
Using Convolution to Mine Obscure Periodic
Patterns in One Pass ?

Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid

Department of Computer Sciences, Purdue University
{mgelfeky, aref, ake}@cs.purdue.edu

Abstract. The mining of periodic patterns in time series databases is
an interesting data mining problem that can be envisioned as a tool for
forecasting and predicting the future behavior of time series data. Exist-
ing periodic patterns mining algorithms either assume that the periodic
rate (or simply the period) is user-specified, or try to detect potential
values for the period in a separate phase. The former assumption is a
considerable disadvantage, especially in time series databases where the
period is not known a priori. The latter approach results in a multi-pass
algorithm, which on the other hand is to be avoided in online environ-
ments (e.g., data streams). In this paper, we develop an algorithm that
mines periodic patterns in time series databases with unknown or obscure
periods such that discovering the period is part of the mining process.
Based on convolution, our algorithm requires only one pass over a time
series of length n, with O(n log n) time complexity.

1 Introduction

A time series database is one that abounds with data evolving over time. Life
embraces several examples of time series databases such as meteorological data
containing several measurements, e.g., temperature and humidity, stock prices
depicted in financial market, and power consumption data reported in energy
corporations. Data mining is the process of discovering patterns and trends by
sifting through large amounts of data using technology that employs statistical
and mathematical techniques.

Research in time series data mining has concentrated on discovering different
types of patterns: sequential patterns [3, 18, 10, 5], temporal patterns [7], periodic
association rules [17], partial periodic patterns [12, 11, 4], surprising patterns [14]
to name a few. These periodicity mining techniques require the user to specify
a period that determines the rate at which the time series is periodic. They
assume that users either know the value of the period beforehand or are willing
to try various period values until satisfactory periodic patterns emerge. Since the
mining process must be executed repeatedly to obtain good results, this trial-
and-error scheme is clearly not efficient. Even in the case of time series data
? This work has been supported in part by the National Science Foundation under

grants IIS-0093116, EIA-9972883, IIS-0209120, and by grants from NCR and Wal-
Mart.

with a priori known periods, there may be obscure periods, and consequently
interesting periodic patterns that will not be discovered. The solution to these
problems is to devise techniques for discovering potential periods in time series
data. Research in this direction has focused either on devising general techniques
for discovering potential periods [13, 6], or on devising special techniques for
specific periodicity mining problems [20, 16]. Both approaches turn out to require
multiple passes over the time series in order to output the periodic patterns
themselves. However, real-time systems, which draw the attention of database
researchers recently (e.g., as in data streams), cannot abide the time nor the
storage needed for multiple passes over the data.

In this paper, we address the problem of mining periodic patterns in time
series databases of unknown or obscure periods, hereafter referred to as obscure
periodic patterns. We define the periodicity of the time series in terms of its
symbols, and subsequently define the obscure periodic patterns where the period
is a variable rather than an input parameter (Sect. 2). We develop a convolution-
based algorithm for mining the obscure periodic patterns in one pass (Sect. 3).
To the best of our knowledge, our proposed algorithm is the first algorithm in
the literature (Sect. 1.1) that mines the periodic patterns with unknown period
in one pass. In Sect. 4, the performance of our proposed algorithm is extensively
studied verifying its correctness, examining its resilience to noise, and justifying
its practicality. We summarize our findings in Sect. 5.

1.1 Related Work

Discovering the period of time series data has drawn the attention of the data
mining research community very recently. Indyk et al. [13] have addressed this
problem under the name periodic trends, and have developed an O(n log2 n) time
algorithm, where n is the length of the time series. Their notion of a periodic
trend is the relaxed period of the entire time series, and their output is a set
of candidate period values. In order to output the periodic patterns of the time
series, a periodic patterns mining algorithm should be incorporated using each
candidate period value, resulting in a multi-pass periodicity mining process.

Specific to partial periodic patterns, Ma and Hellerstein [16] have developed
a linear distance-based algorithm for discovering the potential periods regarding
the symbols of the time series. However, their algorithm misses some valid pe-
riods since it only considers the adjacent inter-arrivals. For example, consider a
symbol that occurs in a time series in positions 0, 4, 5, 7, and 10. Although the
underlying period should be 5, the algorithm only considers the periods 4, 1, 2,
and 3. Should it be extended to include all possible inter-arrivals, the complexity
of the algorithm of [16] will increase to O(n2). In [20], a similar algorithm has
been proposed with some pruning techniques. Yet, both algorithms of [20, 16]
require at least two passes over the time series in order to output the periodic
patterns.

Berberidis et al. [6] have solved the problem of the distance-based algorithms
by developing a multi-pass algorithm for discovering the potential periods regard-
ing the symbols of the time series, one symbol at a time. Their algorithm suffers

from the need for incorporating a periodic patterns mining algorithm to output
the periodic patterns of the time series.

