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A B S T R A C T

In this study, we introduce PlantSegNet, a novel neural network model for instance segmentation of nearby
objects with similar geometric structures. Our work addresses the challenges of instance segmentation of
plant point clouds, including the difficulty of annotating and labeling point clouds, the loss of local structural
information in neural network components, and the generation of large numbers of incorrect small clusters
due to poor choices of the loss function. One of the key contributions of our approach is a digital twin of
sorghum, i.e., a procedural sorghum model, which was used to generate point clouds of sorghum fields. This
allowed us to create a large-scale, annotated, synthetic dataset of sorghum plants that we used to train our
PlantSegNet model. We demonstrated the effectiveness of our method in segmenting instances of sorghum
leaves grown in outdoor field settings. To the best of our knowledge, this is the first study to address this
specific instance segmentation problem for plants grown in such a setting. We compared our proposed method
with other state-of-the-art methods for indoor settings, including SGPN and TreePartNet, on both synthetic
and real data. Our results show that PlantSegNet outperforms these methods regarding accuracy, robustness,
and efficiency.
1. Introduction

1.1. Problem definition

Automated acquisition and analysis of plant phenotypes are critical
in studying plant biology and genetics (Zarei et al., 2022). 3D plant
structure and characteristics are among the most important phenotypes
and, simultaneously, one of the most challenging ones to acquire
and analyze (Li et al., 2022b). Point clouds are one of the most
common data acquired, and their analysis is an outstanding problem.
Instance segmentation assigns points to different plant organs, such as
leaves or stems. There have been significant efforts towards instance
segmentation of plants, but it remains challenging for four reasons.
Firstly, labeling point clouds is arduous and complex, leading to a need
for large-scale labeled datasets for segmenting various plant organs.
Secondly, neural network components used in prior works tend to lose
local structural information, resulting in poor segmentation outcomes.
Thirdly, unsuitable choices of loss functions in feature-space-learning
methods can produce an excessive number of incorrect small clusters.

∗ Corresponding author.
E-mail address: ariyanzarei@arizona.edu (A. Zarei).

Finally, most previous studies have focused on plants grown separately
in pots or transplanted during imaging, and no method has been
proposed for segmenting point clouds of plants grown in outdoor field
settings. To overcome these challenges, we introduce PlantSegNet, a
neural network model designed for instance segmentation of nearby
objects with identical semantics, specifically for segmenting instances
of sorghum leaves grown in outdoor field settings. In our study, we
train our proposed neural network structure, i.e., PlantSegNet, on an
extensive synthetic dataset based on realistic computer 3D plant models
(digital twins).

1.2. Related work

Traditional methods for obtaining structural and morphological
plant phenotypes are labor-intensive and time-consuming, making the
process slow and not scalable (Li et al., 2022b; Luo et al., 2022).
With recent advancements in AI-based computer vision techniques,
high-throughput phenotype extraction, especially 3D plant structure
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Fig. 1. The gantry system is located in Maricopa County, Arizona. (left) The gantry moves on two rails (gantry 1 and 2 𝑥-axis). The camera box moves horizontally on the trolley
(𝑦-axis) and vertically on a lifter (𝑧-axis), providing three degrees of freedom. Different crops are grown and scanned daily using various high-resolution sensors and scanners. The
right image shows a view into the camera box with sensors providing RGB color images, point clouds (3D), hyperspectral images (VNIR and SWIR), and images in the range of
690–730 nm (PS2). The setup also includes an MWIR/LWIR thermal imager (FLIR) mounted outside of the camera box (not shown).
analysis, has gained significant attention in plant and computer science
communities.

Image-based analysis of plant phenotypes has been widely studied,
and these methods have limitations in measuring plant structural char-
acteristics due to the single view and plant organ occlusion (Luo et al.,
2022) or full reconstruction (Li et al., 2021). With the introduction of
3D laser scanners and improvements in 3D computer vision techniques,
researchers have shifted their focus towards 3D plant structure extrac-
tion and analysis using point clouds. Segmentation of individual plant
organs is a key component of this analysis and enables the computation
of 3D structural characteristics such as leaf dimensions, curvature, and
angles (Li et al., 2022b).

While the fundamentals of 3D point cloud analysis, including in-
stance and semantic segmentation, have been studied, there have been
fewer efforts in segmenting plant point clouds that require separating
different instances of plant organs in close proximity. Our motivating
context is assessing how different water-stress treatments of 9,000
individual Sorghum plants of different genotypes grown in outdoor
fields affect their structural characteristics. This requires accurately
segmenting different instances of leaves in the plants. We obtained 3D
point cloud data using two custom-built laser scanners mounted on
a specialized, ground-based gantry system that scans a two-acre field
throughout the day and night (see Fig. 1).

Several research studies have investigated instance segmentation of
plant organs through conventional machine learning techniques, such
as geometry-based (Wu et al., 2013) or octree-based methods (Duan
et al., 2016). However, these methods are hindered by manual param-
eter tuning, which is both laborious and time-consuming, making them
impractical for large-scale applications. Meanwhile, applying neural
networks and deep learning for this task is limited and challenging
due to the significant amount of labeled data that these methods
require. Labeling vast quantities of 3D point cloud datasets is tedious
and time-consuming, mainly due to the absence of a user-friendly 3D
point cloud annotation tool. Therefore, the few existing neural network
approaches for segmenting plant organs are either weakly supervised,
like in Luo et al. (2022), or are solely trained on synthetic datasets,
such as TreePartNet (Liu et al., 2021b).

Generally, 3D geometric structures can be stored in various repre-
sentations, such as 3D point clouds, depth images, volumetric grids,
and meshes. Deep learning methods for 3D data can be categorized
based on the input data representation and the feature extraction
strategies utilized to enable appropriate inferences. Point clouds are
prevalent among the different 3D data representations because they
can be readily captured by accessible technology. However, compared
to other data modalities such as images, videos, and text, analyzing
objects within 3D point clouds using deep learning methods is more
challenging due to its unstructured nature (Guo et al., 2020). Working
with point clouds has been challenging because isolated points do
not capture the topological properties of the underlying geometry.
2

Although many efforts have addressed this challenge, the whole 3D
geometry reconstruction from point clouds is still an important open
problem. One fundamental problem exacerbating this issue is the lack
of labeled data.

