

Efficient and Versatile View-Dependent Modeling of Real-World Scenes

Mihai Mudure Voicu Popescu February 21, 2007

3D Modeling

- Severe bottleneck for computer graphics applications
- Manual modeling
 - □ Time consuming
 - □ Fails to capture the complexity of real-world scenes
- Automated modeling
 - Promising alternative
 - □ No complete solution yet

Results preview

Rendering of a plant model acquired in 10 minutes with our automated modeling system.

DDSV : dense depth/sparse viewpoints

 Classical modeling approach
 Scene scanned densely from a few locations

 Shortcomings :

 Poor scene coverage
 High data redundancy

Prior work—ray databases

Examples

□ Panoramas (2D)

Do not allow translations

Light fields, lumigraphs (4D)

Do not scale well with scene size

No support quantitative applications

Our approach—SDDV

- Sparse depth/dense viewpoints (SDDV)
 - Scene sampled sparsely from thousands of acquisition viewpoints
- Advantages
 - □ Sparse depth acquisition efficient and robust
 - Operator in the loop, interactive modeling
 - Compact photorealistic model, w/ geometry

Overview

Acquisition device

- Depth Acquisition
- Color Acquisition
- Rendering

Design requirements

- To implement SDDV, the acquisition device should :
 - acquire sparse depth efficiently and robustly
 - □ acquire high-quality color
 - allow the operator to freely position the acquisition device
 - provide real-time feedback during acquisition

Acquisition device overview

Acquisition device

Depth Acquisition

Depth Acquisition

Typical acquisition path

Color acquisition

View-dependent modeling

Compute visible points

Compute 3D mesh

Color the 3D mesh

Rendered image

Rendering algorithm

- Comparison of SDDV to DDSV on simulated scenes
- Simulations run on 2 scenes

5 DDSV simulations 1L pink large dot 2LV blue 2LH white 4L red 6L red+blue 1 SDDV simulation small yellow to red dots Rendering path small green dots

Sampling locations used for scene analysis

Sampling locations used for scene analysis

5 DDSV simulations 1L pink large dot 2LV blue 2LH white 4L red 6L red+blue 1 SDDV simulation small yellow to red dots Rendering path small green dots

Sampling locations used for scene analysis

5 DDSV simulations 1L pink large dot 2LV blue 2LH white 4L red 6L red+blue 1 SDDV simulation small yellow to red dots Rendering path small green dots

Sampling locations used for scene analysis

1L pink large dot 2LV blue 2LH white 4L red 6L red+blue 1 SDDV simulation small yellow to red dots Rendering path small green dots

Sampling locations used for scene analysis

5 DDSV simulations 1L pink large dot 2LV blue 2LH white 4L red 6L red+blue 1 SDDV simulation small yellow to red dots Rendering path small green dots

Sampling locations used for scene analysis

5 DDSV simulations 1L pink large dot 2LV blue 2LH white 4L red 6L red+blue 1 SDDV simulation small yellow to red dots Rendering path small green dots

Scene coverage

DDSV 6L

SDDV

- Indicated as fraction of missing samples for frames along rendering path
- A ground truth image sample is missing if
 - □ not present in any of the DDSV depth maps
 - □ not present in SDDV reconstruction
- Synthetic scenes are planar so missing samples detected robustly (no epsilons)

Comparison between SDDV and DDSV with 6 dense depth sampling locations

Comparison between SDDV and DDSV with 2 dense depth sampling locations (2H)

Comparison between SDDV and DDSV with 6 dense depth sampling locations

Comparison between SDDV and DDSV with 2 dense depth sampling locations (2H)

35

36

- Defined per rendering frame
- Average over pixels
- Redundancy at pixel
 - Number of visible samples that project to the pixel, minus 1

38

Pixel redundancy = 2

Frame redundancy comparison between SDDV and 4L

Frame redundancy comparison between SDDV and 4L

Redundancy results

Redundancy results

Results

SDDV tested on various models Simple and complex geometry

□ Simple and complex surface properties

Results

Models acquired with our system

Comparison with Light Field

Light Field rendered using color data from our model - focused at the scene centroid Image rendered from our model

Comparison with Light Field

Image rendered from our model

Comparison with Light Field

Light Field rendered using color data from our model

Image rendered from our model

- We cannot detect dots on highly specular surfaces
- We have difficulty detecting dots on the certain patterns
- Rendering bright scenes
- Occasional loss of precision in pose estimation from the arm

Conclusions

SDDV

- □ faster than DDSV
- better scene coverage than DDSV
- Iower data redundancy than DDSV

Our implementation of SDDV

- Efficient automated modeling system
- □ Handles various scenes robustly
- High quality reconstruction at interactive rates
- □ Scanning in place without altering lighting conditions

Future work

- Color balancing for frames
- Extend to inside-looking-out modeling
- Many features already in place
 - □ Sufficient depth range
 - Does not require altering the scene conditions

Thank you