2 Problem Definition

2.1 Notation

Assume that a sequence of n timestamped feature values is collected in a time
series database. For a given feature t, let ti be the value of the feature at times-
tamp i. The time series of feature t is represented as T = t0, t1, . . . , tn−1. For
example, the feature in a time series database for power consumption might be
the hourly power consumption rate of a certain customer, while the feature in
a time series database for stock prices might be the final daily stock price of a
specific company. If we discretize [14] the time series feature values into nominal
discrete levels and denote each level (e.g., high, medium, low, etc.) by a sym-
bol (e.g., a, b, c, etc.), then the set of collected feature values can be denoted
Σ = {a, b, c, · · ·}, where T is a string of length n over Σ.

A time series database may also be a sequence of n timestamped events
drawn from a finite set of nominal event types, e.g., the event log in a computer
network monitoring the various events that can occur. Each event type can be
denoted by a symbol (e.g., a, b, c, etc.), and hence we can use the same notation
above.

2.2 Symbol Periodicity

In a time series T , a symbol s is said to be periodic with a period p if s exists
“almost” every p timestamps. For example, in the time series T = abcabbabcb,
the symbol b is periodic with period 4 since b exists every four timestamps (in
positions 1, 5 and 9). Moreover, the symbol a is periodic with period 3 since a
exists almost every three timestamps (in positions 0, 3, and 6 but not 9). We
define symbol periodicity as follows.

Let πp,l(T) denote the projection of a time series T according to a period p
starting from position l; that is

πp,l(T) = tl, tl+p, tl+2p, . . . , tl+(m−1)p,

where l < p, m = d(n − l)/pe, and n is the length of T . For example, if T =
abcabbabcb, then π4,1(T) = bbb, and π3,0(T) = aaab. Intuitively, the ratio of the
number of occurrences of a symbol s in a certain projection πp,l(T) to the length
of this projection indicates how often this symbol occurs every p timestamps.
However, this ratio is not quite accurate since it captures all the occurrences even
the outliers. In the example above, the symbol b will be considered periodic with
period 3 with a frequency of 1/4, which is not quite true. As another example,
if for a certain T , πp,l(T) = abcbac, this means that the symbol changes every
p timestamp and so no symbol should be periodic with a period p. We remedy
this problem by considering only the consecutive occurrences. A consecutive

occurrence of a symbol s in a certain projection πp,l(T) indicates that the symbol
s reappeared in T after p timestamps from the previous appearance, which means
that p is a potential period for s. Let F2(s, T) denote the number of times the
symbol s occurs in two consecutive positions in the time series T . For example,
if T = abbaaabaa, then F2(a, T) = 3 and F2(b, T) = 1.

Definition 1. If a time series T of length n contains a symbol s such that ∃l, p
where l < p, and F2(s,πp,l(T))

d(n−l)/pe−1 ≥ ψ where 0 < ψ ≤ 1; then s is said to be periodic
in T with period p at position l with respect to a periodicity threshold equal to ψ.

For example, in the time series T = abcabbabcb, F2(a,π3,0(T))
d10/3e−1 = 2/3, thus the

symbol a is periodic with period 3 at position 0 with respect to a periodicity
threshold ψ ≤ 2/3. Similarly, the symbol b is periodic with period 3 at position 1
with respect to a periodicity threshold ψ ≤ 1.

2.3 Obscure Periodic Patterns

The main advantage of the definition of symbol periodicity is that not only
does it determine the candidate periodic symbols, but it also determines their
corresponding periods and locates their corresponding positions. Thus, there are
no presumptions of the period value, and so obscure periodic patterns can be
defined as follows.

Definition 2. If a time series T of length n contains a symbol s that is periodic
with period p at position l with respect to an arbitrary periodicity threshold, then
a periodic single-symbol pattern of length p is formed by putting the symbol s
in position l and putting the “don’t care” symbol § in all other positions. The
support of such periodic single-symbol pattern is estimated by F2(s,πp,l(T))

d(n−l)/pe−1 .

For example, in the time series T = abcabbabcb, the pattern a§§ is a periodic
single-symbol pattern of length 3 with a support value of 2/3, and so is the
single-symbol pattern §b§ with a support value of 1. However, we cannot deduce
that the pattern ab§ is also periodic since we cannot estimate its support1. The
only thing we know for sure is that its support value will not exceed 2/3.

Definition 3. In a time series T of length n, let Sp,l be the set of all the symbols
that are periodic with period p at position l with respect to an arbitrary periodicity
threshold. Let Sp be the Cartesian product of all Sp,l in an ascending order of l,
that is Sp = (Sp,0 ∪ {§})× (Sp,1 ∪ {§})× . . .× (Sp,p−1 ∪ {§}). Every ordered pair
(s0, s1, . . . , sp−1) that belongs to Sp corresponds to a candidate periodic pattern
of the form s0s1 . . . sp−1 where si ∈ Sp,i ∪ {§}.
For example, in the time series T = abcabbabcb, we have S3,0 = {a}, S3,1 =
{b}, and S3,2 = {}, then the candidate periodic patterns are a§§, §b§, and ab§,
ignoring the “don’t care” pattern §§§.
1 This is similar to the Apriori property of the association rules [2], that is if A and B

are two frequent itemsets, then AB is a candidate frequent itemset that may turn
out to be infrequent.