Another class of related methods includes unsupervised or self-
supervised learning for point cloud pre-training. The point cloud pre-
training (Yamada et al., 2022) generates a point cloud fractal database
inspired by fractal self-similarity across scales. The PointVST (Zhang
and Hou, 2023) uses the duality between images and point clouds to
learn features in the regular image domain as opposed to irregular im-
ages, and the PointMCD (Zhang et al., 2023a) introduces the visibility-
aware feature projection to aggregated point-wise embeddings into
view-specific geometric descriptors. Zhang et al. (2023b) introduced
the 2D point geometry image to flatten the point clouds. Many methods
used masking and transformers (e.g., Pang et al., 2022) to improve
learning. These methods could alleviate the need for synthetic data.

Deep learning methods for 3D data can be classified into three main
categories for point cloud classification and segmentation: Projection-
Based, Volumetric-Based, and Point-Based. Projection-based methods,
also known as multi-view-based methods, project the 3D point cloud
into multiple views and learn view-wise features for classification or
segmentation. There have been many efforts to address the challenges
of this class of methods dealing with information loss due to the
projection and properly extracting a global feature vector by fusing
the view-wise features. Examples of these methods include but are not
limited to MVCNN (Su et al., 2015), MHBN (Yu et al., 2018), and
View-GCN (Wei et al., 2020). Volumetric-based methods, on the other
hand, convert the point clouds into a 3D grid of voxels and use 3D
convolution neural networks (CNN) for classification or segmentation.
Although VoxNet (Maturana and Scherer, 2015) and 3DShapeNets (Wu
et al., 2015) have shown promising results, they are computationally
and memory inefficient due to the voxelized representation, and they
do not work with stochastic geometries. Additionally, Riegler et al.
(2017), and Wang et al. (2017) employed Octrees to address the fixed
resolution of the voxel-based methods.

Point-based methods work with pure, unordered point clouds and
can be categorized into groups based on their approach to learning local
structural relations between the points. One of the earliest efforts in
classifying and semantically segmenting 3D objects in point clouds is
the PointNet method (Qi et al., 2017a). They discussed the limitations
of volumetric-based methods to analyze 3D data and introduced a neu-
ral network architecture for classifying and semantically segmenting 3D
point clouds. PointNet uses a small alignment network at the beginning
of its architecture to transform the input points into a canonical space,
which makes it invariant to rigid transformations. Following that,
PointNet learns per-point features using multiple shared MLPs. Finally,
to make the model permutation invariant and address the unordered
point cloud format, a symmetry function (max pooling) is applied to the
per-point features to obtain a global feature for the whole point cloud.
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The global feature is fed into a dense MLP network for classification
to obtain the final class. The global feature is concatenated with the
per-point features for semantic segmentation and passed through two
more shared MLP networks to obtain per-point class labels.

PointNet does not consider the local relations between neighbor-
ing points, as each point learns the features individually. To tackle
this limitation, Qi et al. (2017b) introduced a hierarchical method
called PointNet++. Unlike PointNet, instead of max pooling the per-
oint features, which in turn results in losing local structural relations,
ointNet++ proposes a hierarchical grouping of points using farthest-
oint sampling. At each level of this hierarchy, points are grouped using
distance-based approach to form neighborhood balls with overlaps.

he points in each group are then processed using a simplified version
f PointNet to extract local features. This process is repeated recursively
ntil a global feature vector is generated. For classification, the global
eature representation is passed through a set of fully connected layers
o determine the class scores. At the same time, for semantic segmen-
ation, a hierarchical propagation strategy is used to interpolate the
er-point labels based on their distance back to the original input. By
dopting this approach, PointNet++ successfully records and uses local
tructural relations between neighboring points, which are not taken
nto account in PointNet.

The PointNet++ method has limitations in capturing local structural
nformation, which led to the introduction of graph-based approaches,
subgroup of point-based methods. Dynamic Graph Convolution Neu-

al Networks (DGCNN) (Wang et al., 2019b), a widely used graph-based
eural network for classification and semantic segmentation, intro-
uced EdgeConv, a novel idea for simulating the convolution operation
n point clouds. EdgeConv creates a directed graph using KNN to
epresent the local structure and vicinity of the points. An ‘‘edge
eature’’ function calculates features for each edge of this graph using
he geometrical relations between the points rather than raw values of
he input space. The parameters of this non-linear function are learned
sing a shared MLP. The edge features of each point are then merged
sing a symmetry function like max pooling, making the whole process
imilar to convolution. The DGCNN structure is a stack of EdgeConv
ayers, with dynamically updating neighborhood graphs, max pooling
perations, and a spatial transform network initially, similar to Point-
et. EdgeConv’s ability to capture local structural features of point
louds is also used in our work. Several methods have been introduced
o learn point clouds using graph neural networks. Grid-GCN (Xu et al.,
020) uses a novel coverage-aware grid query on regular grids to im-
rove spatial coverage, and Zhou et al. (2021) introduced a method that
aries the size of the point cloud kernels according to their dynamically
earned features. The RegGeoNet (Zhang et al., 2022) is suitable for
arge-scale point clouds as it parameterizes an unstructured point set
nto a regular deep geometry image. The transformer has been applied
o learning point clouds in Zhao et al. (2021) and extended to point
loud classification in Lai et al. (2022).

Our work focuses primarily on instance segmentation, which is more
hallenging than semantic segmentation because it requires a more
recise understanding of the points. Two main approaches exist, for
nstance the segmentation of objects in 3D point clouds: proposal-
ased and proposal-free methods. In proposal-based methods, an object
etection module first obtains or proposes the boundaries of the objects
n the scene, followed by another module that generates instance masks
or each proposed bounding box (Hou et al., 2019; Yi et al., 2019;
ang et al., 2019). Conversely, proposal-free methods do not rely on
bject detection but directly work on discriminative feature learning
nd point grouping. One of the pioneering works in this field is the
imilarity Group Proposal Network (SGPN) by Wang et al. (2018),
hich reduces the problem of instance segmentation to learning a
iscriminative embedding space. SGPN learns a feature embedding for
ll the points using a feed-forward neural network similar to PointNet.
3

t generates a similarity matrix between each pair of points by taking
the 𝐿2 norm of their feature vectors in the embedding space. A double-
hinge loss function is applied to the similarity matrix to enforce the
distance between points belonging to the same instance to be below a
threshold. Besides SGPN, there have been some other efforts in doing
proposed free instance segmentation, most of which through learning
a feature embedding for the points (Wang et al., 2019a; Pham et al.,
2019; Liang et al., 2020). We adopt the idea of learning a discriminative
feature space in our work.

