
parts) and services (e.g., purchase order). Second, the way in
which business messages are wrapped and transported must be
specified. The RosettaNet Implementation Framework spec-
ifies content of messages, transport protocols (HTTP, CGI,
email, SSL) for communication, and common security mech-
anism (digital certificates, digital signatures). Third, the busi-
ness process governing the interchange of the business mes-
sages themselves must be harmonized and specified. Roset-
taNet’s PIPs (Partner Interface Processes) are pre-defined
XML-based conversations. A conversation consists of a set
of business documents (e.g., purchase order, purchase order
acknowledgment) and message exchange logic (e.g., the se-
quencing of the actions that take place during a product quote
request). A PIP is defined using a combination of textual and
graphical (UML-based state machine) representations.

At the communication layer, common Internet transport
protocols are supported. At the content layer, RosettaNet uses
an XML-based schema as document content model. The use of
a vertical ontology (i.e, common vocabulary with information
technology supply chain domain) contributes to solving the
problem of semantic heterogeneity. At the business process
layer, RosettaNet focuses on providing a common basis for
B2B public interactions via PIPs. The integration of PIPs with
internal business processes is performed by partners. Roset-
taNet does not provide means to define arbitrary global busi-
ness processes. RosettaNet offers similar properties as OBI
with regards to security. It offers similar properties as eCO
with regard to autonomy, adaptability, scalability, coupling,
and external manageability.

4.1.5 ebXML

ebXML (Electronic Business XML) [31] aims at defining a set
of specifications for enabling B2B interactions among com-
panies of any size. The basic part of the ebXML infrastructure
is the repository. It stores important information about busi-
nesses along with the products and services they offer. At the
communication layer, businesses exchange messages through
the messaging service. One important feature of the ebXML
messaging service is that it does not rely on a specific transport
protocol. It allows for the use of any common protocol such
as SMTP, HTTP, and FTP.

At the content layer, companies interact through business
documents. A business document is a set of information com-
ponents that are interchanged as part of a business process.
Business documents are composed of three types of compo-
nents: core components, domain components, and business
information objects. Core components, stored in the core li-
brary, are information components that are re-usable across
industries. Domain components and business information ob-
jects are larger components stored in the domain library and
business library, respectively. Core components are provided
by the ebXML library while domain component and business
information objects are provided by specific industries or busi-
nesses.

72 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

At the business process layer, ebXML defines a business
process specification schema available in UML and XML ver-
sions. The UML version only defines a UML class diagram.
It is not intended for the direct creation of a business pro-
cess specification but provides a representation of all the el-
ements and relationships required for its creation. The XML
version allows the creation of XML documents representing
ebXML-compliant business process specifications. ebXML
provides a set of common business process specifications that
are shared by multiple industries. These specifications, stored
in the business library, can be used by companies to build
customized business processes. Interactions between business
processes are represented through choreographies.A choreog-
raphy specifies the ordering and transitions between business
transactions. To model collaboration in which companies can
engage, ebXML defines collaboration protocol agreements
(CPAs). A CPA is an agreement by two trading partners which
specifies in advance the conditions under which the trading
partners will collaborate (e.g., terms of shipment and terms of
payment).

The ebXML infrastructure enables secure and reliable
communications by using emerging security standards (e.g.,
SSL and S-HTTP). In addition, digital signatures can be ap-
plied to individual messages or a group of related messages
to guarantee authenticity. With regard to autonomy and adapt-
ability, ebXML appears to offer the same kind of properties as
eCO. External manageability can be provided by adding spe-
cific activities in shared business processes. The initial goal
of the ebXML initiative was to support a fully distributed set
of repositories which is an interesting feature for improving
scalability. However, to date, only a single repository is spec-
ified.

4.2 Web services

The precise definition of Web services is still evolving as wit-
nessed by the various definitions in the literature. One such
definition is that a Web service is a “business function made
available via the Internet by a service provider, and accessible
by clients that could be human users or software applications”
[21]. It is also defined as “loosely coupled applications using
open, cross-platform standards and which interoperate across
organizational and trust boundaries” [87]. The W3C (World
Wide Web Consortium) defines a Web service as a “software
application identified by a URI (Uniform Resource Identifier),
whose interfaces and binding are capable of being defined,
described and discovered by XML artifacts and supports di-
rect interactions with other software applications using XML-
based messages via Internet-based protocols”. The aforemen-
tioned definitions can be seen as complementary. Each defini-
tion emphasizes some part of the Web service characteristics
(discovery, invocation, etc.). In this section, we define Web
services as business functionalities that are:

• Programmatically accessible: Web services are mainly de-
signed to be invoked by other Web services and applica-
tions. They are distributed over the Web and accessible via
widely deployed protocols such as HTTP and SMTP. Web
services must describe their capabilities to other services
including their operations, input and output messages, and
the way they can be invoked.

• Loosely coupled: communication among Web services
is document-based. Web services generally communicate
with each other by exchanging XML documents. The
use of a document-based communication model caters for
loosely coupled relationships among Web services.

Web services share some features with the component-
based approach [89]. For example, CORBA objects can be
advertised in a trader service so that clients can find and in-
voke them. However, several characteristics differentiate Web
services from components. First, Web services use document-
based communication. This is in contrast with component-
based frameworks which use object-based communication,
thereby yielding systems where the coupling between com-
ponents is tight. Additionally, by using HTTP as a commu-
nication protocol, Web services enable much more firewall-
friendly computing than component-based systems. For ex-
ample, there is no standard port for IIOP, so it normally does
not traverse firewalls easily. Although a specification has been
submitted to OMG to dealing with IIOP firewall traversal,
ORB implementations are still using their own proprietary
solutions such as VisiBroker’s GateKeeper and IONA’s Won-
derWall.

4.2.1 The Web service reference model

Interactions amongWeb services involve three types of partici-
pants: service provider, service registry, and service consumer
(Fig. 7). Service providers are the parties that offer services.
They define descriptions of their services and publish them in
the service registry, a searchable repository of service descrip-
tions. Each description contains details about the correspond-
ing service such as its data types, operations, and network loca-
tion. Service consumers use a find operation to locate services
of interest. The registry returns the description of each relevant
service. The consumer uses this description (e.g., network lo-
cation) to invoke the corresponding Web service. For example,
ProcessorProvider may advertise a Web service that
includes searchProcessor and orderProcessor op-
erations. ComputerCompany’s provider would then access
the registry, discover ProcessorProvider’s service, and
invoke its operations.

Three major standardization initiatives have been submit-
ted to the W3C consortium to support interactions among Web
services (Fig. 7):

• WSDL (Web Services Description Language) [96]: WSDL
is an XML-based language for describing operational fea-
tures of Web services. WSDL descriptions are composed
of interface and implementation definitions. The interface
is an abstract and reusable service definition that can be
referenced by multiple implementations. The implementa-
tion describes how the interface is implemented by a given
service provider.

• UDDI (Universal Description, Discovery, and Integra-
tion) [95]: UDDI defines a programmatic interface for pub-
lishing (publication API) and discovering (inquiry API)
Web services [95]. The core component of UDDI is the
business registry, an XML repository where businesses
advertise services so that other businesses can find them.

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 73

Fig. 7. The Web service reference model

Conceptually, the information provided in a UDDI busi-
ness registration consists of white pages (contact informa-
tion), yellow pages (industrial categorization), and green
pages (technical information about services).

• SOAP (Simple Object Access Protocol) [94]: SOAP is a
lightweight messaging framework for exchanging XML
formatted data among Web services. SOAP can be used
with a variety of transport protocols such as HTTP, SMTP,
and FTP. A SOAP message has a very simple structure: an
XML element (called envelope) with two child elements.
The first element, the header includes features such as
security and transactions. The second element, the body
includes the actual exchanged data.

4.2.2 Web service composition

One of the most important issues elicited by Web services
is the use of the Web as a facilitator for service outsourcing
[87]. Existing enterprises would combine their core skills and
resources to create composite services. Simply put, a compos-
ite service is a conglomeration of outsourced services work-
ing in tandem to offer a value-added service [60]. For exam-
ple, ComputerCompany may define a composite service
that would outsource from pre-existing Web services such as
ProcessorProvider and MonitorProvider.

Efforts are underway to define standards for composing
Web services [4]. These include WSFL (Web Services Flow
Language) [46], XLANG [64], and BPEL4WS (Business Pro-
cess Execution Language for Web Services) [7].

WSFL [46] – WSFL introduces the notions of flow and global
model for defining composite services. The flow model spec-
ifies the execution sequence between component services. It
is represented by a directed graph. Each node of the graph,
called activity, models a single step of the overall business
goal to be achieved through composition. Activities are bound
to services through a locator element. This binding can be
either static or dynamic. In a static binding, the service is di-
rectly specified in the locator. In a dynamic binding, the locator
may, for example, contain a UDDI query that returns a list of
candidate services; a service is then selected through a given
selection policy (e.g., the first service in the list). Two types

of edges are used to connect activities: control links and data
links. Control links prescribe the order in which activities have
to be performed. Data links represent the flow of information
between activities. The global model specifies how component
services interact. It includes a set of plug link elements. A plug
link connects an operation of the composite service (called ex-
ported operation) to an operation of a component service. This
indicates that the corresponding interaction must take place to
completely implement an activity.