3 Mining Obscure Periodic Patterns

Assume first that the period p is known for a specific time series T . Then, the
problem is reduced to mining the periodic patterns of length p. In other words,
the problem is to detect the symbols that are periodic with period p. A way to
solve this simpler problem is to shift the time series p positions, denoted as T (p),
and compare this shifted version T (p) to the original version T . For example,
if T = abcabbabcb, then shifting T three positions results in T (3) = §§§abcabba.
Comparing T to T (3) results in four symbol matches that. If the symbols are
mapped in a particular way, we can deduce that those four matches are actually
two for the symbol a both at position 0, and two for the symbol b both at
position 1.

Therefore, our proposed algorithm for mining obscure periodic patterns relies
on two main ideas. The first is to obtain a mapping scheme for the symbols,
which reveals, upon comparison, the symbols that match and their corresponding
positions. Turning back to the original problem where the period is unknown, the
second idea is to use the concept of convolution in order to shift and compare the
time series for all possible values of the period. Hence, all the symbol periodicities
can be detected in one pass. The remaining part of this section describes those
ideas in detail starting by defining the concept of convolution (Sect. 3.1) as it
derives our mapping scheme (Sect. 3.2).

3.1 Convolution

A convolution [8] is defined as follows. Let x = [x0, x1, . . . , xn−1] and y =
[y0, y1, . . . , yn−1] be two finite length sequences of numbers2, each of length
n. The convolution of x and y is defined as another finite length sequence
x ⊗ y of length n such that (x ⊗ y)i =

∑i
j=0 xjyi−j for i = 0, 1, . . . , n − 1.

Let x′ = [x′0, x
′
1, . . . , x

′
n−1] denote the reverse of the vector x, i.e., x′i = xn−1−i.

Taking the convolution of x′ and y, and obtaining its reverse leads to the follow-
ing:

(x′ ⊗ y)′i = (x′ ⊗ y)n−1−i =
∑n−1−i

j=0 x′jyn−1−i−j =
∑n−1−i

j=0 xn−1−jyn−1−i−j ,

i.e.,

(x′ ⊗ y)′0 = x0y0 + x1y1 + · · ·+ xn−1yn−1,
(x′ ⊗ y)′1 = x1y0 + x2y1 + · · ·+ xn−1yn−2,
...
(x′ ⊗ y)′n−1 = xn−1y0.

2 The general definition of convolution does not assume equal length sequences. We
adapted the general definition to conform to our problem, in which convolutions only
take place between equal length sequences.

In other words, the component of the resulting sequence at position i corresponds
to positioning one of the input sequences in front of position i of the other input
sequence.

Based on the mapping scheme described in the next section, our proposed
algorithm converts the time series into two identical finite sequences of numbers,
reverses one of them, performs the convolution between them, and then reverses
the output. The component values of the resulting sequence will be analyzed
exhaustively to get the periodic symbols and their corresponding periods and
positions (Sect. 3.2).

It is well known that convolution can be calculated by fast Fourier transform
(FFT) [15] as follows:

x⊗ y =FFT−1
(
FFT(x)·FFT(y)

)
.

Therefore, this allows us to achieve two key benefits. First, the time complexity
is reduced to O(n log n) rather than the O(n2) time complexity of the brute
force approach of shifting and comparing the time series for all possible values.
Second, an external FFT algorithm [19] can be used for large sizes of databases
mined while on disk.

3.2 Mapping Scheme

Let T = t0, t1, . . . , tn−1 be a time series of length n, where ti’s are symbols from
a finite alphabet Σ of size σ. Let Φ be a mapping for the symbols of T such
that Φ(T) = Φ(t0), Φ(t1), . . . , Φ(tn−1). Let CT = (Φ(T)′⊗Φ(T))′, and cT

i be the
ith component of CT . The challenge to our one pass algorithm is to obtain a
mapping Φ of the symbols, which satisfies two conditions: (i) when the symbols
match, this should contribute a non-zero value in the product Φ(tj) · Φ(ti−j),
otherwise it should contribute 0, and (ii) the value of each component of CT ,
cT
i =

∑i
j=0 Φ(tj) ·Φ(ti−j), should identify the symbols that cause the occurrence

of this value and their corresponding positions.
We map the symbols to the binary representation of increasing powers of

two [1]. For example, if the time series contains only the 3 symbols a, b, and c,
then a possible mapping could be a : 001, b : 010, and c : 100, corresponding
to power values of 0, 1, and 2, respectively. Hence, a time series of length n
is converted to a binary vector of length σn. For example, let T = acccabb,
then T is converted to the binary vector T̄ = 001100100100001010010. Adopting
regular convolution, defined previously, results in a sequence C T̄ of length σn.
Considering only the n positions 0, σ, 2σ, . . . , (n− 1)σ, which are the exact start
positions of the symbols, gives back the sequence CT . The latter derivation of
CT can be written as CT = πσ,0(C T̄) using the projection notation defined in
Sect. 2.2.