The instance segmentation methods mentioned in the previous para-
graph primarily focus on general 3D objects and commonly used bench-
mark datasets such as S3DIS (Armeni et al., 2016) and PartNet (Mo
et al., 2019a). However, our specific application is the segmentation of
instances of nearby objects that share the same semantics and similar
shapes, specifically segmenting different instances of leaves in sorghum
plants. Previous research has also explored this topic in recent years.
For example, Li et al. (2022b) presented DeepSeg3DMaize, a high-
throughput plant point cloud instance segmentation method. Their
dataset was generated using the multiview stereo technique (Wu et al.,
2020) and includes point clouds of individual plants with a fixed
number of leaves (3, 6, 9, and 12) transplanted from the field into
pots, which results in point clouds that are clear and free of extraneous
objects. As the number of leaves is known, the instance segmentation
is simplified to semantic segmentation with a fixed number of classes.
They proposed using a PointNet structure for the segmentation of
organs.

Luo et al. (2022) developed Eff-3DPSeg, a weakly supervised frame-
work for segmenting plant organs in soybean to extract plant phe-
notypic traits at the organ level. Like DeepSeg3DMaize, they used a
multiview stereo to produce point clouds from the crops grown in
separate pots. Their model consists of two parts: a self-supervised
SparseConvUnet model with a Viewpoint Bottleneck loss function (Tian
et al., 2022; Luo et al., 2021) that learns plant representations from
unlabeled point clouds and an instance segmentation head with con-
volution layers that are added to the SparseConvUnet backbone and
fine-tuned to cluster the points into different plant organs. Several other
similar works exist, including Label3DMaize (Miao et al., 2021), which
uses Markov Random Fields to offer a semi-automatic toolkit for anno-
tating point clouds obtained from transplanted maize using a multiview
stereo technique; PlantPart (Shi et al., 2019), which introduces a mul-
tiview approach using 2D images for instance segmentation of isolated
individual plant point clouds; and the work of Wang et al. (2022),
which focuses on organ-level instance segmentation of plant point
clouds using a structure similar to the one proposed in PartNet (Mo
et al., 2019b).

The instance segmentation methods mentioned previously use sim-
ple structures that may lose important structural information between
the points, leading to suboptimal results compared to more advanced
methods like PlantNet (Li et al., 2022a) or TreePartNet (Liu et al.,
2021b). PlantNet presents a multitasking model that simultaneously
performs semantic and instance segmentation on a dataset of various
plant species grown in separate pots. Their proposed neural network
structure has two branches for semantic and instance segmentation
tasks. It comprises a shared encoder that includes a series of Edge-
Conv layers, two decoder MLP-based pathways to up-sample encoded
space, a feature fusion module that merges the instance and semantic
segmentation embedding spaces, and a loss function similar to SGPN.
Additionally, they propose a 3D Edge-Preserving Sampling (3DEPS)
method for down-sampling the point cloud that preserves edge infor-
mation. PlantNet’s instance segmentation performance was evaluated
using mean coverage, average precision, and average recall, which we
have also used in our experiment section.

Liu et al. (2021b) proposed an innovative and advanced approach
to instance segmentation of plant organs called TreePartNet. They
designed two neural networks: one to semantically segment tree point

clouds to remove the foliage and the other to segment various instances
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of tree branches, which is the focus of this paper. The authors recog-
nized that labeling a large number of 3D point clouds is impractical, so
they trained their models on a synthetically generated dataset consist-
ing of surface point samples from procedural tree models. To address
the challenge of segmenting tree point clouds into an unknown number
of branches, they utilized PointNet++ to learn per-point contextual
features and create an initial fine clustering with a fixed number of
clusters representing different parts of a branch. These initial clusters
were merged using a jointly learned affinity matrix to form the final
clusters. We provide a comprehensive comparison of our method to this
approach.

1.3. Objectives and contributions

The main objective of this work is to develop a novel algorithm for
point cloud instance segmentation that we call PlantSegNet. Our main
contributions are as follows:

1. A pipeline for generating procedural sorghum models, which we
then use to generate point clouds of sorghum fields.

2. A large-scale, annotated, and synthetic dataset of sorghum plants.
3. PlantSegNet model, a neural network structure for instance seg-

mentation of nearby objects with identical semantics.
4. A demonstration of the effectiveness of training on synthetic data

in learning an efficient feature embedding space for real data.

Additionally, our proposed technique addresses the challenge of
instance segmentation of nearby objects with similar geometric struc-
tures. We provide details on our proposed method in Section 2, which
includes the synthetic dataset generation pipeline, preprocessing mod-
els, and the PlantSegNet model. Section 3 summarizes our experiments,
parameters, and results, and Section 5 concludes our paper.

2. Proposed method

To measure the structural characteristics of plants, we need to
separate their organs from 3D point clouds. The motivation behind
this research is segmenting sorghum leaves in 3D point clouds of
plants grown densely in outdoor field settings, which presents several
challenges. First, individual plants are difficult to isolate in the point
clouds due to the dense planting, mutual overlaps, and shading in the
lidar scanning. We address this by proposing a neural network structure
as part of the preprocessing step to semantically segment the point
cloud into three classes: focal plant, non-focal plant, and ground. This
allows us to extract the focal plant and remove unwanted objects in the
scene. Second, labeling the point clouds for deep learning training is a
major obstacle due to the density of the canopies and their proximity to
each other. It is also a very tedious and error-prone task if performed by
humans. To overcome this, we create procedural developmental models
of our field with the crops and use them to generate synthetic point
clouds for annotation. We can also generate the corresponding labels
since we have complete control over the generated virtual sorghum.
The annotated point clouds are then used to train our proposed neural
network models, allowing us to perform accurate organ segmentation
at no additional cost.

2.1. Synthetic data generation

The realistic sorghum digital twin should include two components:
plant geometry (shape and connectivity) and color. However, the point
clouds in our approach only process the plant geometry, so we do not
4

include the plant color.
2.1.1. Sorghum digital twin
We have developed a versatile synthetic 3D sorghum model that can

procedurally generate unlimited 3D sorghum geometries with parts sep-
arated for labeling. Moreover, we also developed the gantry scanning
simulator that generates point cloud data similar to those generated by
the gantry.