XLANG [64] – XLANG provides language constructs for
describing behavioral aspects of Web services and combin-
ing those services to build multi-party business processes. At
the intra-service level, XLANG extends WSDL language by
adding a behavior element. A behavior defines the list of ac-
tions that belong to the service and the order in which these
actions must be performed. XLANG defines two types of ac-
tions: regular WSDL operations and XLANG-specific actions
(e.g., timeout operations). At the inter-service level, XLANG
defines a contract element which provides means for intercon-
necting several XLANG service descriptions. The execution
order of XLANG actions is defined through control processes
(e.g., sequence, while). A particular control process named
context enables the support of transactions. The concept of
transaction, as used in databases, guarantees that in case of
failure,the partial updates of a service execution are rolled
back. XLANG adopts a looser notion of transaction based
on compensations. The execution of actions in a context may
fail or be cancelled for a variety of business and technical rea-
sons (e.g., communication failure). In this case a compensation
code, explicitly specified by the provider, is executed.

BPEL4WS [7] – BPEL4WS combines the features of both
WSFL (support for graph oriented processes) and XLANG
(structural constructs for processes) for defining business pro-
cesses. A business process is composed of several steps called
activities. BPEL4WS defines a collection of primitive ac-
tivities such as invoke to invoke a Web service operation.
These primitive activities can be combined into more com-
plex primitives using any of the structure activities provided
in BPEL4WS. These include the ability to: (1) define an or-
dered sequence of steps (sequence); (2) have branching using
the now common "case-statement" approach (switch); (3) de-

74 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

fine a loop (while); (4) execute one of several alternative paths
(pick); and (5) indicate that a collection of steps should be ex-
ecuted in parallel (flow). BPEL4WS provides mechanisms to
handle and recover from errors in business processes (throw
and catch constructs). It also adopts the notion of compensat-
ing actions defined in XLANG. Fault handling and compen-
sating are supported by introducing the notion of a scope. A
scope is the unit of fault handling and/or compensation.

4.2.3 B2B interactions in Web services

Web services allow interactions at the communication layer
by using SOAP as a messaging protocol. The adoption of an
XML-based messaging over well-established protocols (e.g.,
HTTP, SMTP, and FTP) enables communication among het-
erogeneous systems. For example, major existing environ-
ments are able to communicate via HTTP and parse XML
documents. However, SOAP protocol is still at its early stage;
current implementation do not yet meet the reliability and
workload constraints needed in enterprises.

At the content layer, Web services use WSDL language.
WSDL recommends the use of XML Schema as a canonical
type system (to associate data types to message parameters).
However, the current version of WSDL does not model se-
mantic features of Web services. For example, no constructs
are defined to describe document types (e.g., whether an op-
eration is a request for quotation or a purchase order). Recent
efforts towards dealing with semantic interoperability include
the development of content markup languages such as OIL
(Ontology Inference Layer) and DAML+OIL (DAML stands
for DARPA Agent Markup Language) [59]. However, such ef-
forts are still in their infancy.

Web services are still at a maturing stage. Hence, they
still lack the support for interactions at the business process
layer. To date, enabling interactions among Web services has
largely been an ad hoc process involving repetitive low level
programming. As mentioned in Sect. 4.2.2, standardization
efforts are underway for enabling the definition of business
processes through Web service composition.

The use of a document-based messaging model in Web
services caters for loosely coupled relationships. Addition-
ally, Web services are not statically bound to each other. New
partners with relevant features can be discovered and invoked.
However, to date, dynamic discovery of Web services takes
place mostly at development time. Heterogeneous applica-
tions (e.g., Java, CORBA objects) may be wrapped and ex-
posed as Web services. For example, the Axis’s Java2WSDL
utility in IBM’s Web Services Toolkit enables the generation of
WSDL descriptions from Java class files. IONA’s Orbix E2A
Web Services Integration Platform may be used to create Web
services from existing EJBs or CORBA objects. In terms of
autonomy, Web services are accessible through published in-
terfaces. Partners interact with Web services without having
to be aware of what is happening behind the scene. They are
not required to know how the operations provided by the ser-
vice are internally implemented. Some operations can even be
transparently outsourced from third parties.

WSDL does not currently include operations for moni-
toring Web services such as checking the availability of an
operation or the status of a submitted request. Additionally,

neither UDDI nor WSDL currently define quality of service
parameters such as cost and time. In terms of adaptability,
changes may occur in operation signatures (e.g., name), mes-
sages (e.g., number of parameters, data types), service access
(e.g., port address), and service and operation availability. The
process of dealing with changes is currently ad hoc and man-
ually performed. More efforts need to be done to cater for
automatic detection and handling of changes.

Security in Web services needs to be addressed at differ-
ent levels including communication, description, and firewall.
At the communication level, enabling security in XML and
HTTP is an important factor towards securing Web services.
Current standardization efforts include securing XML-based
messages through the creation of an XML digital signature
standard and S-HTTP, a protocol for transmitting data securely
over the Web. Other work is also being done to extend SOAP
to include a security specification at the receiving endpoints
(e.g., specify which users are authorized to receive and process
messages). At the service description level, WSDL does not
include security-oriented information such as role-based ac-
cess control and other authorization information. Finally, since
SOAP messages carried over HTTP traverse firewalls, network
administrators would need to configure their firewalls so that
malicious requests (e.g., code embedded in SOAP messages)
are not tunneled through SOAP messages. For example, appli-
cation firewalls, sitting behind networks firewalls, have been
developed (e.g., iSecureWeb). Application firewalls check all
HTTP traffic to validate and authorize messages based on se-
curity policies.

The emergence of tools to describe, advertise, and invoke
Web services facilitate the development of Web service-based
solutions. However, the use of a tagged language such as XML
increases the volume of information to be exchanged among
Web services. This might overload the network in presence of
a large number of services, hence penalizing the scalability of
the Web service approach. Additionally, SOAP defines only
simple data types (e.g., String and Int). Using complex data
types may require the XML parser to get the corresponding
XML Schema definitions from remote locations. This might
add an overhead for processing SOAP messages. The registry
presents another scalability issue. A centralized registry might
result in a single point of failure and bottleneck for access-
ing and publishing Web services. A distributed registry would
cater for a more reliable and scalable solution. However, this
incurs an additional overhead of managing distributed repos-
itories. An intermediary solution is adopted in UDDI where
the registry is physically replicated over multiple nodes. This
solution solves the problem of centralized registry. However,
it still requires the nodes to exchange data with each other to
maintain registry consistency.

5 Research prototypes

In this section, we overview a set of representative research
prototypes. These prototypes represent the different tech-
nologies supporting B2B interactions including components,
workflows, and Web services.

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 75

5.1 CMI

CMI (Collaboration Management Infrastructure) [78,40] pro-
vides an architecture for inter-enterprise workflows. The main
components of CMI engine includes the CORE, coordina-
tion and the awareness engines. The CORE engine provides
basic primitives used by the coordination and awareness en-
gines. These primitives include constructs for defining re-
sources, roles, and generic state machines. CMI’s coordination
model extends the traditional workflow coordination primi-
tives with advanced primitives such as placeholder. The con-
cept of placeholder enables the dynamic establishment of trad-
ing relationships. A placeholder activity is replaced at runtime
with a concrete activity having the same input and output as
those defined as part of the placeholder. A selection policy is
specified to indicate the activity that should be executed. If
multiple providers offer implementations for an activity in-
terface, the selection policy may use a broker to choose the
implementation that offers the “best” quality of service. CMI’s
awareness model captures information that is closely related
to a specific role and situation of a process participant. Aware-
ness information is specified by process/awareness designers
using awareness specifications.

CMI’s trading partners are tightly-coupled. For example,
the message format and the communication protocol to be used
between partners must be agreed upon before service activity
definition. Heterogeneity is addressed through object-oriented
proxies which enable access to different information sources
such as relational databases, EJBs, and CORBA objects. CMI
provides application-specific state machines and operations
for modeling services. This allows for the selective monitoring
of state changes in external services. In term of adaptability,
primitives such as optional and inhibitor, may be used for
coping with unforeseen events. CMI addresses security only
at the process model level through a role-based process and
activity execution.

5.2 eFlow

eFlow [19] is a platform that supports the specification, enact-
ment, and management of composite services. A composite
service is described as a process schema that combines basic
or composite services. A composite service is modeled by a
graph, that defines the order of execution among the nodes in
the process. It may include service, decision, and event nodes.
Service nodes represent the invocation of a basic or compos-
ite service. The definition of a service node contains a search
recipe represented in a query language. When a service node
is invoked, a search recipe is executed to select a reference to
a specific service. Decision nodes specify the alternatives and
rules controlling the execution flow. Event nodes enable ser-
vice processes to send and receive several types of events. A
service process instance is an enactment of a process schema.
To support heterogeneity of services, eFlow provides adapters
for services that support various B2B interaction protocols
such as OBI and RosettaNet.