The first condition is satisfied since the only way to obtain a value of 1
contributing to a component of CT is that this 1 comes from the same symbol.
For example, for T = acccabb, although cT̄

1 = 1, this is not considered one
of CT components. However, cT̄

3 = 3 and so cT
1 = 3, which corresponds to

three matches when T is compared to T (1). Those matches are seen from the
manual inspection of T to be two c’s and one b. Nevertheless, it is not possible
to determine those symbols only by examining the value of cT

1 , i.e., the second
condition is not yet satisfied. Therefore, we modify the convolution definition to
be (x⊗ y)i =

∑i
j=0 2jxjyi−j . The reason for adding the coefficient 2j is to get a

different contribution for each match, rather than an unvarying contribution of
1. For example, when the new definition of convolution is used for the previous
example, cT

1 = 21 + 211 + 214 = 18434. Figure 1 illustrates this calculation. The
powers of 2 for this value are 1, 11, and 14. Examining those powers modulo 3,
which is the size of the alphabet in this particular example, results in 1, 2 and
2, respectively, which correspond to the symbols b, c, and c, respectively.

T̄: 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0

T̄ (3): 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0

cT̄
3 = cT

1 = 214 + 211 + 21

T̄: 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0

T̄ (12): 0 0 1 1 0 0 1 0 0

cT̄
12 = cT

4 = 26

Fig. 1. A clarifying example for the mapping scheme

Figure 1 gives another example for cT
4 containing only one power of 2, which

is 6, that corresponds to the symbol a since 6 mod 3 = 0 and a was originally
mapped to the binary representation of 20. This means that comparing T to T (4)

results in only one match of the symbol a. Moreover, the power value of 6 reveals
that the symbol a is at position 0 in T (4). Note that in the binary vector, the
most significant bit is the leftmost one, whereas the most significant position of
the time series T is the rightmost one. Therefore, not only can the power values
reveal the number of matches of each symbol at each period, they also reveal
their corresponding starting positions. This latter observation complies with the
definition of symbol periodicity.

Formally, let s0, s1, . . . , sσ−1 be the symbols of the alphabet of a time se-
ries T of length n. Assume that each symbol sk is mapped to the σ-bit bi-
nary representation of 2k to form T̄ . The sequence C T̄ is computed such that
cT̄
i =

∑i
j=0 2j t̄j · t̄i−j for i = 0, 1, . . . , σn − 1. Thus, CT = πσ,0(C T̄). Assume

that cT
p is a non-zero component of CT . Let Wp denote the set of powers of 2

contained in cT
p , i.e.,

Wp = {wp,1, wp,2, . . .}
where cT

p =
∑

h 2wp,h , and let

Wp,k = {wp,h : wp,h ∈ Wp ∧ wp,h mod σ = k}.
As shown in the previous example, the cardinality of each Wp,k represents the
number of matches of the symbol sk when T is compared to T (p). Moreover, let

Wp,k,l = {wp,h : wp,h ∈ Wp,k ∧ (n− p− 1− bwp,h/σc) mod p = l}.
Revisiting the definition of symbol periodicity, we observe that the cardinality
of each Wp,k,l is equal to the desired value of F2(sk, πp,l(T)). Working out the
example of Sect. 2.2 where T = abcabbabcb, n = 10, and σ = 3, let s0, s1, s2 =
a, b, c, respectively. Then, for p = 3, W3 = {18, 16, 9, 7}, W3,0 = {18, 9}, W3,0,0 =
{18, 9} ⇒ F2(a, π3,0(T)) = 2 which conforms to the results obtained previously.
As another example, if T = cabccbacd where n = 9, σ = 4, and s0, s1, s2, s3 =
a, b, c, d, respectively, then for p = 4, W4 = {18, 6}, W4,2 = {18, 6}, W4,2,0 =
{18} ⇒ F2(c, π4,0(T)) = 1, and W4,2,3 = {6} ⇒ F2(c, π4,3(T)) = 1 which are
correct since π4,0(T) = ccd and π4,3(T) = cc.

One final detail about our algorithm is the use of the values wp,h to estimate
the support of the candidate periodic patterns formed according to Definition 3.
Let sj0sj1 . . . sjp−1 be a candidate periodic pattern that is not a single-symbol
pattern nor the “don’t care” pattern, i.e., at least 2 sji

’s are not §. The set Wp,ji,i

contains the values responsible for the symbol sji
6= §. Let W p be a subset of

the Cartesian product of the sets Wp,ji,i for all i where sji
6= § such that all

the values in an ordered pair should have the same value of bn−p−1−bwp,h/σc
p c.

The support estimate of that candidate periodic pattern is |W p|
bn/pc . For example,

if T = abcabbabcb, W3,0,0 = {18, 9} corresponds to the symbol a, and W3,1,1 =
{16, 7} corresponds to the symbol b, then for the candidate periodic pattern ab§,
W p = {(18, 16), (9, 7)}, and the support of this pattern is 2/3.