Generating realistic shapes is a complex task, and we bootstrap
our simulator by calibrated sorghum skeletons reconstructed by the
algorithm of Gaillard et al. (2020) that is depicted in Fig. 2 (a) on
the right. Each curve is then used as a skeletal curve of a generalized
open cylinder (a sheet) corresponding to the sorghum leaves. The
sheet geometry is generated as a spline surface with high triangular
tessellation (Li et al., 2021, 2023; Lee et al., 2024). Each leaf is
parameterized by adding the waviness and the length of the sheat
and auricle. The leaves are assembled into the plant by positioning
them as the characteristic co-centric pattern shown in Fig. 2 (b). The
sorghum digital twin model has been calibrated by 10k sorghum plants
reconstructed from real plants from a phenotyping facility (Gaillard
et al., 2020). While the synthetic model will vary from real plant
morphology, particularly in small details, the generated geometries are
sufficient for the task presented in this work because they are used to
train a deep neural model.

Once detailed sorghum plants are generated, we can create a virtual
field. We randomly choose one of the geolocations of all sorghum in
the field as the world origin, instantiate one procedural 3D sorghum
at the origin, and also a dozen procedural sorghums with the same
descriptor manually designed to fit the appearance and features of the
real sorghum in the field. By placing the synthetic 3D sorghums in
the field according to the list of measured geolocations of sorghum
instances provided by the gantry system, we can provide identical
spacing and arrangement of the sorghums for each synthetic point
cloud. Over 5k sorghum geolocations are recorded for the field. By
varying the sorghum rotation and adding variance to the descriptors,
we generate an unlimited amount of synthetic point clouds with plant
parts labeled (Fig. 3).

2.1.2. Point cloud generation
The synthetic point cloud is generated using an in-house developed

ray tracer that imitates the features of the laser scanners of the gantry
system. The gantry system has a stereo laser system with a resolution
of at least 0.5 mm for all axes. The laser plane of both laser scanners
has an angle of 33.5 ◦ to the normal direction of the ground surface
(see Fig. 4).

Our virtual laser scanner provides similar functionalities by using
the internal ray tracer to scan the target sorghum field from two
directions to simulate the real point cloud with occlusions. The virtual
scanner is set up according to the gantry specifications with an identical
resolution to provide synthetic point cloud data close to the field
measurement. The gantry system also provides accurate geolocation of
each sorghum in the field with high-resolution latitude and longitude.
For the dataset, 64k labeled point clouds were generated from 64k
different 3D sorghum plants as the main plant and ≈1.2M different
3D sorghum plants as surrounding sorghum plants. The point cloud
was downsampled to a resolution of 7.5 mm to capture necessary
information while maintaining valid file sizes. Each point cloud is 5MB.
The age of the procedurally generated plants was set to the age of the
scanned real sorghum. The number of leaves for each plant ranges from
10–20.

2.2. Preprocessing and semantic segmentation model

To perform instance segmentation of leaves in point clouds, we
first remove unwanted objects in the scene, such as ground and non-
focal plants. We utilize a neural network that assigns a semantics
identifier to each point in the point cloud. The network consists of

sequential blocks of EdgeConv layers shown in Fig. 5. EdgeConv is an
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Fig. 2. The sorghum digital twin is a set of co-centric leaves (a) a detailed view in (b–c).
Fig. 3. Top view of the part of the virtual sorghum field captured within the framework (left), and a side view (right).
Fig. 4. The structure of the laser scanner used by the gantry system to provide high
accuracy point clouds.
5

approximation of the convolution operation for point clouds, which
is capable of capturing local structural features. This layer is used in
all of our implemented neural network architectures. The EdgeConv
operation dynamically finds the K nearest neighbors of each feature
point in its input space and forms a graph with these neighbors as the
nodes. It then forms edges between the main point and each neighbor
and calculates edge features using an MLP. Finally, it applies max
pooling on these edge features as a symmetry function to make the
operation permutation invariant. The computation in an EdgeConv
layer is summarized in the following equations:

𝑓 𝑙
𝑖𝑗 = 𝐿𝑅𝑒𝐿𝑈

(

𝜃𝑙(𝑥𝑙−1𝑖 − 𝑥𝑙−1𝑗 ⊕ 𝑥𝑙−1𝑖 )
)

𝑥𝑙𝑖 = 𝑚𝑎𝑥𝑗∈𝑁(𝑖){ 𝑓 𝑙
𝑖𝑗}, (1)

where 𝑥𝑙𝑖 is the 𝑖th point in the output space of the 𝑙th layer, and the
operator ⊕ concatenates vectors. The parameters of the MLP used to
learn features are represented by 𝜃, and 𝑓 𝑙

𝑖𝑗 is the edge feature between
points 𝑖 and 𝑗. The activation function 𝐿𝑅𝑒𝐿𝑈 is used, and 𝑁(𝑖) is the
list of 𝐾 nearest neighbors of point 𝑖. The vectors concatenated by ⊕
convey local and global structural information to the network, enabling
the network to learn more effective embedding features for each point.

2.3. PlantSegNet model

Instance segmentation is a challenging task due to the unknown
number of instances in a scene. Different methods have addressed this
issue in various ways. For example, TreePartNet (Liu et al., 2021b)
assumes a fixed upper limit on the possible number of instances,
segments the point cloud into that number of clusters, and then merges
the clusters based on their similarity. Other methods like SGPN (Wang
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Fig. 5. The structure of the semantic segmentation model used in preprocessing the
data for removing the points associated with the ground and non-focal plants.

et al., 2018) reduce instance segmentation to the problem of learning
a feature embedding space, where points associated with the same
instance are close to each other. We introduce PlantSegNet, a neural
network for point-based instance segmentation with a novel loss func-
tion that adopts the latter approach to address the challenges of this
task.