Composite services are specified through the service pro-
cess composer. Services are enacted by the service process
engine. This is composed of the scheduler, the event man-
ager, and the transaction manager. The scheduler processes

completion notification messages from service nodes and then
contacts the service process broker to discover the actual ser-
vices that can fulfill the actions specified in the service node
definitions. eFlow provides a default broker. However, users
have the option to plug-in the service broker that best fits
their needs. The event manager monitors event occurrences
by detecting temporal data, workflow events, and notifications
of application-specific events from external applications. The
transaction manager enables the execution of portions of a
process graph, called transactional regions, in an atomic fash-
ion using compensating actions.

5.3 WebBIS

WebBIS (WebBase of Internet-accessible Services) [10] pro-
poses a declarative language for composing Web services.
Three types of service are introduced in WebBIS: wrapper
services, pull-communities, and push-communities. A wrap-
per service is an object that encapsulates the content and ca-
pabilities of the underlying application. It uses translators to
access the operations of proprietary applications. A wrapper
service includes a set of notifications which describe events
that can be sent by a service to its requesters. These events can
be used to inform the requester about the service state and situ-
ations reached during operation execution. A pull-community
provides a means to compose a new service from a collection
of existing ones. It includes a components clause which intro-
duces the list of services that compose the pull-community.
Methods of a pull-community are performed by invoking in-
ternal operations or methods of component services. A pull-
community has also the possibility of subscribing to notifi-
cations of the component services. This addresses the issue
of external manageability. Push-communities cater for the es-
tablishment of dynamic relationships among services. They
describe the capabilities of a desired service without refer-
ring to any actual provider. To be accessible through a push-
community, a service needs to register with this community.
WebBIS uses ECA (Event-Condition-Action) rules as a basis
for the declarative specification of the business logic of ser-
vices. Wrapper services’ ECA rules specify constraints on the
service properties and methods. They also specify the reaction
to requests and responses from translators. Pull (resp. push)
communities use ECA rules to invoke operations provided by
their components (resp. members) and react to notifications
from the underlying services.

WebBIS addresses the issue of adaptability by defining a
mechanism to propagate changes . All changes performed to
a service are propagated to other services that rely on it to
ensure global consistency. Hence, if a component service is
deleted, operations or events of pull-communities depending
on it are made unavailable. For this purpose, WebBIS defines
meta-services called change notifiers. Each service has a no-
tifier attached to. The notifier maintains information about the
availability of the related service. During its lifespan, a ser-
vice can be available, temporarily unavailable, or permanently
unavailable. A modification of the availability status results in
generating an instance of an event that may trigger change
operations.

76 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

5.4 Other prototypes

WISE (Workflow-based Internet SErvices) [77,55] – WISE
aims at providing an infrastructure for the support of cross-
organizational business processes in virtual enterprises. WISE
architecture is organized into four components: process defi-
nition, enactment, monitoring and coordination. The process
definition component allows Virtual Business Process (VBPs)
to be defined using as building blocks the entries of a catalog
where companies within a trading community (TC) can post
their services. The process enactment component compiles the
description of the VBP into a representation suitable for en-
actment and controls the execution of the process by invoking
the corresponding services of the TC. The process monitoring
component keeps track of the progress made in the execution
of the VBP. The information produced by this tool is used to
create an awareness model used for load balancing, routing,
quality of service, and analysis purposes. The process coor-
dination component supports multimedia conferencing and
cooperative browsing of relevant information between all par-
ticipants in the TC.

CrossFlow [57] – The main contribution of CrossFlow is in
using the concept of contracts as a basic tool for coopera-
tion. Businesses specify their interactions through contracts
(e.g., purchase and employment contracts). When a provider
wants to advertise a service, it uses its contract manager to
send a contract template to a trader or matchmaking engine.
When a consumer wants to outsource a service, it uses a con-
tract template to search for relevant providers via the trader.
If a matching is found between consumer’s requirements and
provider’s offer, an electronic contract is made by filling in
the template. Based on the specifications in the contract, a dy-
namic contract and service enactment infrastructure are set up.
The symmetrical infrastructure in provider’s and consumer’s
sides contains proxy gateways that control their interactions.
The dynamically created modules can be removed after con-
tract completion.

Mentor-Lite [99] – Mentor-Lite addresses the problem of dis-
tributing the execution of workflows. The idea is to partition
the overall workflow specification into several sub-workflows,
each encompassing all the activities that are to be executed
by a given entity within an organization. The basic building
block of Mentor-Lite is an interpreter for workflow based on
state charts. Two other modules are integrated with the work-
flow interpreter defining the workflow engine: communication
manager and log manager. The communication manager is
responsible for sending and receiving synchronization mes-
sages between the engines. It uses the Transaction Processing
(TP) monitor Tuxedo for delivering synchronization messages
within queued transactions. The log manager provides log-
ging and recovery facilities. A separate workflow log is used
at each site where a workflow engine is running.

SELF-SERV (compoSing wEb accessibLe inFormation and
buSiness sERvices) [9,79] – SELF-SERV proposes a process-
based language for composing Web services based on state
charts. It also defines a peer-to-peer Web service execution
model in which the responsibility of coordinating the exe-
cution of a composite service is distributed across several
peer components called coordinators. The coordinator is a

lightweight scheduler which determines when a state within a
state chart should be entered and what should be done when
the state is entered. It also determines when should a state be
exited and what should be done after the state is exited. The
knowledge needed by a coordinator to answer these questions
at runtime is statically extracted from the state chart describ-
ing the composite service operations and represented in the
form of routing tables.

XL (XML Language) [36,37] – XL defines an XML language
for the specification of Web services. An XL service speci-
fication contains local declarations, declarative clauses, and
operation specifications. Two kinds of local variables can be
declared in XL.The first kind of variable represents the internal
state of the service. The second kind of variable represents the
internal state of a particular conversation in which the service
is involved (e.g., session ID). Declarative clauses include vari-
ables that control the Web service global state. In particular,
the history and on change clauses address the issue of external
manageability and adaptability. If the history clause is speci-
fied, all operation invocations are automatically logged. The
on change clause uses triggers to detect changes in variables
declared in the Web services’ local declarations.

6 Deployment platforms

Major software vendors (IBM, Microsoft, Sun Microsystems,
HP, Oracle, BEA systems, etc.) are currently working on im-
plementing B2B interaction platforms. The purpose of this
section is not to compare commercial products but to overview
their main features. Because there are a large number of prod-
ucts, this section does not attempt to cover all of them. Instead,
we focus on the major players in this arena. Our coverage is
based on user manuals and white papers since there are few
or no published technical papers detailing commercial prod-
ucts. Additionally, existing products are at various develop-
ment stages and operate at different levels of disclosure.

6.1 Microsoft .NET

.NET [63] embraces the concept ofWeb services to enable B2B
interaction. It consists of three key elements: .NET Framework
and tools, .NET Enterprise Servers, and .NET Service Build-
ing Blocks. .NET Framework and tools provides the standard-
based tools for SOAP, WSDL, and UDDI. .NET Enterprise
Servers provides the core components for building Web ser-
vices. These include database like SQL Server 2000, mes-
saging software like Exchange 2000 Server, business process
technology like BizTalk Server 2000, and Internet Security and
Acceleration Server. .NET Service Building Blocks contains
pre-defined Web services created using the .NET infrastruc-
ture (e.g., Passport and HailStorm).

SOAP is used as the main transport protocol in the commu-
nication layer. Interoperability at the communication layer is
also supported by Microsoft Message Queue (MSMQ) supple-
mented with gateways for sending and receiving of documents
in various formats from trading partners. Microsoft Host Inte-
gration Server is used to support connection to proprietary sys-
tems like IBM mainframes. Heterogeneity at the content layer
is addressed by adhering to open standards (XML and WSDL)

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 77

and the wrapping of applications as .NET Managed Compo-
nents. Building business processes (called Orchestration) is
done through BizTalk Server. Developers use the Biztalk Or-
chestration Designer to create Biztalk processes. These are
compiled into XLANG schedules which are executed by the
Biztalk Scheduler Engine.