Therefore, our algorithm scans the time series once to convert it into a binary
vector according to the proposed mapping, performs the modified convolution
on the binary vector, and analyzes the resulting values to determine the symbol
periodicities and consequently the periodic single-symbol patterns. Then, the
set of candidate periodic patterns is formed and the support of each pattern is
estimated.

The complexity of our algorithm is the complexity of the convolution step,
which is O(n log n) when performed using FFT. Note that adding the coefficient
2j to the convolution definition still preserves that

x⊗ y =FFT−1
(
FFT(x)·FFT(y)

)
.

The complete algorithm is sketched in Fig. 2.

4 Experimental Study

This section contains the results of an extensive experimental study that ex-
amines the proposed obscure periodic patterns mining algorithm for different
aspects. The most important aspect is the correctness of the symbol periodicity
detection phase, which is studied solely in Sect. 4.1. Then, the time perfor-
mance of the proposed obscure periodic patterns mining algorithm is studied in
Sect. 4.2. As data inerrancy is inevitable, Sect. 4.3 scrutinizes the resilience of
the proposed algorithm to various kinds of noise that can occur in time series

Input : a time series T = t0, t1, . . . , tn−1, and the periodicity threshold ψ.

Output : candidate periodic patterns for T (a pattern and its support

value).

Algorithm :

1. Select an arbitrary ordering for the symbols s0, s1, . . . , sσ−1.

2. From T, obtain a binary vector T̄ by replacing every symbol sk by the

σ-bit binary representation of 2k.

3. Compute the sequence CT̄ where cT̄
i =

∑i

j=0
2j t̄j · t̄i−j, and consequently

CT = πσ,0(C
T̄).

4. For p = 1, 2, . . . , n/2,
(a) compute the set Wp = {wp,1, wp,2, . . .} where cT

p =
∑

h
2wp,h,

(b) for k = 0, 1, . . . , σ−1, and l = 0, 1, . . . , p−1, compute the sets Wp,k and

Wp,k,l as defined, and consequently the values of F2(sk, πp,l(T)),

(c) if
F2(sk,πp,l(T))

d(n−l)/pe−1
≥ ψ, then p is a candidate period for the symbol sk

at position l.

(d) form and output the periodic single-symbol patterns according to

Definition 2.

(e) form the set of candidate periodic patterns according to

Definition 3, calculate the support of each as defined, and output

those whose support values are not less than the periodicity

threshold.

Fig. 2. The obscure periodic patterns mining algorithm

data. The practicality and usefulness of the results are explored using real data
experiments shown in Sect. 4.4. Moreover, the periodic trends algorithm of [13]
is chosen to be compared versus our proposed algorithm throughout the experi-
ments. As discussed earlier in Sect. 1.1, the periodic trends algorithm of [13] is
the fastest among the ones in the literature that detects all the valid candidate
periods.

In our experiments, we exploit synthetic data as well as real data. We generate
controlled synthetic time series data by tuning some parameters, namely, data
distribution, period, alphabet size, type, and amount of noise. Both uniform and
normal data distributions are considered. Types of noise include replacement,
insertion, deletion, or any combination of them. Inerrant data is generated by
repeating a pattern, of length equal to the period, that is randomly generated
from the specified data distribution. The pattern is repeated till it spans the
specified time series length. Noise is introduced randomly and uniformly over
the whole time series. Replacement noise is introduced by altering the symbol at
a randomly selected position in the time series by another. Insertion or deletion
noise is introduced by inserting a new symbol or deleting the current symbol at
a randomly selected position in the time series.

Two databases serve the purpose of real data experiments. The first one
is a relatively small database that contains the daily power consumption rates
of some customers over a period of one year. It is made available through the
CIMEG3 project. The database size is approximately 5 Megabytes. The second
database is a Wal-Mart database of 70 Gigabytes, which resides on an NCR
Teradata Server running the NCR Teradata Database System. It contains san-
itized data of timed sales transactions for some Wal-Mart stores over a period
of 15 months. The timed sales transactions data has a size of 130 Megabytes. In
both databases, the numeric data values are discretized4 into five levels, i.e., the
alphabet size equals to 5. The levels are very low, low, medium, high, and very
high. For the power consumption data, discretizing is based on discussions with
domain experts (very low corresponds to less than 6000 Watts/Day, and each
level has a 2000 Watts range). For the timed sales transactions data, discretiz-
ing is based on manual inspection of the values (very low corresponds to zero
transactions per hour, low corresponds to less than 200 transactions per hour,
and each level has a 200 transactions range).

