
Urban Grammar

Nate Andrysco
Daniel Aliaga
Chris Hoffmann

Last Time…

At the end of Spring Quarter Aliaga gave a
talk about Urban Visualization.

Urban Grammar is a way to visualize how
a city might change.

What might a city look like as it expands?
What might a city look like if a completely
different city’s style was used?

Example: Stretch Lafayette

Aliaga’s Future Work

Modify more interesting cities
Procedural Simplification
Full Inverse Modeling

Combine with Build-by-Numbers

Applications
Road planning, growth algorithms, rapid prototyping

Data Representation

Specification
An aerial view is marked up with lines.
The lines denote a road, land boundaries, or
a building outline.

Parsing
The specification is then parsed to create a
city grammar.

Deriving
When the city is changed, the grammar is
used to derive a new city image.

Urban Specification

Specify an initial region that encloses the
buildings you wish to include.

Urban Specification

Ideally, extract automatically from GIS
database roads and other boundaries.

For now, we mark then manually in a top-
down manor.
As you add edges you can see the tuples that
are being created.

Urban Specification

Urban Specification

Lafayette

Courtesy of Shweta Svaidya

Urban Specification

Rome

Courtesy of Shweta Svaidya

Urban Specification

Madrid

Courtesy of Shweta Svaidya

Urban Specification

Buenos Aires

Courtesy of Shweta Svaidya

Urban Specification

Paris

Courtesy of Shweta Svaidya

Parsing the City

The top-down approach of marking up the
city is key to parsing the city.
Start by looking at the initial region and
find a markup edge that splits the region in
(approximately) half.
Recurse on each of these regions and find
edges that split them.
Do this until all edges have been used.

Parsing the City

When a tuple is divided, a rule is created.
The rule consists of the tuple’s geometry, its
location, and the line (partition) that divided it.

The rule has either zero or two children,
creating a binary tree.

A rule has 0 children if it can not be divided any
more (terminal)
Otherwise, its 2 children are either rules or
terminals.

Parsing the City

Parsing the City

Parsing the City

Parsing the City

Parsing the City

Deriving an Edited City

If a region appears to have stretched or
shrunk a significant amount, recursively
re-apply or partially apply the best rule.

Note: an unmodified city’s derivation should
be the same as the original specification.

Deriving a City

Deriving a City

Urban Editing

What if a river was to erode away part of
the city? What might the city look like?

What if a major road was moved? What if
a major road was added?

Urban Editing

Select an edge from the original
specification.

Urban Editing

Move the edge.

Urban Editing

Derive a new city.

Urban Editing

Derive a new city.

originalnew

Urban Editing: Bigger City

Urban Editing: Bigger City

Urban Editing: Bigger City

Urban Editing: Bigger City

Urban Simplification

Motivation
Want to have interactive rates.

For large cities we may have hundreds of thousands of
terminals and hundreds of thousands of rules.
Finding a best matching rule for each iteration is time
consuming.
Displaying every unique terminal may tax the GPU.

Want to extrapolate interesting data from each city.
Solution

These problems can be solved by simplifying the
parse tree.

Terminal Simplification

Group tuples that are similar to each other.
Designate one (or more) tuples of the
group to be used whenever a terminal is
needed from the group.

Terminal Simplification

Terminal Simplification

Procedural Simplification

Combine rules that are similar.
Are the tuples similar?
Are the partition lines similar?

A BC
B DE
C FG
…
X YZ
…

Procedural Simplification

1000 Rules 5 Rules

A DN
D LK
N TX
L QR
Q YZ

Procedural Simplification

Rome

30 Rules 10 Rules

Procedural Simplification

Paris

77 Rules 19 Rules

Procedural Simplification

Buenos Ares

130 Rules 38 Rules

Tools

Similarity Estimation

N-gon mapping

Similarity Estimation

Tuple similarity is a weighted combination
of:

Shape/perimeter similiarity.
Location similarity.
Size/radii similarity.

Partition similarity is a weighted
combination of:

Length similarity
Orientation similarity

N-gon mapping

N-gon to M-gon mapping
New tuples are derived that do not match the
original tuples geometry.
Can you map a hexagon to a square? Should
this be allowed?

Attempts at N-gon To M-gon Mapping

Let N > M
Attempt 1:

Project the vertices of each polygon onto
each other. Now both polygons have the
same number of points.
Determine the texture coordinates of the
points on the perimeter of the n-gon. Use the
coordinates for each corresponding point in
the m-gon.

Attempt 1 Example

Attempt 1 in the program

Attempts at N-gon To M-gon Mapping

Let N > M
Attempt 2:

Since the vertices of the n-gon contain the
needed texture coordinates, only use those.
Map the M vertices of the m-gon plus (N-M)
intermediate points.
For the intermediate points use the projected
points of the n-gon onto the m-gon like before.
Rotate and scale to find a best fit.

Attempt 2: Simple example

Attempt 2: In the program

Attempt 2: Stretch more

Attempt 2: More Stretching

Attempt 2 cont.

For more complex scenes, the mapping
looks worse.
Vertices are not always mapped in a way
that seems the most natural.
Can still get seams in the texture.

Maybe do not map based on point
distance. Maybe base the mapping on
vertex angles?

Future Work

Improve N-gon to M-gon mapping
Improve similarity metrics

…Suggestions?

Future Work

Can you combine the layouts of two cities?
What would it look like if Lafayette wanted to
incorporate the layout of Paris.

Apply the framework to other images.
What might a famous painting look like if the
artist had used a bigger canvas?

Integrate with Build-by-Numbers to
procedurally create full 3D cities.

Questions?