6.2 IBM WebSphere

WebSphere [48] is a family of IBM products for B2B interac-
tions. The application server is the cornerstone of WebSphere.
It aims at providing database and backend integration as well
as security and performance capability (e.g., workload man-
agement). The WebSphere application server Advanced Edi-
tion adds support for J2EE specification. It also extends J2EE
with direct access to advanced CORBA services for greater
flexibility and improved interoperability. The advanced edi-
tion integrates support for key Web service standards such as
SOAP, UDDI, andWSDL.Additionally, it provides distributed
transaction support for major database systems including
IBM’s DB2, Oracle, Sybase, and Informix. Other products
make up the WebSphere platform. These include WebSphere
Business Components, WebSphere Commerce, and WebSphere
MQ Family. The WebSphere Business Components provides
pre–built, tested, and “plug and play” components for build-
ing new applications or extending existing ones. WebSphere
Commerce provides mechanisms for building B2B sites in-
cluding catalog creation, and payment processing. WebSphere
MQ Family, formerly known as as MQSeries, is a family of
message-oriented middleware products that enable commu-
nication between applications running on different hardware
platforms.

To support interoperability at the business process layer,
IBM has just completed acquiring CrossWorld, a business pro-
cess integration product. WebSphere application server sup-
ports different platforms such asWindows NT, Sun Solaris, and
IBM mainframes. It also provides security controls and appli-
cation access protection. Performance tuning wizards along
with log analyzers are added to WebSphere application server
Advanced Edition for monitoring purpose.

6.3 Sun ONE

Sun ONE (Sun Open Net Environment) [83] is a platform for
Web services developed by Sun. Two main product lines make
up the Sun ONE platform: Forte tools and iPlanet. Forte tools
offer Integrated Development Environment (IDE) for the Java,
C, C++, and Fortran languages. It enables developers to ac-
cess the plug-ins they need and hence speed the development
of Web services. iPlanet is the core of Sun ONE platform. It
includes a stack of products that allow the creation, deploy-
ment, and execution of Web services. Examples of such prod-
ucts are the iPlanet Portal Server, iPlanet Application Server,
and iPlanet Integration Server. The iPlanet Portal Server is
the representation layer of iPlanet. It delivers services to end-
users by aggregating content and providing security, personal-
ization, and knowledge management. The iPlanet Application
Server enables access to legacy applications and databases. It
also provides a J2EE execution environment for Web services.

The iPlanet Integration Server is a workflow-based engine that
enables businesses to define workflows across legacy applica-
tions and create services.

Sun ONE uses workflows to ensure interoperability at the
business process layer. However, it is not clear how services
are composed using the iPlanet Application Server. Sun ONE
supports the emerging Web service standards such as SOAP,
WSDL, and UDDI. The iPlanet Portal Server enables the in-
tegration of any HTML or XML encoded content and het-
erogeneous applications that run on major operating systems
such as Microsoft Windows and Unix. Complementary pack-
ages provide additional functionality including secure com-
munications. iPlanet addresses scalability by offering built-in
services such as load balancing.

6.4 Vitria BusinessWare

Vitria BusinessWare [90] emphasizes on business process
management and automation. It adopts UML and WfMC ref-
erence model for modeling business processes. The exchange
of information between trading partners is done using XML.
However, BusinessWare assumes that those partners will agree
upon a common standard XML DTD to describe the docu-
ments to be exchanged. BusinessWare also requires businesses
to agree on the semantics of business processes’ activities.
BusinessWare’s processes are divided into two types: public
and private.A placement of purchase order described in Roset-
taNet PIPs is an example of public process. The way that dif-
ferent companies deal with an incoming order from a customer
is an example of private process. The separation between pri-
vate and public process allows trading partners to change their
private process without affecting the cross-organization public
business process.

BusinessWare is composed of four modules: Business pro-
cess management, Business-to-Business communications, En-
terprise application integration, and Real-time analysis. The
Business process management controls and coordinates the
flow of information between internal and external process sys-
tems. Both private and public processes can be defined using
the graphical modeling tool. The Business-to-Business com-
munications is responsible for interactions with trading part-
ners using multiple protocols (HTTP-S, FTP, IIOP, SOAP,
EDI, fax and email) and data formats (XML, IDL, EDI, Roset-
taNet). The Enterprise application integration provides con-
nectors for major databases, messaging systems, and packaged
applications. The Real-time analysis enables the gathering and
analysis of process information. It allows businesses to iden-
tify processing bottlenecks and react to fast-changing business
conditions.

6.5 Other platforms

Oracle Integration Server [71] – Oracle Integration Server
is one of the products of Oracle Application Server which
is based on J2EE and emerging Web service standards. It
supports transport protocols such as SOAP, HTTP-S, SMTP,
FTP/S, IIOP, and various messaging systems (JMS, IBM
MQSeries, TIBCO/Rendezvous). The Integrator has two main
components. The first component provides an EJB container

78 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

for executing the designed business process. The second com-
ponent consists of the design and management tools which
include Integration Modeler, Business Process Monitor, and
Business Intelligence. The Integration Modeler offers a set of
Web-based tools to model business process, map data sources
from one form to another, and set up relationships with trad-
ing partners. The Business Process Monitor provides means
for users to monitor, analyze, and drill down on the state of
the business process (such as start, stop, resume). The Busi-
ness Process Intelligence uses Oracle data warehousing facil-
ities to analyze and gather information about the overall flow
of business processes (i.e., the frequency of messages being
sent/received).

HP NetAction [44] – The HP NetAction software suite includes
the HP NetAction Internet Operating Environment (IOE), a
platform for building B2B applications. The IOE includes
the HP Process Manager and HP Web Services Platform. HP
Process Manager (formerly called ChangeEngine) allows the
graphical definition of business processes and provides an en-
vironment that automates the execution of those processes. It
has a component-based architecture based on J2EE. HP Pro-
cess Manager also provides an audit logger that can be used
to read information in XML format from a JMS (Java Mes-
sage Service) queue. It allows the definition of audit nodes
within a business process to indicate the points in the pro-
cess at which audit information should be collected. HP Web
Services Platform is a standards-based architecture for de-
veloping Web services. Key components of the HP Web Ser-
vices Platform include HP-SOAP 2.0, HP Service Composer
(a graphical tool for creating and mapping WSDL interfaces),
HP Registry Composer (a graphical tool for registering and
discovering Web services in UDDI registries). HP announced
in July 2002 it was discontinuing its development and support
of NetAction.

BEA WebLogic Integrator [6] – BEA WebLogic Integrator is
the cornerstone of BEA WebLogic E-Business Platform. It is
built on top of a J2EE compliant application server and J2EE
connector architecture. It supports current Web service stan-
dards such as SOAP, UDDI, and WSDL. The Integrator is
composed of four major modules: Application server, Appli-
cation integration, Business process management, and B2B in-
tegration. The Application server provides the infrastructure
and functionalities for developing and deploying multi-tiers
distributed applications as EJB components. The Application
integration leverages the J2EE connector architecture to sim-
plify integration with existing enterprise applications such as
SAP R/3 and PeopleSoft. The Business process management
provides a design tool and execution engine for business pro-
cesses. The B2B integration manages interactions with exter-
nal business processes. A separate module called B2B integra-
tion/collaboration is used to manage different B2B protocols
(such as RosettaNet PIPs, BEA’s eXtensible Open Collabo-
ration Protocol) and Quality of Service (QoS) of the trading
partners.

WebMethods [98] – WebMethods is composed of three mod-
ules: WebMethods Enterprise Server, WebMethods Enterprise
Adaptor and WebMethods Enterprise Rule Agent. The Rule
Agent is used to set up specific business rules that are required
for integrating business processes across different enterprises.

The adaptors connect information sources to WebMethods En-
terprise Server and provide bi-directional mapping of infor-
mation between the native format and the server’s. Several
adaptors are provided to allow the mapping of XML messages
to industry-adopted message types (RossettaNet, cXML, OBI,
EDI). The hub of the system is WebMethods Enterprise Server
which acts as the central control and storage point. It uses
XML for exchanging messages between trading partners. The
server supports multiple transport protocols such as SOAP,
HTTP, HTTP-S, RMI-IIOP, SMTP and FTP. It also defines
a process-oriented language called Flow to visually compose
services.

TIBCO ActiveEnterprise [86] – ActiveEnterprise uses a set of
products to enable B2B interactions. TIBCO InConcert is a
tool for defining and managing dynamic workflows. TIBCO
IntegrationManager defines and manages automated busi-
ness processes that span multiple applications and transac-
tions. TIBCO MessageBroker performs rule-base transforma-
tion and mapping of messages between different messag-
ing softwares. TIBCO Hawk is a sophisticated tool for ad-
ministrating and monitoring of system behaviors within Ac-
tiveEnterprise. TIBCO Rendezvous is an advanced messag-
ing system that supports publish/subscribe, request/reply, syn-
chronous/asynchronous, certified and transactional messaging
paradigms. ActiveEnterprise supports other messaging proto-
cols such as JMS, HTTP/S, COM, CORBA and MQSeries. At
the content layer, ActiveEnterprise supports various vertical
and horizontal industry standards such as cXML, RosettaNet,
EDI, and HealthCare standards.