4.1 Verification of Correctness

Synthetic data, both inerrant and noisy, are used in this experiment in order
to inspect the correctness of the proposed algorithm. The correctness measure
will be the ability of the algorithm to detect the symbol periodicities that are
artificially embedded into the synthetic data. Figure 3 gives the results of this
experiment. We use the symbols “U” and “N” to denote the uniform and the
normal distributions, respectively; and the symbol “P” to denote the period.
Recall that inerrant synthetic data is generated in such a way that it is per-
fectly periodic, i.e., the symbol periodicities are embedded at periods P, 2P,
The confidence is the minimum periodicity threshold value required to detect a
specific period. If the data is perfectly periodic, the confidence of all the period-
icities should be 1. Time series lengths of 1M symbols are used with alphabet
size of 10. The values collected are averaged over 100 runs. Figure 3(a) shows
that the algorithm is able to detect all the embedded periodicities in the inerrant
time series data with the highest possible confidence. Although Fig. 3(b) shows
an expected decrease in the confidence values due to the presence of noise, the
values are still high enough (above 70%) to consider the algorithm as correct.
Figure 3(b) shows also an unbiased behavior of the algorithm with respect to
the period unlike the algorithm of [13] as shown in Fig. 4.

Figure 4 gives the results of the same experiment for the periodic trends
algorithm of [13]. However, in order to inspect the correctness of that algorithm,
we will briefly discuss its output. The algorithm computes an absolute value

3 CIMEG: Consortium for the Intelligent Management of the Electric Power Grid.
http://helios.ecn.purdue.edu/∼cimeg.

4 The problem of discretizing time series into a finite alphabet is orthogonal to our
problem and is beyond the scope of this paper (see [9] for an exhaustive overview of
discretizing techniques).

P 2P 3P . . .

Period

0.50

0.60

0.70

0.80

0.90

1.00

C
o
n

fi
d

e
n

c
e

U, P=25

N, P=25

U, P=32

N, P=32

(a) Inerrant Data

P 2P 3P . . .

Period

0.50

0.60

0.70

0.80

0.90

1.00

C
o
n

fi
d

e
n

c
e

U, P=25

N, P=25

U, P=32

N, P=32

(b) Noisy Data

Fig. 3. Correctness of the obscure periodic patterns mining algorithm

for each possible period, and then it outputs the periods that correspond to
the minimum absolute values as the most candidate periods. In other words,
if the absolute values are sorted in ascending order, the corresponding periods
will be ordered from the most to the least candidate. Therefore, it is the rank
of the period in this candidacy order that favors a period over another rather
than its corresponding absolute value. Normalizing the ranks to be real-valued
ranging from 0 to 1 is trivial. The normalized rank can be considered as the
confidence value of each period (the most candidate period that has rank 1 will
have normalized rank value of 1, and less candidate periods that have lower
ranks will have lower normalized rank values). This means that if the data is
perfectly periodic, the embedded periodicities should have the highest ranks
and so confidence values close to 1. Figure 4(b) shows a biased behavior of the
periodic trends algorithm with respect to the period, as it favors the higher
period values. However, we believe that the smaller periods are more accurate
than the larger ones since they are more informative. For example, if the power
consumption of a specific customer has a weekly pattern, it is more informative
to report the period of 7 days than to report the periods of 14, 21, or other
multiples of 7.

4.2 Time Performance

As mentioned earlier, our proposed algorithm is the only one that mines periodic
patterns with unknown period in one pass. Having said that, there is no direct
time performance comparison between our proposed algorithm and the ones in
the literature. However, we compare the time behavior of the periodic trends
algorithm of [13] to that of the periodicity detection phase of our proposed
algorithm.

P 2P 3P . . .

Period

0.50

0.60

0.70

0.80

0.90

1.00

C
o
n

fi
d

e
n

c
e

U, P=25

N, P=25

U, P=32

N, P=32

(a) Inerrant Data

P 2P 3P . . .

Period

0.50

0.60

0.70

0.80

0.90

1.00

C
o

n
fi
d

e
n

c
e

U, P=25

N, P=25

U, P=32

N, P=32

(b) Noisy Data

Fig. 4. Correctness of the periodic trends algorithm

0.001 0.01 0.1 1 10 100 1000

Time−Series Size (Megabytes) (Logarithmic Scale)

1

10

100

1000

10000

100000

1000000

E
x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

(L
o
g

a
ri
th

m
ic

 S
c
a

le
) Obscure Periodic Patterns Mining

Periodic Trends

Fig. 5. Time behavior of the obscure periodic patterns mining algorithm

Figure 5 exhibits the time behavior of both algorithms with respect to the
time series length. Wal-Mart timed sales transactions data is used in different
portion lengths of powers of 2 up to 128 Megabytes. Figure 5 shows that the exe-
cution time of our proposed algorithm is linearly proportional to the time series
length. More importantly, the figure shows that our proposed algorithm out-
performs the periodic trends algorithm of [13]. This experimental result agrees
with the theoretical results as the periodic trends algorithm [13] performs in
O(n log2 n) time whereas our proposed algorithm performs in O(n log n) time.