In contrast to SGPN (Wang et al., 2018), which uses a similar
approach to our method to address the unknown number of instances,
we chose not to combine semantic segmentation with instance segmen-
tation in a single network since we found that the required features are
distinct between the two tasks in our specific scenario. Furthermore,
instead of using PointNet (Qi et al., 2017a) and PointNet++ (Qi et al.,
2017b), as in SGPN, we utilized EdgeConv operations as the building
blocks of our instance segmentation network, as we found them to be
highly effective in learning structural features. Using a sequence of
EdgeConv operations and our novel, robust loss function, PlantSegNet
learns a latent space in which the points belonging to the same instance
are situated close together. Ultimately, a similarity matrix is calculated
in this space between all point pairs, which is leveraged during the
training phase for estimating the loss function. Fig. 6 illustrates the
proposed structure for instance segmentation.

2.3.1. Robust loss function
We propose a robust loss function to address the challenge of ambi-

guity in the feature space for points that belong to different instances
but are in close proximity. This is a hurdle in instance segmentation
by learning embedding spaces. Points on instance boundaries may be
difficult to separate in the embedding space, especially around junction
points. To tackle this issue, our proposed loss function penalizes mis-
takes more strictly in the areas around the junction points and on the
points close to each other, but not in the same instance. We accomplish
this by defining a piecewise function:

𝐿𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

|𝐹𝑖 − 𝐹𝑗 |2, 𝐶𝑖 = 𝐶𝑗
|𝑃𝑖−𝑃𝑗 |−12
|𝐹𝑖−𝐹𝑗 |2

, 𝐶𝑖 ≠ 𝐶𝑗

⎫

⎪

⎬

⎪

⎭

𝐿 = 1
𝑁2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝐿𝑖𝑗 , (2)

where 𝐹𝑖 represents the learned feature embedding for a given point
𝑖, 𝐶𝑖 is the ground truth cluster label for that point, and 𝑃𝑖 is the
coordinate of the point in 3D space, 𝐿𝑖𝑗 represents the loss between
the pair of points 𝑖 and 𝑗, 𝑁 is the total number of points, and 𝐿 is the
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total loss which is the average over all possible pairs. By minimizing the
total loss value 𝐿, we optimize for the best parameters of the network.

This function applies a penalty to the model that is proportional
to the distances between the feature vectors of points belonging to
the same instance and inversely proportional to the feature vector
distance for points belonging to different clusters. To impose more
severe penalties on the poor feature vectors of points in the junction
areas, the model adds more penalties by multiplying the inverse of the
Euclidean distance between the point locations.

In contrast to the double-hinge loss function proposed in SGPN,
which does not penalize the feature vector difference between points
that fall below or above a threshold, our continuous loss function
pushes the pairwise distances to their appropriate limits. It applies even
stricter penalties on the points around the junction areas. Moreover,
points in the hinge loss function domain with undefined left and right
derivatives may negatively impact the training optimization.

2.4. Final clustering during inference and test

The PlantSegNet model transforms points into a feature embed-
ding space where instances can be more easily distinguished. How-
ever, the model does not directly provide a cluster label for each
point; additional processing of the embedding space is required for this
purpose.

Various clustering methods can be applied to assign per-point in-
stance labels. We use DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) (Ester et al., 1996) to create cluster labels from
the embedding space. DBSCAN groups the points sufficiently close to
one another and have a minimum number of points in the cluster. This
step is only performed during inference to generate prediction labels
and evaluate performance metrics.

3. Experiments and results

To test the efficacy of our proposed model, we designed a series of
experiments and measured the performance of our proposed method
on two different datasets. We compared it to the performance of
TreePartNet, the method closest to our use case in terms of application
in the literature. All the experiments are run on a machine with an
AMD EPYC 7542 32-core processor, 1008 GB of RAM, and two NVIDIA
A100 GPUs, each with 40 GB of dedicated memory. The code for our
model, as well as the wrapper for TreePartNet (Liu et al., 2021b), were
developed using PyTorch, and it is publicly available at https://github.
com/ariyanzri/PlantSegNet alongside our labeled synthetic and real
data.

3.1. Dataset

Our primary dataset, which we refer to as the Synthetic Sorghum
Dataset, comprises 64,000 synthetically generated point clouds of
sorghum plants. We split this dataset into training, validation, and
test sets with sizes 38,400, 12,800, and 12,800, respectively. The
point clouds come with two sets of labels, i.e., the per-point semantic
annotations used to segregate the focal plant from non-focal plants and
ground points and the per-point instance annotations that determine
the leaf instance to which each point belongs. All the point clouds
are normalized before being used in the models using the min–max
normalization method separately on each dimension of the 3D space.
Also, all the point clouds are uniformly downsampled to have 8,000
points, so we can fit them in batches and meet GPU memory limitations.
Additionally, to check the performance of the models on unseen data
that represent real sorghum plants, we prepared another small dataset
called the Real Sorghum Dataset. We manually labeled seven point
clouds in this dataset, which are captured and generated by a laser
scanner from sorghum plants grown in an outdoor field setting.

https://github.com/ariyanzri/PlantSegNet
https://github.com/ariyanzri/PlantSegNet
https://github.com/ariyanzri/PlantSegNet
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Fig. 6. The structure of the PlantSegNet model. The EdgeConv block used in the PlantSegNet model is identical to the one used in the semantic segmentation model shown in
Fig. 5. We utilize a novel loss function described in Section 2.3.1 to calculate the loss value and optimize the model weights during the training phase. We apply the DBSCAN
algorithm on the embedding space to assign instance labels to the points during the inference phase.
Furthermore, we conducted a comparative analysis between our
proposed method and TreePartNet (Liu et al., 2021b) using our sorghum
data. To make this possible, we created a modified version of the
synthetic and real sorghum datasets, following the conventions of
TreePartNet. Moreover, we wanted to demonstrate that our model
is versatile and capable of working well with other 3D objects. To
that end, according to PlantSegNet input format requirements, we
developed a modified version of the TreePartNet paper’s dataset named
the Tree Dataset. The Tree Dataset includes 3,521, 440, and 440 point
clouds in the training, validation, and test sets. These datasets are now
publicly available on our GitHub page https://github.com/ariyanzri/
PlantSegNet.

3.2. Data augmentation

To enhance the diversity of our artificially generated dataset and
make it more resilient to the noises present in the real data, we intro-
duce a common noise to each point coordinate in all three dimensions
of the 3D space separately. The noise has a mean of zero and a standard
deviation of 0.01. Furthermore, to improve the effectiveness of the
semantic segmentation task, we randomly remove non-focal plants
from 20% of the point clouds during the training process, which helps
to generate additional point clouds containing only a single plant.