7 Summary discussion

In this section, we discuss and compare the different B2B ap-
proaches to interactions on the Web. We identified three sets
of parameters that together exhaustively define how B2B E-
commerce applications interact on the Web. The first set (ap-
plicable to enabling technologies and prototypes) consists of
the following parameters: communication layer, content layer,
and business process layer. The second set (applicable to en-
abling technologies and prototypes) consists of the following
parameters: coupling, autonomy, heterogeneity, external man-
ageability, adaptability, security, and scalability. The third set
(applicable to commercial B2B platforms) consists of the fol-
lowing parameters: major modules, communication standards,
content and business process standards, and key technologies.

7.1 Evaluation of B2B interaction technologies

In Table 1, key B2B enabling technologies are compared us-
ing the most important architectural layers. For example, Web
Services’communication layer is typically provided by SOAP.
The content layer is supported by using WSDL language.
However, WSDL currently provides little support for semantic
description of business documents. One of the current trends
to support semantic interoperability is the use of ontologies
(e.g., DAML+OIL). WSFL, XLANG, and BPEL4WS lan-
guages provide support for interactions at the business process
layer. However, these languages are still at their early stage.

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 79

Table 1. Enabling technologies vs interaction layers

Communication layer Content layer Business process layer

EDI VANs ANSI X12 and EDIFACT formatted documents Pre-defined business processes

EDIINT SMTP (for EDIINT AS1) and
HTTP (for EDIINT AS2)

ANSI X12 and EDIFACT formatted documents Pre-defined business processes

OBI HTTP ANSI X12 formatted documents Pre-defined protocol for Internet procurement

CORBA ORBs and IIOP Not Addressed Ad hoc: hand-coded programming of the integration
logic

DCOM DCOM runtime environment Not Addressed Ad hoc: hand-coded programming of the integration
logic

EJB RMI/JMS Not Addressed Ad hoc: hand-coded programming of the integration
logic

Workflows Not Addressed Not Addressed Inter-enterprise business processes (public and private)

eCO HTTP xCBL Not Addressed

BizTalk HTTP, SMTP, etc. External schemas Not Addressed

cXML HTTP and URL form encoding XML DTDs Pre-defined protocol for Internet procurement

RosettaNet HTTP, E-mail, etc. RosettaNet Business Dictionary and RosettaNet Technical
Dictionary

Partner Interface Processes (PIPs). Pre-defined proto-
col for Internet procurement

ebXML Messaging service (HTTP, SMTP,
etc.)

Business documents (core components, domain compo-
nents, and business information objects)

Business process specification schema. Collaboration
protocol agreements

Web
Services

SOAP WSDL but little support for semantic description. Use of
ontologies for semantic interoperability

WSFL, XLANG, and BPEL4WS

Fig. 8. Technologies in a B2B interactions framework

In Table 2, key B2B enabling technologies are now com-
pared using salient interaction parameters (dimensions). For
example, EJB-based B2B’s coupling is tight and long term.
Autonomy is provided by separating the interface and the im-
plementation using the EJB remote interface. Heterogeneity
is supported at the platform levels (e.g., Unix and Windows)
but only Java is supported. The use of event services provides
support for external manageability. Adaptability is partially
addressed through the separation between contracts and busi-
ness logic. Security is provided through the EJB container.
Scalability is not much of a concern for intra-enterprise appli-
cations.

The current technologies for B2B interactions may be
viewed as complementary. In Fig. 8, we summarize these tech-
nologies and the way they co-exist in a B2B interactions frame-
work. Component middleware, workflows, and Web services
define the building blocks for developing B2B applications.
EDI, OBI, and XML-based B2B frameworks (eCO, BizTalk,
RosettaNet, etc.) focus on defining the semantics of interac-

tions among businesses. Component middleware (CORBA,
DCOM, and EJB) are suitable for building robust and secure
applications within an enterprise. Web services take compo-
nents a step further by enabling inter-enterprise interactions.
They define the entry points to enterprises’ internal systems.
Web services may wrap intra-enterprise components to pro-
vide connectivity between autonomous and heterogeneous
inter-enterprise applications. They may also wrap other ap-
plications developed, for example, in Java or Visual Basic.
Intra-enterprise business processes are managed using sys-
tems such as ERPs (e.g., SAP/R3) and workflows (e.g., IBM’s
MQSeries). Inter-enterprise workflows mostly focus on inter-
actions at the business process layer. Their aim is to automate
business processes that span the boundaries of disparate en-
terprises. Web services may use the workflow approach (e.g.,
WSFL and XLANG languages) to support inter-enterprise
business processes. Component middleware, workflows, and
Web services adopt XML-based B2B frameworks to capture
the semantics of documents and business processes. For ex-

80 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

Table 2. Enabling technologies vs interaction dimensions

Type of
coupling

Autonomy Heterogeneity External
manageability

Adaptability Security Scalability

EDI Loose and
long term

New documents must
be approved by EDI
guideline committees

Support of
heterogeneous
applications thanks
to translator
software

Not Addressed Impact of local
changes limited.
New documents
must be approved

Private VANs Expensive networks. Need
to agree on implementation
conventions

EDIINT Loose and
long term

New documents must
be approved by EDI
guideline committees

Support of
heterogeneous
applications thanks
to translator
software

Not Addressed Impact of local
changes limited.
New documents
must be approved

RFC 1847,
MIME
security with
PGP, etc.

Lower entry-cost than EDI
(Internet-based)

OBI Loose and
long term

Higher than EDI
(document
extensibility is not an
important requirement)

Support of
heterogeneous
applications thanks
to translator
software

Not Addressed Higher than EDI
(document
extensibility is not
an important
requirement)

SSL/HTTP,
digital
signatures,
and digital
credentials

Lower entry-cost than EDI
(Internet-based)

CORBA Tight and
long term

Separation between
interface and
implementation (IDL)

Different languages
(e.g., Java, C++)
and platforms
(Unix, Windows)

Event service Not Addressed Supported by
CORBA
security
service

Suitable for intra-enterprise
applications. Participants
need to have a stub for each
component server

DCOM Tight and
long term

Separation between
interface and
implementation (IDL)

Different languages
(e.g., Microsoft J++,
C++) but Windows
platform

Event service Not Addressed Based on
Windows NT
security
model

Suitable for intra-enterprise
applications. Proxies need at
client side

EJB Tight and
long term

Separation between
interface and
implementation (EJB
remote interface)

Java language and
different platforms
(Unix, windows)

Event service Contracts can be
changed
independently of
the business logic

Security
features
provided in
EJB container

Suitable for intra-enterprise
applications. Participants
must define a remote inter-
face for each bean

Workflows System-
specific

Separation between
public and private
business processes

Different workflow
engines

Adding
application-
specific
states

Process wrappers
and adapters help
localize changes

Not
Addressed

May require creation of
new process wrappers and
adapters

eCO Loose,
transient,
and long
term

Separation between
service description and
implementation.
Marketplaces may
hinder autonomy

XML Schemas.
Marketplaces may
help addressing
semantic
heterogeneity.

Not Addressed Impact of local
changes limited.
Support of
extensibility
documents

Optional Establishment of a relation-
ship with a partner does not
require additional work from
this partner

BizTalk Loose,
transient,
and long
term

Separation between
description of services
and implementation

External XML
Schemas

Specific BizTags
(e.g., delivery and
commitment
receipts)

Impact of local
changes limited.
Support of
extensibility
documents

Leverages
existing
standards

Establishment of a relation-
ship with a partner does not
require additional work from
this partner

cXML Loose,
transient,
and long
term

Higher than EDI
because document
extensibility is not an
important requirement

XML DTDs Not Addressed Impact of local
changes limited.
Extensibility of
documents is not
required

Authentication
information.
Trusted inter-
mediaries

Cost of entry is lower than
in OBI thanks to the use of
XML

RosettaNet Loose and
long term

Separation between
service description and
implementation.
Marketplaces may
hinder autonomy

RosettaNet business
and technical
dictionaries. Use of
vertical technology

Not Addressed Impact of local
changes limited.
Support of
extensibility
documents

SSL/HTTP.
Digital
certificates
and
signatures

Establishment of a relation-
ship with a partner does not
require additional work from
this partner

ebXML Loose and
long term

Separation between
service description and
implementation.

Business service
interface to wrap
legacy applications

Adding specific
activities in
shared business
processes

Not Addressed Security
protocols
(e.g., SSL).
Digital
signatures.

Distributed set of reposito-
ries but to date, only a single
repository is specified

Web
Services

Loose,
transient,
and
long-term

Separation between
WSDL interface and
implementation
definitions

WSDL descriptions
to wrap underlying
applications

Not Addressed Not Addressed On-going
efforts (e.g.,
XML digital
signatures,
S-HTTP)

Availability of development
tools. XML tags increase
the volume of information.
Replicated registries must
exchange data to maintain
coherence.

ample, Web services may use RosettaNet or cXML to carry
out interactions among businesses according to these frame-
works. EDI and OBI standards may also be used to enable
interactions at the content layer. However, they provide little
support in terms of expanding the set of supported document
types.