4.3 Resilience to Noise

As mentioned before, there are three types of noise: replacement, insertion and
deletion noise. This set of experiments studies the behavior of the proposed

0.00 0.10 0.20 0.30 0.40 0.50

Noise Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n

fi
d

e
n

c
e

R I D

R

I D

I

D

(a) Uniform, Period=25

0.00 0.10 0.20 0.30 0.40 0.50

Noise Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n

fi
d

e
n

c
e

R I D

R

I D

I

D

(b) Normal, Period=32

Fig. 6. Resilience to noise of the obscure periodic patterns mining algorithm

obscure periodic patterns mining algorithm towards these types of noise as well
as different combinations of them. Results are given in Fig. 6 in which we use
the symbols “R”, “I”, and “D” to denote the three types of noise, respectively.
Two or more types of noise can be combined, e.g., “R I D” means that the
noise ratio is distributed equally among replacement, insertion, and deletion,
while “I D” means that the noise ratio is distributed equally among insertion
and deletion only. Time series lengths of 1M symbols are used with alphabet
size of 10. The values collected are averaged over 100 runs. Since the behaviors
were similar regardless of the period or the data distribution, an arbitrarily
combination of period and data distribution is chosen. Figure 6 shows that the
algorithm is very resilient to replacement noise. At 40% periodicity threshold,
the algorithm can tolerate 50% replacement noise in the data. When the other
types of noise get involved separately or with replacement noise, the algorithm
performs poorly. However, the algorithm can still be considered roughly resilient
to those other types of noise since periodicity thresholds in the range 5% to 10%
are not uncommon.

4.4 Real Data Experiments

Tables 1, 2 and 3 display the output of the obscure periodic patterns mining
algorithm for the Wal-Mart and CIMEG data for different values of the period-
icity threshold. We examine first the symbol periodicities in Table 1 and then
the periodic patterns in Tables 2 and 3. Clearly, the algorithm outputs fewer
periodic patterns for higher threshold values, and the periodic patterns detected
with respect to a certain value of the periodicity threshold are enclosed within
those detected with respect to a lower value. To verify its correctness, the algo-
rithm should at least output the periodic patterns of periods that are expected

Table 1. Period values

Periodicity Wal-Mart Data CIMEG Data
Threshold # Some # Some

(%) Periods Periods Periods Periods

50 3164 263, 409 103 20, 34

55 2777 337, 385 95 128

60 2728 481 95 7, 46

65 2612 503 87 14, 54

70 2460 505 80 32

75 2447 577 79 28, 52

80 2328 647 74 38

85 2289 791 72 116

90 2285 721 72 21

95 2281 24, 168 71 35, 73

Table 2. Periodic single-symbol patterns

Periodicity Wal-Mart Data CIMEG Data
Threshold Period=24 Period=7

(%) # Patterns Patterns # Patterns Patterns

50 13 (b,5), (d,17) 2 (a,3)

55 11 (b,8) 1 (b,2)
60 10 (b,6), (c,9) 1

65 8 (a,21) 0
70 7 (a,3) 0
75 6 (b,7) 0
80 6 0
85 5 (a,0), (a,1), 0
90 5 (a,2), (a,22) 0
95 5 (a,23) 0

in the time series. Wal-Mart data has an expected period value of 24 that cor-
responds to the daily pattern of number of transactions per hour. CIMEG data
has an expected period value of 7 that corresponds to the weekly pattern of
power consumption rates per day.

Table 1 shows that for Wal-Mart data, a period of 24 hours is detected when
the periodicity threshold is 70% or less. In addition, the algorithm detects many
more periods, some of which are quite interesting. A period of 168 hours (24×7)
can be explained as the weekly pattern of number of transactions per hour. A
period of 3961 hours shows a periodicity of exactly 5.5 months plus one hour,
which can be explained as the daylight savings hour. One may argue against the
clarity of this explanation, yet this proves that there may be obscure periods,
unknown a priori, that the algorithm can detect. Similarly, for CIMEG data,
the period of 7 days is detected when the threshold is 60% or less. Other clear
periods are those that are multiples of 7. However, a period of 123 days is difficult
to explain.

Table 3. Periodic patterns for Wal-Mart data

Periodic Pattern Support (%)

aaaa§§§§§§§§§§§§§§§§§aaa 49.78166

aaaa§§§b§§§§§§§§§§§§§aaa 42.57642

aaaa§§§b§§§§§§§§§d§§§aaa 38.56768

§§§§§bbbbc§§§§§§§§§§§§aa 35.80786

Exploring the period of 24 hours for Wal-Mart and that of 7 days for CIMEG
data produces the results given in Table 2. Note that periodic single-symbol
pattern is reported as a pair, consisting of a symbol and a starting position
for a certain period. For example, (b,7) for Wal-Mart data with respect to a
periodicity threshold of 80% or less represents the periodic single-symbol pattern
§§§§§§§b§§§§§§§§§§§§§§§§. Knowing that the symbol b represents the low level for
Wal-Mart data (less than 200 transactions per hour), this periodic pattern can
be interpreted as less than 200 transactions per hour occur in the 7th hour of
the day (between 7:00am and 8:00am) for 80% of the days. As another example,
(a,3) for CIMEG data with respect to a periodicity threshold of 50% or less
represents the periodic single-symbol pattern §§§a§§§. Knowing that the symbol
a represents the very low level for CIMEG data (less than 6000 Watts/Day), this
periodic pattern can be interpreted as less than 6000 Watts/Day occur in the
4th day of the week for 50% of the days. Finally, Table 3 gives the final output
of periodic patterns of Wal-Mart data for the period of 24 hours for periodicity
threshold of 35%. Each pattern can be interpreted in a similar way to the above.