3.3. Metrics

We evaluated the performance of our models using commonly
used metrics for point cloud instance segmentation. In particular, we
used Average Precision (AP), Average Recall (AR), and Mean Cov-
erage (mCov) (Li et al., 2022a). Moreover, we proposed a new set
of pointwise metrics to provide a different perspective on instance
segmentation. Specifically, we introduced Pointwise Precision (PWP),
Pointwise Recall (PWR), Pointwise Accuracy (PWA), and Pointwise
F1 Score (PWF) to evaluate the models’ effectiveness at the point
level. By using both traditional and pointwise metrics, we gained a
comprehensive understanding of our models’ performance.

To compute the instance-level metrics, we must first calculate the
Intersection over Union (IoU) between the predicted and ground truth
instances. Precision and Recall at the instance level are typically re-
ported at specific IoU thresholds, such as 0.5 or 0.75, as in Li et al.
(2022a). The following formulas are used to calculate these metrics:

𝑃𝑟𝑡ℎ = 𝑇𝑃
𝑃𝐼

𝑅𝑒𝑡ℎ = 𝑇𝑃
𝐺𝐼

, (3)

𝑃𝑟𝑡ℎ and 𝑅𝑒𝑡ℎ indicate respectively the instance-level precision and
recall with IoU threshold 𝑡ℎ. The total number of predicted and ground
truth instance pairs with an IoU above a specified threshold (𝑡ℎ) is
represented by 𝑇𝑃 . In contrast, 𝑃𝐼 represents the total number of
predicted instances and 𝐺𝐼 represents the total number of ground
truth instances. Average Precision, 𝐴𝑃 , and Average Recall, 𝐴𝑅, are
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then computed by averaging instance-level Precision and Recall across
various IoU thresholds:

𝐴𝑃 = 1
𝑇

∑

𝑡ℎ∈𝑇
𝑃𝑟𝑡ℎ 𝐴𝑅 = 1

𝑇
∑

𝑡ℎ∈𝑇
𝑅𝑒𝑡ℎ, (4)

where the list of all IoU threshold values is represented by 𝑇 . In our
experiments, we calculated 𝐴𝑃 and 𝐴𝑅 using IoU thresholds of 0.25,
0.5, and 0.75. Mean Coverage 𝑚𝐶𝑜𝑣, on the other hand, is calculated
as:

𝑚𝐶𝑜𝑣 = 1
𝐺𝐼

𝐺𝐼
∑

𝑖=1
𝑚𝑎𝑥|𝑃𝐼|𝑗=1 𝐼𝑜𝑈 (𝐺𝐼𝑖, 𝑃 𝐼𝑗 ), (5)

where 𝐺𝐼𝑖 and 𝑃𝐼𝑗 refer to the 𝑖th ground truth and 𝑗th predicted
instances, respectively. While 𝐴𝑃 and 𝐴𝑅 have been widely used for
instance segmentation and object detection, we devised a different
approach to evaluate the performance of instance segmentation models
at the individual point level by expanding the definitions of 𝑇𝑃 , 𝐹𝑃 ,
𝑇𝑁 , and 𝐹𝑁 to all pairs of points. The four values for each point pair
are calculated as:

𝑇𝑃 =
|

|

|

|

{

(𝑖, 𝑗) ,∀ (𝑖, 𝑗) ∈ [1, 𝑁)2 |𝐶𝑖 = 𝐶𝑗 ∧ 𝑂𝑖 = 𝑂𝑗
} |

|

|

|

𝐹𝑁 =
|

|

|

|

{

(𝑖, 𝑗) ,∀ (𝑖, 𝑗) ∈ [1, 𝑁)2 |𝐶𝑖 = 𝐶𝑗 ∧ 𝑂𝑖 ≠ 𝑂𝑗
} |

|

|

|

𝐹𝑃 =
|

|

|

|

{

(𝑖, 𝑗) ,∀ (𝑖, 𝑗) ∈ [1, 𝑁)2 |𝐶𝑖 ≠ 𝐶𝑗 ∧ 𝑂𝑖 = 𝑂𝑗
} |

|

|

|

𝑇𝑁 =
|

|

|

|

{

(𝑖, 𝑗) ,∀ (𝑖, 𝑗) ∈ [1, 𝑁)2 |𝐶𝑖 ≠ 𝐶𝑗 ∧ 𝑂𝑖 ≠ 𝑂𝑗
} |

|

|

|

. (6)

In this context, a ‘‘positive’’ refers to two points that belong to the
same instance. Using the expanded definitions of 𝑇𝑃 , 𝐹𝑁 , 𝐹𝑃 , and
𝑇𝑁 , we compute pointwise Accuracy, Precision, Recall, and F1 score
according to their original definitions. While these new metrics offer an
alternative perspective on the results of instance segmentation, it is im-
portant to note that the outcomes of AP and AR are still more strongly
correlated with qualitative assessments of instance segmentation.

3.4. Semantic segmentation

One primary preprocessing step is extracting the focal plant from
the point clouds, which involves semantically segmenting the point
clouds into classes such as focal plant, non-focal plants, and ground.
We trained the semantic segmentation model described in Section 2.2
on the synthetic dataset. The training process is carried out for 50
epochs with a batch size of four, a learning rate of 1 × 10−4, and an
Adam optimizer. We set 𝐾 = 15 in the EdgeConv KNN module and
applied early stopping on validation loss with a patience value of 20.
The Categorical Cross Entropy loss function is used for this network.
To evaluate the performance of our semantic segmentation model,
we conducted both quantitative and qualitative assessments on the

synthetic and real test datasets. The accuracy achieved by our model on

https://github.com/ariyanzri/PlantSegNet
https://github.com/ariyanzri/PlantSegNet
https://github.com/ariyanzri/PlantSegNet
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Fig. 7. Qualitative results of semantic segmentation model on instances of the synthetic (left) and real (right) data. The top row shows the point clouds, colored with the ground
truth annotations, and the bottom row represents the predictions of the model. Columns (a) and (b) correspond to the synthetic test set, and columns (c) and (d) to the real data.
Table 1
The performance of the PlantSegNet model on real and synthetic sorghum data with two loss functions: the proposed function
and the hinge loss function. Our proposed loss function is designed to penalize predictions of nearby point pairs that belong
to different instances more strictly. This function outperformed the hinge loss function across all the metrics on the real data
and in terms of AP and PWR on the synthetic test data.
Dataset Loss function mCov AP AR PWA PWP PWR PWF

Synthetic Test Set Proposed 0.68 0.72 0.70 0.95 0.71 0.92 0.79
Hinge (SGPN) 0.75 0.68 0.79 0.97 0.83 0.89 0.85

Real Data Proposed 0.53 0.69 0.55 0.89 0.50 0.78 0.60
Hinge (SGPN) 0.51 0.56 0.53 0.89 0.47 0.72 0.55
the test set of the synthetic and real datasets were 99.35% and 95.27%,
respectively. Fig. 7 displays the qualitative results of our model on two
samples of each dataset (synthetic and real), which demonstrates the
performance of our semantic segmentation model.