In Table 3, major B2B prototypes are compared using the
first set of parameters, i.e., B2B key architectural layers. For
example, eFlow uses RMI at the communication layer. At the
content layer, eFlow provides adapters to support different
interaction protocols such as OBI and RosettaNet. Interop-
erability at the business layer is enabled through a process
description model based on state machines.

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 81

Table 3. Prototypes vs interaction layers

Communication Layer Content Layer Business process Layer Key Features

CMI Transport protocols (e.g., HTTP,
CORBA) must a priori be agreed
upon

Message format (e.g., XML,
EDI) must a priori be agreed
upon

State machine-based model for
process description

Placeholders for dynamic selection.
Application-specific status and awareness
events for process monitoring

WISE Coordination and communication
module

Not Addressed Virtual business processes Use of exception handling model. Process mon-
itoring and analysis module

Cross
Flow

Java RMI Contract in XML Contracts Contract management. Quality of service mon-
itoring.

Mentor-
Lite

Transaction Processing (TP) monitor
(Tuxedo)

Not Addressed Business processes expressed as
state and activity charts

Partition the overall workflow specification into
several sub-workflows.

eFlow Java RMI Provides adapters to support
different protocols such as OBI
and RosettaNet

State machine-based model for
process description

Search recipe for dynamic selection. Event
nodes: processes can send and receive several
types of events

WebBIS Java RMI Not Addressed ECA rules for describing interac-
tions among services

Service communities for dynamic selection.
Change notifiers for monitoring and controlling
changes.

XL SOAP XML Schema Little or no statements for inter-
service business processes

Specification Language based on workflows,
dataflow languages, and XQuery expressions

SELF-
SERV

SOAP Not Addressed State charts Peer-to-peer model for coordinating the execu-
tion of composite services

The same prototypes are compared in Table 4 using the sec-
ond set of parameters, i.e., B2B key interaction dimensions.
For example, eFlow allows loose coupling among B2B partic-
ipants. In terms of autonomy, trading partners do not need to
reveal how their services are implemented. Heterogeneous in-
teraction protocols are supported through adapters. External
manageability and adaptability are possible via event track-
ing and process templates, respectively. Security, however, is
not addressed. Scalability is accommodated using distributed
service enactment engines.

In Table 5, commercial B2B platforms are summarized
using the third set of parameters, i.e., major modules, com-
munication standards, content and business process standards,
and key technologies. For example, BEA Weblogic Integrator
includes an application server, application integration, busi-
ness process management, and B2B Integration. The com-
munication standards supported in BEA Weblogic Integrator
are SOAP, JMS and IIOP. BEA Weblogic Integrator supports
WSDL, XML, RosettaNet-PIP, and BEA-XOCP as content
and business process standards. The key technologies that
are supported include components (J2EE), XML, workflows,
and Web services. Note that all deployment platforms support
HTTP as a communication protocol. Additionally, the list of
supported standards (communication, content, and B2B pro-
tocol) is non-exhaustive as new standards are constantly being
added.

7.2 Open issues

For B2B E-commerce to scale to the Internet, there is a need
for efficient integration with all relevant partners, established
a priori or on demand. The need for interoperability in B2B
applications is more pronounced than usual partly because of
the way businesses operate, the systems they have, and the
difficulties created by systems’ autonomy and heterogeneity.
Although the current technologies provide the foundation for

building B2B integration frameworks, several research issues
still need to be addressed. These include process-based inte-
gration of services, dependable integration of services, sup-
port of standardized interactions, security, and privacy.

Process-based integration of services – In spite of the potential
opportunities, B2B integration solutions are mainly used by
large organizations [2,53]. One of the main reasons is that the
development of integrated services is still largely hand-coded
and requires a considerable effort of low-level programming.
Since the components of an integrated service may be het-
erogeneous, distributed, and autonomous, the integration pro-
cess may be time consuming. It typically requires the intimate
knowledge of the underlying communication protocols, data
formats and access interfaces. Additionally, B2B services in-
tegration requires flexibility to dynamically adapt to changes
that may occur in partners’ applications. Businesses must be
able to respond rapidly to changes where both operational
(e.g., server load) and market (e.g., changes in regulations)
environments are not easily predictable. The extension of tra-
ditional business process modeling techniques to streamline
B2B services integration is a natural step in this direction.
Indeed, several standardization efforts for process-based inte-
gration of Web services are emerging such as BPEL4WS and
ebXML’s business process specification schema.

Dynamic and scalable orchestration of services – The num-
ber of services to be integrated may be large and continuously
changing. Consequently, approaches where the development
of an integrated service requires identifying, understanding,
and establishing interactions among component services at
service-definition time, are inappropriate. Instead, divide-and-
conquer approaches should be adopted, whereby services pro-
viding similar capabilities (also called alternative services)
are grouped together. These groups take over some of the re-
sponsibilities of service integration . Examples of such re-
sponsibilities include dynamic discovery of services based on
their availability, characteristics, organizational policies, and

82 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

Table 4. Prototypes vs interaction dimensions

Type of
coupling

Autonomy Heterogeneity External
manageability

Adaptability Security Scalability

CMI Tight and
long term

External systems only
need to reveal the state
they are in after they
accomplish a task, not
how they accomplish
the task

Use of
object-oriented
proxies

State dependent
control flow and use
of awareness events

Primitives such as
optional and inhibitor
can be used for coping
with some unforeseen
events

Role Distributed and
parallel engines
for execution

WISE Tight and
long term

Partners must advertise
services in
encapsulated objects

Object-based
middleware

Process monitoring
and analysis module

Execution guarantee Not
addressed

Distributed
architecture

CrossFlow Loose and
transient

Partners must agree on
service contract
definition

Partners must install
service contract run
time environment

Quality of Service
(QoS) module
provides monitoring
facilities

Primitives for flexible
execution are restricted
to those provided by
traditional workflows

Not
addressed

Cost of entry:
participants must
locally install
contract run time
environment

Mentor-Lite Tight and
long term

Participants do not
need to reveal how
services are
implemented

Application
programs are
connected to the
workflow engine by
specific wrappers

Not addressed Not addressed Not
addressed

Workflows are
partitioned into
several
sub-workflows
and distributed

eFlow Loose and
long term

External systems need
to describe their
services not their
implementation

Provides adapters
for different
protocols and
platforms such as
OBI, RosettaNet,
and e-speak

Event tracking Provides process
templates, service
nodes, and service data
repositories for reuse

Not
addressed

Distributed
service enactment
engines

WebBIS Loose,
transient,
and long
term

Participants do not
need to reveal how
services are
implemented

Service wrappers
hide the
heterogeneity of
underlying
applications

Event notifications
(ECA rules)

Change notifiers Not
addressed

Participants need
to warp their
applications.
Peer-to-peer
approach for
managing
changes

XL Loose and
transient

Participants do not
need to reveal how
services are
implemented

Web services can be
written in XL, Java,
or other languages

History clauses Change clauses Security
features
of J2EE

Not addressed

SELF-SERV Loose and
transient

Participants do not
need to reveal how
services are
implemented

Service wrappers Not addressed Not addressed Not
addressed

Peer-to-peer
execution model

resources that are needed to accomplish the integrated ser-
vice. Given the highly distributed nature of services, and large
number of network nodes that are capable of service execu-
tion, we believe that novel mechanisms involving scalable and
completely decentralized execution of services will become
increasingly important.

Dependable Integration of Services – Transaction support
is required to provide reliable and dependable execution of
composite services. Traditional transaction management tech-
niques [33] are not appropriate in the context of composite
services. The components of a composite service may be het-
erogeneous and autonomous. They may not be transactional
and if they are, their transactional features may not be com-
patible with each other. In addition, component services, for
different reasons (e.g., quality of services), may not be willing
to comply with constraints such as resource locking, until the
termination of the composite service execution. New transac-
tion techniques are required in the context of Web services.
For instance, it is important to extend the description of ser-
vices by explicitly describing transactional semantics of Web
service operations. An example is to specify that an operation
can be aborted without effect from a requester’s perspective.

It is also imperative to extend service composition models to
specify transactional semantics of an operation or a group of
operations. An example is to specify how to handle the un-
availability of a component service. The effective handling
of transactional aspects at the composite service level, should
be facilitated by exploiting the transactional capabilities of
component services. A few industry standards such as WS-
Coordination [45], WS-Transaction [47], and Business Trans-
action Protocol (BTP) [69] are already emerging for transac-
tion support of integrated services.

Security – Security is a critical issue that must be dealt with
in B2B E-commerce. Security must be enforced to give busi-
nesses the confidence that their transactions are safely handled.
A few de facto standards are available for transport-level se-
curity (e.g., SSL) and message-level security (e.g., SMIME).
However, issues such as authentication and authorization still
need to be addressed. Businesses generally perform controls
over the internal use of their business processes. In B2B E-
commerce, there is a need to extend this controlled access to
outside companies’ boundaries. The concept of access con-
trol, traditionally studied in the context of databases, must be
thoroughly investigated in the context of B2B applications.

