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Video Image Segmentation

Goal: to label the image regions with salient
homogeneous properties, such as color,
texture, motion or spatio-temporal structures

The labeling algorithms based on graphical
models become popular in recent years.

« deterministic and stochastic










Deterministic Algorithms

« Belief Propagation, which infers marginal
probabilities at the nodes of the graph by
exchanging of messages

Initially designed on trees and later generalized

« Minimum Graph Cut, popular deterministic
method maps the iImage segmentation task into
a Max-Flow/Min Cut problem

« Other related approaches, such as normalized
cut




Stochastic Algorithms

Mainly based on the Gibbs sampler, a Markov
chain Monte Carlo algorithm

- Markov random field approaches
- random walk and diffusion approaches
- the Potts models, the Swendsen-\WWang method.

Stochastic approaches are usually powerful but
time-consuming




Representation

Image represented with a weighted graph,

vertices reflect the states of image pixels and
welghted edges represent the relationship
between pixels. I .
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Segmentation ~ Min Cut




Maximum flow / Minimum cut

“Max flow”: maximize the sum X u f(u,t)

“Min cut”: Delete the ""best™ set of edges to
disconnect t from s, with the smallest
capacity




A weighted graph -- material flowing
through the edges (railways, water pipelines)

capacity = 15
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£ Maximum flow: maximize the sum > u f(u,t)
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A cut Is a node partition (S, T) such that s Is
InSandtisinT,

capacity(S, T) = sum of weights of edges

leaving S.
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a min cut

Cut capacity =28 = Flow value < 28
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The value of the
max flow Is equal to the capacity of the
min cut.

A flow f Is a max
flow If and only If there are no augmenting
paths.

The following are equivalent:
(1) f1s a max flow.
(11) There I1s no augmenting path relative to f.

£ (1) There exists a cut whose capacity equals

the value of f.



Augmenting path = path in residual graph.
m Increase flow along forward edges.
m Decrease flow along backward edges.

flow = f(e) residual capacity = u(e) - f(e)

capacity = u(e)

residual capacity = f(e)

original graph

residual graph

Flow f(e). "Undo" flow sent.
Edge e = vo>w W=V



Flow value = 10




Image Segmentation Using Min Cut
« Calculating weighted graph

« Setting some seed points, automatically
or interactively

« Max Flow Algorithm

Tends to have small and
biased segmentation

CUL:

. . cut(A, B cut(A, B
Neut(A,B) = ut(4, B) ut(4, B)

volume(A)  volume(B)




History of Worst-Case Running Times

Discoverer Asymp'mm: Time
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Stochastic Algorithms

« Markov random field approaches
« Potts model, Swendsen-Wang method
« Random walk and diffusion approaches



Markov random fields

Positive:

P(f)>0,Vf eF

Markovian: state only depends on
neighbors

P(fi | fS—{i}) = P(fi ‘ fNi)

Homogenious: probability independent of

positions of sites




Markov-Gibbs Equivalence

GRF -- global property (the Gibbs distribution)
MRF -- local property (the Markovianity)

The Hammersley-Clifford theorem, the
equivalence of these two:

E1s an MIRE o S withi respect ter N Iffand
only 1 E 1sia GRE oni S/with respect to; N



Gibbs distribution:

e_E(f)/T

P(1)=

Ze—E(f)/T

feF

where E Is the energy function, T Is the temperature.

(a) maximization of the posterior probability in the
Bayesian framework

<-> (b) minimization of the posterior energy.
function of a MRF

<~ (C) minimization of the energy In a stochastic

4 a recurrent network
N



Ising/Potts Models

Ising model has a choice of two possible
spin states at each lattice point




Potts models have g>2 possible states:
S1, S2,S3, $4, ... Sg




th Potts Models
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Swendsen-Wang method

SW method speeds up the time-consuming
process by flipping the color of all vertices
In one or all clusters simultaneously




My Work

« Add external fields for segmentation
« Working at low temperature or deterministically
« Noisy video image segmentation

Probability Is given by:

P (X| B,V) =W (B, V) exp> xV+= ,BZX

ieS JjeN (i)

EM algorithm developed to estimate the model
parameters







Random Walk Methods

|_abels:
L1, L2, L3

Weights: in [0,1]
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Segmentation results



My Work

« Make It fast, local and limited steps
« Reduce noise while keeping edges
« Apply to facial feature extraction

the random walkers eliminate the noise

and keep the mutually connected feature
pixels from vagueness

like morphology filters but it does not
need to define a structural element In
advance
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Conclusions and Future Work

« Graphical models are powerful and ideal
for Image segmentation

« Choice of the deterministic and stochastic
algorithms, trade-off

- To make them more robust and develop
some applications
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