3.5. Instance segmentation

This section presents the outcomes of our proposed PlantSegNet
model for instance segmentation, tested on different datasets and in
various experiments. We exclusively trained the model on focal plants
during all the instance segmentation trials on sorghum. Using the
ground truth labels, we eliminated non-focal plants and ground from
the training data.

3.5.1. Loss function experiments
To evaluate the effectiveness of our suggested loss function and

contrast it with the hinge loss function employed in SGPN, we conduct
training on two variations of our PlantSegNet architecture on our
synthetic sorghum dataset. The first model incorporates the proposed
loss function discussed in Section 2.3.1 while the other uses a hinge
loss function, defined by:

𝐷𝑖𝑗 = |𝐹𝑖 − 𝐹𝑗 |2

𝐿𝑖𝑗 =
{

𝑚𝑎𝑥(0, 𝐷𝑖𝑗 −𝑀1), 𝐶𝑖 = 𝐶𝑗
𝑚𝑎𝑥(0,𝑀2 −𝐷𝑖𝑗 ), 𝐶𝑖 ≠ 𝐶𝑗

}

𝐿 = 1
𝑁2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝐿𝑖𝑗 . (7)

This particular loss function ensures that all points within a cluster have
a distance below 𝑀1 in the embedding space, while points belonging to
different instances have a distance above 𝑀2. This approach is highly
reminiscent of the loss function used in the SGPN paper.

We train both versions of PlantSegNet, using the proposed loss func-
tion and the hinge loss function, for 50 epochs. The training involves
using an Adam optimizer with a learning rate of 1 × 10−4, a batch size
8

of 4, and a K value 25 in the EdgeConv KNN module. We empirically
set 𝑀1 and 𝑀2 to 1 and 10, respectively. We perform early stopping
on validation loss to prevent overfitting, with a patience of 20.

Furthermore, we fine-tune the hyperparameters of both models
and select the optimal DBSCAN parameters based on the average of
AP and AR scores on the validation set. The PlantSegNet’s instance
segmentation performance using the two loss functions is summarized
in Table 1 for both synthetic test data and real data. It is evident from
the results that our proposed loss function surpasses the hinge loss
function from the SGPN paper across all metrics on real data and for
𝐴𝑅 and 𝑃𝑊 𝑅 on the synthetic test set. This highlights the effectiveness
of our proposed loss function compared to the hinge loss function.

To provide a more thorough evaluation of the model’s perfor-
mance using different loss functions, Fig. 8 presents the results for
two instances from the synthetic test data and two instances from the
real data, including the models’ output, the 2-component PCA of the
embedding space, and the ground truth labels. The 2-component PCA
visualizations reveal that our proposed loss function produces a more
distinct embedding space, making it easier to separate the data points
that belong to different instances. Considering these findings and the
better performance shown in the quantitative results in Table 1, we
have decided to utilize this particular loss function in all the upcoming
experiments.

3.5.2. Experiments on our dataset
In this section, we evaluate the performance of our proposed model

and compare it to that of TreePartNet using both synthetic and real
sorghum datasets that we have included with this paper. To run exper-
iments with TreePartNet, we use the code from Liu et al. (2021a). We
trained TreePartNet for 100 epochs with a learning rate of 5×10−2 and a
batch size of 2. For the other parameters, we followed the suggestions in
the TreePartNet paper. Similarly, we trained PlantSegNet for 50 epochs
with a learning rate of 1 × 10−4, a batch size of 4, and using the Adam
optimizer. We also set the value of K in the EdgeConv KNN module to
25. Additionally, we utilized early stopping on validation loss with the
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Fig. 8. A comparison between the proposed loss function and the SGPN hinge loss function on real and synthetic data samples. The columns, from left to right, represent (1)
the ground truth instances, 2 and (3) 2-component PCA visualizations of the embedding space of the model with the proposed loss function on the given point cloud and its
respective model output, and 4 and (5) 2-component PCA visualizations of the embedding space of the model with the SGPN hinge loss function on the given point cloud, and its
respective model output. The proposed loss function results in a more separable embedding space than the hinge loss function. Additionally, the proposed loss function performs
better on points near the stem, a junction area, whereas the hinge loss function merely clusters them together. Note that colors in the PCA images correspond to the ground truth
annotations.
Table 2
The table compares the performances of PlantSegNet and TreePartNet on real and synthetic sorghum data. PlantSegNet
outperforms TreePartNet on all metrics for both real and synthetic data. The significant difference in AP and AR between the
two models demonstrates how well PlantSegNet’s predicted instances match the ground truth.

Dataset Model mCov AP AR PWA PWP PWR PWF

Synthetic Test Set PlantSegNet 0.68 0.72 0.70 0.95 0.71 0.92 0.79
TreePartNet 0.30 0.38 0.24 0.79 0.29 0.72 0.41

Real Data PlantSegNet 0.53 0.69 0.55 0.89 0.50 0.78 0.60
TreePartNet 0.17 0.16 0.09 0.65 0.18 0.61 0.27
patience of 20 and applied the data augmentation technique described
in Section 3.2 to both models.

After training PlantSegNet on the synthetic sorghum dataset, we
fine-tuned the DBSCAN parameters by maximizing the average of AP
and AR on the validation set. Our results for both PlantSegNet and
TreePartNet on the synthetic test set and the real data using instance-
based and point-based metrics are summarized in Table reftable:ins-
sorghum-res. PlantSegNet outperforms TreePartNet on all metrics for
both real and synthetic data. Fig. 9 visually compares the two models
and supports the findings from Table 2.