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 83

Table 5. Deployment platforms

Major Modules Communication standards Content and business process
Standards

Key technologies

IBM WebSphere Application Server, MQSeries, Business
Components, WebSphere Commerce

MQSeries, JMS, IIOP,
SOAP, HTTP

WSDL, XML, RosettaNet-PIP,
cXML, EDI

Components (J2EE), XML,
Web Services

Sun ONE Forte tools and iPlanet JMS, SOAP, LDAP, WAP,
IIOP, HTTP

EDI, XML, WSDL Components (J2EE), XML,
Web services and workflow

Oracle Integration
Server

Integration Modeler, System Monitoring
and Administration, Business Process
Monitor, Business Intelligence

Oracle Queue, JMS, SOAP,
IIOP, MQSeries,
TIBCO/rendezvous, HTTP

XML, WSDL, EDI,
RosettaNet-PIP, ebXML

Components (J2EE),
workflow, XML, data mining,
Web services

HP NetAction HP Opencall, HP Chat, HP NetAction
Internet Operating Environment

SOAP, JMS, IIOP, HTTP XML, WSDL Components (J2EE), XML,
workflow (ChangeEngine),
Web services

Microsoft .NET .NET Framework and Tools, .NET
Enterprise Servers, .NET Service
Building Blocks

MSMQ, SOAP, Microsoft
Host Integration Server,
HTTP

XML, WSDL, RosettaNet-PIP,
XLANG from BizTalk Server

DCOM, MSMQ, Web
services, XML, BizTalk
Orchestration Engine

BEA WebLogic In-
tegrator

Application Server, Application
Integration, Business Process
Management, B2B Integration

SOAP, JMS, IIOP, HTTP WSDL, XML, RosettaNet-PIP,
BEA-XOCP

Components (J2EE), XML,
workflow, Web services

WebMethods Enterprise Server, Enterprise Adaptor,
and Enterprise Rule Agent

SOAP, IIOP, JMS, HTTP WSDL, XML, EDI,
RosettaNet-PIP, ebXML, cXML,
OBI

Components, workflow, Web
services and Agents

Vitria Business Ware Business Process Management, B2B
Communications, Enterprise Application
Integration and Real-Time Analysis

SOAP, IIOP, JMS, HTTP XML, EDI, RosettaNet-PIP,
ebXML, xCBL, cXML

Components, XML, workflow,
process model, process
analysis

TIBCO
Active
Enterprise

InConcert, IntegrationManager,
MessageBroker, Hawk, and Rendezvous

SOAP, JMS, IIOP,
MQSeries, HTTP

WSDL, XML, HL7, EDI,
RosettaNet-PIP, BizTalk,
ebXML, cXML, xCBL

Messaging software, XML,
workflow, Web services

Research on specifying, validating, and enforcing access con-
trol policies for B2B applications is one where intensive work
is needed. In particular, access control should be performed
at both the database and application levels. In addition, busi-
nesses generally have to deal with various and even contra-
dictory access control policies while transacting with their
partners.

Privacy – Privacy refers to the restriction of knowledge about
various pieces of business transactions to parties involved in
the transactions. It is generally (mis)perceived as an issue
whose natural solution consists of good security mechanisms.
Although security and privacy are two tightly interrelated is-
sues, secure B2B frameworks do not necessarily ensure pri-
vacy [60,74]. The importance of the privacy problem does not
seem to have triggered the right level research efforts. In fact,
few techniques and standards have addressed the issue of pre-
serving privacy in Web-based applications. One such standard
is W3C’s Platform for Privacy Preferences Project [93] (P3P).
However, P3P enables the specification of the privacy of Web
sites but not B2B applications. Worse, P3P provides no mech-
anisms that guarantee that Web sites actually implement their
stated privacy policy. A major issue in B2B E-commerce is
the ability for businesses to understand each others’ privacy
policy. There is also a need to provide mechanisms to address
how the privacy policy of integrated services is derived from
the individual policies of the trading partners.

Acknowledgements. The authors would like to thank the anonymous
reviewers for their valuable comments on earlier drafts of this paper.

References

1. Aaron R, Decina M, Skillen R (1999) Electronic commerce:
enablers and implications. IEEE Comm Mag 37(9):47–52

2. Adam N, Dogramaci O, Gangopadhyay A, Yesha Y (1998)
Electronic commerce: technical, business, and legal issues.
Prentice-Hall, Englewood cliffs, N.J., USA

3. Adam NR, Yesha Y (1996) Strategic directions in electronic
commerce and digital libraries: towards a digital Agora. ACM
Comput Surv 28(4):818–835

4. Aissi S, Malu P, Srinivasan K (2002) E-Business process mod-
eling: the next big step. IEEE Comput 35(5):55–62

5. ATIS (2003) EDI Guideline Consistency Subcommittee
(EGCS). http://www.atis.org/atis/tcif

6. BEA (2003) WebLogic Integrator.
http://www.bea.com/products/weblogic/integrator

7. BEA, IBM, and Microsoft (2003) Business Process Execution
Language for Web Services (BPEL4WS).
http://xml.coverpages.org/bpel4ws.html

8. Benatallah B, Casati F (eds) (2002) Special Issue on Web Ser-
vices. Distrib Parallel Databases 12(2)

9. Benatallah B, Dumas M, Sheng M, Ngu AHH (2002) Declar-
ative composition and peer-to-peer provisioning of dynamic
Web services. In: ICDE Conference, pp 297–308, San Jose,
California, USA

10. Benatallah , Medjahed B, BouguettayaA, ElmagarmidA, Beard
J (2000) Composing and maintaining Web-based virtual enter-
prises. In: 1st VLDB TES Workshop, pp 71–90, Cairo, Egypt

11. Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web.
Sci Am May:7–15

12. Bichler M, Segev A, Zhao JL (1998) Component-based E-
commerce: assessment of current practices and future direc-
tions . ACM SIGMOD Rec 27(4):7–14

13. BizTalk (2003) http://www.BizTalk.org

84 B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies

14. Bolcer GA, Kaiser G (1999) SWAP: Leveraging the Web to
manage workflow. IEEE Internet Comput 3(1):55–88

15. Bouguettaya A, Benatallah B, Elmagarmid AK (1998) In-
terconnecting heterogeneous information systems. Kluwer,
Boston, Mass., USA

16. Brodie M (2000) The B2B E-commerce revolution: conver-
gence, chaos, and holistic computing. In: Brinkkemper S, Lin-
dencrona E, Solvberg A (eds) Information system engineering:
state of the art and research themes. Springer, London, UK

17. Bussler C (2001) B2B Protocol standards and their role in
semantic B2B integration engines. Bull Tech Comm Data Eng
24(1):3–11

18. Casati F, Dayal U, Shan MC (2001) E-Business applications for
supply chain automation: challenges and solutions. In: ICDE
Conference, pp 71–78, Heidelberg, Germany

19. Casati F, Ilnicki S, Jin LJ, Krishnamoorthy V, Shan MC (2000)
eFlow: a platform for developing and managing composite e-
services. Technical Report HPL-2000-36, HP Laboratoris, Palo
Alto, Calif., USA

20. Casati F, Shan MC (2000) Process automation as the founda-
tion for e-business. In: VLDB Conference, pp 688–691, Cairo,
Egypt

21. Casati F, Shan MC (2001) Models and languages for describing
and discovering e-services (tutorial). In: SIGMOD Conference,
p. 626, Santa Barbara, Calif., USA

22. Cobb E (2001) The evolution of distributed component archi-
tectures. In: CoopIS Conference, pp 7–21, Trento, Italy

23. cXML (2003) http://www.cxml.org
24. Dadam P, Reichert M (eds) (1999) Proc. Informatik’99 Work-

shop on Enterprise-wide and Cross-enterprise Workflow Man-
agement: Concepts, Systems, Applications, October

25. Dayal U, Hsu M, Ladin R (2001) Business process coordi-
nation: state of the art, trends, and open issues. In: VLDB
Conference, pp 3–11, Rome, Italy

26. Dogac A (1998) A survey of the current state-of-the-art in elec-
tronic commerce and research issues in enabling technologies.
In: Euro-Med Net 98 Conference, Electronic Commerce Track,
Nicosia, Cyprus

27. Dogac A (ed) (1998) Special Issue on Electronic Commerce.
ACM SIGMOD Rec 27(4)

28. Dogac A (ed) (1999) Special Issue on Electronic Commerce.
Distrib Parallel Databases 7(2)

29. DogacA, Cingil I (2001) A survey and comparison of business-
to-business e-commerce frameworks. ACM SIGecom Exch
2(2):16–27

30. Drala (2003) Drala Event Broker. http://www.dralasoft.com
31. ebXML (2003) http://www.ebxml.org
32. eCO (2003) http://eco.commerce.net
33. Elmagarmid AK (ed) (1992) Database transaction models for

advanced applications. Morgan Kaufmann, San Francisco,
Calif., USA

34. eMarketer (2002) E-Commerce trade and B2B Exchanges.
http://www.emarketer.com