5 Conclusions

In this paper, we have developed a one pass algorithm for mining periodic pat-
terns in time series of unknown or obscure periods, where discovering the periods
is part of the mining algorithm. Based on an adapted definition of convolution,
the algorithm is computationally efficient as it scan the data only once and takes
O(n log n) time, for a time series of length n. We have defined the periodic pat-
tern in a novel way that the period is a variable rather than an input parameter.
An empirical study of the algorithm using real-world and synthetic data proves
the practicality of the problem, validates the correctness of the algorithm, and
the usefulness of its output patterns.

References

1. K. Abrahamson. Generalized String Matching. SIAM Journal on Computing, Vol.
16, No. 6, pages 1039-1051, 1987.

2. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proc.
of the 20th Int. Conf. on Very Large Databases, Santiago, Chile, September 1994.

3. R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of the 11th Int.
Conf. on Data Engineering, Taipei, Taiwan, March 1995.

4. W. Aref, M. Elfeky, and A. Elmagarmid. Incremental, Online, and Merge Mining of
Partial Periodic Patterns in Time-Series Databases. To appear in IEEE Transactions
on Knowledge and Data Engineering.

5. J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequential Pattern Mining using A
Bitmap Representation. In Proc. of the 8th Int. Conf. on Knowledge Discovery and
Data Mining, Edmonton, Alberta, Canada, July 2002.

6. C. Berberidis, W. Aref, M. Atallah, I. Vlahavas, and A. Elmagarmid. Multiple and
Partial Periodicity Mining in Time Series Databases. In Proc. of the 15th Euro.
Conf. on Artificial Intelligence, Lyon, France, July 2002.

7. C. Bettini, X. Wang, S. Jajodia, and J. Lin. Discovering Frequent Event Patterns
with Multiple Granularities in Time Sequences. IEEE Transactions on Knowledge
and Data Engineering, Vol. 10, No. 2, pages 222-237, 1998.

8. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press,
Cambridge, MA, 1990.

9. C. Daw, C. Finney, and E. Tracy. A Review of Symbolic Analysis of Experimental
Data. Review of Scientific Instruments, Vol. 74, No. 2, pages 915-930, 2003.

10. M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential Pattern Mining
with Regular Expression Constraints. In Proc. of the 25th Int. Conf. on Very Large
Databases, Edinburgh, Scotland, UK, September 1999.

11. J. Han, G. Dong, and Y. Yin. Efficient Mining of Partial Periodic Patterns in
Time Series Databases. In Proc. of the 15th Int. Conf. on Data Engineering, Sydney,
Australia, March 1999.

12. J. Han, W. Gong, and Y. Yin. Mining Segment-Wise Periodic Patterns in Time
Related Databases. In Proc. of the 4th Int. Conf. on Knowledge Discovery and Data
Mining, New York City, New York, August 1998.

13. P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying Representative Trends in
Massive Time Series Data Sets Using Sketches. In Proc. of the 26th Int. Conf. on
Very Large Data Bases, Cairo, Egypt, September 2000.

14. E. Keogh, S. Lonardi, and B. Chiu. Finding Surprising Patterns in a Time Series
Database in Linear Time and Space. In Proc. of the 8th Int. Conf. on Knowledge
Discovery and Data Mining, Edmonton, Alberta, Canada, July 2002.

15. D. Knuth. The Art of Computer Programming, Vol. 2. Addison-Wesley, Reading,
MA, 1981.

16. S. Ma and J. Hellerstein. Mining Partially Periodic Event Patterns with Unknown
Periods. In Proc. of the 17th Int. Conf. on Data Engineering, Heidelberg, Germany,
April 2001.

17. B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic Association Rules. In Proc.
of the 14th Int. Conf. on Data Engineering, Orlando, Florida, February 1998.

18. R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Per-
formance Improvements. In Proc. of the 5th Int. Conf. on Extending Database Tech-
nology, Avignon, France, March 1996.

19. J. Vitter. External Memory Algorithms and Data Structures: Dealing with Massive
Data. ACM Computing Surveys, Vol. 33, No. 2, pages 209-271, June 2001.

20. J. Yang, W. Wang, and P. Yu Mining Asynchronous Periodic Patterns in Time
Series Data. In Proc. of the 6th Int. Conf. on Knowledge Discovery and Data Mining,
Boston, Massachusetts, August 2000.