3.5.3. Experiments on TreePartNet dataset
To demonstrate the versatility and generalizability of our proposed

model in processing various 3D objects regardless of their structures, we
conducted an evaluation of its performance on tree point clouds from
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the dataset published by the creators of TreePartNet. We then compared
its results against TreePartNet accessible at Liu et al. (2021a).

We trained PlantSegNet on the training set for 100 epochs with a
batch size of 4, a learning rate of 1×10−4, and a DGCNN kernel size 25.
Similarly, we trained TreePartNet for 100 epochs using a batch size of 2
and a learning rate of 5×10−2. We also employed early stopping on the
validation loss, with a patience of 20 epochs. After tuning the DBSCAN
parameters over the validation set for PlantSegNet, we evaluated the
performance of these models on the test set.

Table 3 presents the numerical outcomes of the two models’ per-
formance on the tree dataset. It appears that PlantSegNet outperforms
TreePartNet by a considerable margin across all metrics. Fig. 10 de-
picts a qualitative evaluation of the effectiveness of PlantSegNet and
TreePartNet in segmenting instances of tree branches. The visual ev-
idence shows that PlantSegNet produces more precise instances that
closely match the ground truth instances.
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Fig. 9. A visual assessment of the performances of PlantSegNet and TreePartNet on both the synthetic and real sorghum datasets. It presents the ground truth and predicted
instance labels on two samples from the real and two samples of the synthetic datasets. Our findings suggest that our proposed model generates more precise predictions for the
instance labels of the points compared to TreePartNet, particularly in areas where nearby points belong to different instances, like the regions close to the stem.
Table 3
The quantitative outcomes of testing PlantSegNet and TreePartNet on
the tree dataset. PlantSegNet is 1.5-3 times better than TreePartNet in
all the metrics.

PlantSegNet TreePartNet

mCov 0.51 0.13
AP 0.61 0.17
AR 0.55 0.06
PWA 0.86 0.82
PWP 0.40 0.28
PWR 0.90 0.71
PWF 0.53 0.39

4. Discussion

We introduced PlantSegNet to address the challenges of segmenting
individual leaves in point clouds of sorghum plants grown in outdoor
field settings and also to provide a novel approach for the general
problem of instance segmentation of nearby objects with similar ge-
ometric structures. The ultimate objective of the underlying research
problem is to use the segmented point clouds to analyze and measure
the phenotypic information of these plants as they grow in an outdoor
field under stressed conditions. Our proposed method involves (1) a
pipeline for generating procedural sorghum models, (2) a large-scale,
annotated synthetic point cloud dataset of sorghum plants generated
using the synthetic sorghum models, and (3) a neural network structure
for instance segmentation of nearby objects with identical semantics.

To assess the effectiveness of our proposed model, we conducted
multiple experiments using both sorghum and tree point cloud data.
10
In our comparisons, we used TreePartNet as it closely relates to our
application use case. Furthermore, we evaluated the performance of
our proposed loss function by comparing it against the loss function
introduced in the SGPN method.

Our results, as shown in Table 1, demonstrate that our proposed
loss function achieves higher scores in all metrics on the unseen real
dataset. Additionally, we visualized the learned feature embeddings
using 2-component PCA (Fig. 8) and found that our proposed loss
function produces a much better embedding space. In this space, points
belonging to different instances are well-separated, in contrast to the
hinge loss proposed in SGPN.

Finally, we compared PlantSegNet against TreePartNet on the sorgh-
um and tree datasets. The comparison indicated that PlantSegNet
outperforms TreePartNet on both datasets. Specifically, PlantSegNet
achieved an average precision of 0.69 on the sorghum real dataset,
while TreePartNet only achieved 0.16. Similarly, PlantSegNet achieved
an average precision of 0.61 on the tree dataset, about four times
higher than the average precision of 0.17 achieved by TreePartNet.
The qualitative results shown in Figs. 9 and 10 further confirm these
findings.

Limitations: Our proposed algorithm has several limitations. First, it
depends on the synthetic digital twins that were trained on a particular
Sorghum, and it could be less precise if applied to plants that are not
captured by the digital twin. The second limitation comes from the
precision of the data acquisition system, as there are physical limits
to what can be captured. The third limitation is given by the neural
model. While we used the current state-of-the-art algorithms, they may
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Fig. 10. Comparison of PlantSegNet and TreePartNet in segmenting instances of branches in the tree dataset proposed by the TreePartNet paper. A detailed examination of the
predicted instance labels reveals that PlantSegNet generates more accurate instances, while TreePartNet sometimes generates multiple instances for a single branch.
not capture all details and may have some intrinsic limitations that
could affect the results, such as misclassification.

Future work: There are many possible avenues for future work. One
promising extension is in using a different baseline deep neural model
for point classification. For example, a concurrent work (Bai et al.,
2024) introduces the segmentation of wood and leaves from point
clouds. Using some of the transformed-based point classifiers, such as
the Point Transformer (Zhao et al., 2021), would also be interesting.

5. Conclusions

We proposed a novel approach for segmenting individual leaves in
point clouds of sorghum plants grown in outdoor field settings. This
can be generalized to the problem of instance segmentation of nearby
stochastic geometries with a similar structure. Our proposed method
uses a digital twin synthetic data generation technique and deep
learning-based instance segmentation. Our newly introduced PlantSeg-
Net allows us to address the challenge of acquiring labeled data,
which is time-consuming and labor-intensive for 3D point clouds, by
generating a large synthetic dataset using realistic models of plants. The
11
performance of our proposed method was evaluated on both synthetic
and real datasets, and it was shown to outperform the state-of-the-art
method, TreePartNet, in terms of segmentation accuracy.

Our method can potentially improve the field of plant phenotyping
by enabling high-throughput, automated analysis of plant structures
and characteristics, especially in outdoor field settings. It also opens
up opportunities for various applications, such as precision agriculture
and crop management, by accurately and efficiently measuring plant
phenotypes. In addition, the proposed synthetic dataset generation
method can be helpful in other fields where labeled 3D point cloud data
is limited. Overall, this work shows the potential of combining data
synthesis and deep learning to improve the efficiency and accuracy of
3D point cloud analysis, especially in plant phenotyping.
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