35. Fastwater (2003) http://www.fastwater.com
36. Florescu D, Grünhagen A, Kossmann D (2002) XL: An XML

programming language for web service specification and com-
position. In: WWW Conference, pp 65–76, Honolulu, Hawaii,
USA

37. Florescu D, Grünhagen A, Kossmann D, Rost S (2002) XL:
Platform for web services. In: SIGMOD Conference, p. 625,
Madison, Wis., USA

38. Gartner (2001) The economic downturn is not an excuse to
retrench B2B efforts. http://www.gartner.com

39. Georgakopoulos D (ed) (1999) Information technology for vir-
tual enterprises. 9th International Workshop on Research Issues
on Data Engineering

40. Georgakopoulos D, Schuster H, Cichocki A, Baker D (1999)
Managing process and service fusion in virtual enterprises. Inf
Syst 24(6):429–456

41. Geppert A, Tombros D (1998) Event-based distributed work-
flow execution with EVE. In: Middleware’98 Workshop, pp
427–442, Cumbria, UK

42. Hollinsworth D (1994) The workflow reference model. Brus-
sels, Belgium. TC00-1003.
http://www.aiai.ed.ac.uk/WfMC/DOCS/refmodel/rmv1-
16.html

43. Hopkins J (2003) Component primer. Comm ACM 43(10):27–
30

44. HP (2003) NetAction. http://www.hp.com
45. IBM (2003) Web services coordination.

http://www-106.ibm.com/developerworks/library/ws-coor
46. IBM (2003) Web Services Flow Language (WSFL).

http://xml.coverpages.org/wsfl.html
47. IBM (2003) Web Services transaction.

http://www-106.ibm.com/developer-
works/webservices/library/ws-transpec

48. IBM (2003) WebSphere. http://www.ibm.com
49. IETF (2003) http://www.ietf.org
50. IETF (2003) Electronic Data Interchange - Internet Integration

(EDIINT). http://www.ietf.org
51. JoinFlow (1998) Workflow management facility, revised sub-

mission. OMG Document Number: bom/98-06-07
52. Joshi A, Singh MP (1999) Multiagent systems on the net.

Comm ACM 42(3):38–40
53. Kalakota R, Whinston AB (2000) Frontiers of electronic com-

merce. Addison-Wesley, Reading, Mass., USA
54. Larsen G (2000) Component-based enterprise frameworks.

Comm ACM 43(10):24–26
55. Lazcano A, Alonso G, Schuldt H, Schuler C (2000) The WISE

approach to electronic commerce. Int J Comput Syst Sci Eng
15(5):343–355

56. Lewandowski SM (1998) Frameworks for component-based
client/server computing. ACM Comput Surv 30(1):3–27

57. Ludwig H, Hoffner Y (1999) Contract-based cross-organ-
isational workflows - the Crossflow Project. In: Georgakopou-
los D, Prinz W, Wolf AL (eds) Proc. International Joint Con-
ference on Work Activities Coordination and Collaboration
(WACC’99)

58. Mackie S (1998) ERP Meets web e-commerce. DBMS Mag
11(8):38–45

59. McIlraith SA, Son TC, Zeng H (2001) Semantic web services.
IEEE Intell Syst 16(2):46–53

60. Medjahed B, Rezgui A, Bouguettaya A, Ouzzani M (2003)
Infrastructure for e-government web services. IEEE Internet
Comput 7(1):58–65

61. Meyer B (1999) On to components. IEEE Comput 32(1):139–
140

62. Microsoft (2003) Distributed Component Object Model
(DCOM). http://www.microsoft.com

63. Microsoft (2003) .NET. http://www.microsoft.com/net/
64. Microsoft (2003) Web Services for Business Process Design

(XLANG). http://xml.coverpages.org/xlang.html
65. Muth P, Wodtke D, Weissenfels J, Dittrich AK, Weikum G

(1998) From centralized workflow specification to distributed
workflow execution. J Intell Inf Syst 10(2):159–184

66. Nasa (2003) Scientific and Engineering Workstation Procure-
ment (SEWP). http://www.sewp.nasa.gov

B. Medjahed et al.: Business-to-business interactions: issues and enabling technologies 85

67. United Nations (2003) United Nations Directories for Elec-
tronic Data Interchange for Administration, Commerce and
Transport (UN/EDIFACT).
http://www.unece.org/trade/untdid/welcome.htm

68. Netscape (2003) Secure Socket Layer (SSL) 3.0 Specification.
http://wp.netscape.com/eng/ssl3/

69. OASIS (2003) http://www.oasis-open.org/cover
70. OBI (2003) OpenBuy. http://www.openbuy.org
71. Oracle (2003) Integration server starter pack.

http://otn.oracle.com/software
72. Orfali R, Harkey D (1998) Client/server programming With

Java and CORBA. Wiley, New York
73. Paepcke A, Chang CK, Garcia-Molina H, Winograd T (1998)

Interoperability for digital libraries worldwide. Comm ACM
41(4):33–43

74. Rezgui A, Ouzzani M, Bouguettaya A, Medjahed B (2002)
Preserving privacy in web services. In: 4th International ACM
Workshop on Web Information and Data Management

75. Roman E, Ambler SW, Jewell T (2001) Mastering Enterprise
JavaBeans. Wiley, New York

76. RosettaNet (2003) http://www.rosettanet.org
77. Schuler C, Schuldt H, Alonso G, Schek HJ (1999) Work-

flows over workflows: practical experiences with the integra-
tion of SAP R/3 business workflows in WISE. In: Proc. In-
formatik’99 Workshop: Enterprise-wide and Cross-enterprise
Workflow Management: Concepts, Systems, Applications

78. Schuster H, Baker D, Cichocki A, Georgakopoulos D,
Rusinkiewicz M (2000) The collaboration management infras-
tructure. In: ICDE Conference, pp 677–678, San Diego, Calif.,
USA

79. Shen M, Benatallah B, Dumas M, Mak EOY (2002) SELF-
SERV: A platform for rapid composition of web services in
a peer-to-peer environment. In: VLDB Conference, pp 1051–
1054, Hong Kong, China

80. Sheth AP, Larson JA (1990) Federated database systems
for managing distributed, heterogeneous, and autonomous
databases. ACM Comput Surv 22(3):183–236

81. Shim SSY, Pendyala VS, Sundaram M, Gao JZ (2000)
Business-to-Business E-Commerce frameworks. IEEE Com-
put 33(10):40–47

82. Sun (2003) Java RMI (Remote Method Invocation).
http://java.sun.com/products/jdk/rmi

83. Sun (2003) Sun ONE. http://www.sun.com
84. SWIFT (2003) http://www.swift.com

85. Szyperski C (2002) Component software - beyond object-
oriented programming. Addison-Wesley, Reading, Mass., USA

86. TIBCO (2003) ActiveEnterprise. http://www.tibco.com
87. Tsur S, Abiteboul S, Agrawal R, Dayal U, Klein J, Weikum G

(2001) Are web services the next revolution in e-commerce?
(Panel). In: VLDB Conference, pp 614–617, Rome, Italy

88. Urban SD, Dietrich SW, Saxena A, Sundermier A (2001) Inter-
connection of distributed components: an overview of current
middleware solutions. J Comput Inf Sci Eng 1(1):23–31

89. Vinoski S (2002) Web services interaction models, part 1: cur-
rent practice. IEEE Internet Comput 6(3):89–91

90. Vitria (2003) BusinessWare. http://www.vitria.com
91. W3C (2003) Document Object Model (DOM).

http://www.w3.org/DOM
92. W3C (2003) Extensible Markup Language (XML).

http://www.w3.org/XML
93. W3C (2003) The Platform for Privacy Preferences Specifica-

tion (P3P). http://www.w3.org/TR/P3P
94. W3C (2003) Simple Object Access Protocol (SOAP).

http://www.w3.org/TR/soap
95. W3C (2003) Universal Description, Discovery, and Integration

(UDDI). http://www.uddi.org
96. W3C (2003) Web Services Description Language (WSDL).

http://www.w3.org/TR/wsdl
97. W3C (2003) XML Schema. http://www.w3.org/XML/Schema
98. WebMethods (2003) http://www.webmethods.com
99. Weissenfels J, Gillmann M, Roth O, Shegalov G, Wonner W

(2000) The mentor-lite prototype: a light-weight workflow
management system. In: ICDE Conference, pp 658–686, San
Diego, Calif., USA

100. WfXML (2003) WfXML. http://www.wfmc.org
101. X12 (2003) EDI (Electronic Data Interchange) ANSI X12.

http://www.x12.org
102. XML/EDI (2003) http://www.xmledi-group.org
103. Yang J, Papazoglou MP (2000) Interoperation support for elec-

tronic business. Comm ACM 43(6):39–47

