Video Image Segmentation with Graphical models

Jieyu Zhao

Outline

- Fundamentals
- Deterministic Methods
- Stochastic Methods
- Some Results
- Conclusions

Video Image Segmentation

Goal: to label the image regions with salient homogeneous properties, such as color, texture, motion or spatio-temporal structures

The labeling algorithms based on graphical models become popular in recent years.
deterministic and stochastic

Deterministic Algorithms

- Belief Propagation, which infers marginal probabilities at the nodes of the graph by exchanging of messages
 - initially designed on trees and later generalized
- Minimum Graph Cut, popular deterministic method maps the image segmentation task into a Max-Flow/Min Cut problem
- Other related approaches, such as normalized cut

Stochastic Algorithms

Mainly based on the Gibbs sampler, a Markov chain Monte Carlo algorithm

Markov random field approaches
random walk and diffusion approaches
the Potts models, the Swendsen-Wang method.

Stochastic approaches are usually powerful but time-consuming

Representation

image represented with a weighted graph,
vertices reflect the states of image pixels and
weighted edges represent the relationship
between pixels.
4-neighbour structure,

weights represent the similarities.

Segmentation ~ **Min Cut**

Maximum flow / Minimum cut

"Max flow": maximize the sum $\sum u f(u,t)$

"Min cut": Delete the "best" set of edges to disconnect t from s, with the smallest capacity

A weighted graph -- material flowing through the edges (railways, water pipelines)

Maximum flow: maximize the sum $\sum u f(u,t)$

A cut is a node partition (S, T) such that s is in S and t is in T. capacity(S, T) = sum of weights of edges leaving S.

a min cut

Cut capacity = 28 \implies Flow value \leq 28

Max-flow min-cut theorem: The value of the max flow is equal to the capacity of the min cut.

Augmenting path theorem: A flow f is a max flow if and only if there are no augmenting paths.

The following are equivalent: (i) f is a max flow.

(ii) There is no augmenting path relative to f.

(iii) There exists a cut whose capacity equals the value of f.

Augmenting path = path in residual graph.
Increase flow along forward edges.
Decrease flow along backward edges.

Image Segmentation Using Min Cut

- Calculating weighted graph
- Setting some seed points, automatically or interactively
- Max Flow Algorithm

Tends to have small and biased segmentation Improved by the normalized

cut: $Ncut(A,B) = \frac{cut(A,B)}{volume(A)} + \frac{cut(A,B)}{volume(B)}$

History of Worst-Case Running Times

Year	Discoverer	Method	Asymptotic Time
1951	Dantzig	Simplex	E V ² U †
1955	Ford, Fulkerson	Augmenting path	EVU†
1970	Edmonds-Karp	Shortest path	E² V
1970	Edmonds-Karp	Max capacity	E log U (E + V log V) †
1970	Dinitz	Improved shortest path	E V ²
1972	Edmonds-Karp, Dinitz	Capacity scaling	E² log U †
1973	Dinitz-Gabow	Improved capacity scaling	E V log U †
1974	Karzanov	Preflow-push	∨³
1983	Sleator-Tarjan	Dynamic trees	E V log V
1986	Goldberg-Tarjan	FIFO preflow-push	E V log (V ² / E)
	•••		
1997	Goldberg-Rao	Length function	E ^{3/2} log (V ² / E) log U [†] EV ^{2/3} log (V ² / E) log U [†]

Stochastic Algorithms

- Markov random field approaches
- Potts model, Swendsen-Wang method
- Random walk and diffusion approaches

Markov random fields

Positive:

 $P(f) > 0, \forall f \in F$

Markovian: state only depends on neighbors

$$P(f_i \mid f_{S-\{i\}}) = P(f_i \mid f_{N_i})$$

Homogenious: probability independent of positions of sites

Markov-Gibbs Equivalence

GRF -- global property (the Gibbs distribution) **MRF -- local property** (the Markovianity)

The Hammersley-Clifford theorem, the equivalence of these two:

F is an MRF on S with respect to N if and only if F is a GRF on S with respect to N.

Gibbs distribution:

$$P(f) = \frac{e^{-E(f)/T}}{\sum_{f \in F} e^{-E(f)/T}}$$

where *E* is the energy function, *T* is the temperature.

- (a) maximization of the posterior probability in the Bayesian framework
- ←→ (b) minimization of the posterior energy function of a MRF
- ←→ (c) minimization of the energy in a stochastic recurrent network

Ising/Potts Models

Ising model has a choice of two possible spin states at each lattice point

Potts models have q>2 possible states: S1, S2, S3, S4, ... Sq

Segmentation with Potts Models

Swendsen-Wang method

SW method speeds up the time-consuming process by flipping the color of all vertices in one or all clusters simultaneously

My Work

- Add external fields for segmentation
- Working at low temperature or deterministically
- Noisy video image segmentation

Probability is given by:

$$P_G(\mathbf{x} \mid \boldsymbol{\beta}, \mathbf{V}) = W(\boldsymbol{\beta}, \mathbf{V})^{-1} \exp(\sum_{i \in S} x_i^t \mathbf{V} + \frac{1}{2} \boldsymbol{\beta} \sum_{j \in N(i)} x_i^t x_j),$$

EM algorithm developed to estimate the model parameters

Random Walk Methods

Labels: L1, L2, L3

Weights: in [0,1]

$$w_{ij} = \exp\left(-\beta(g_i - g_j)^2\right)$$

Probability of reaching L1

0.71 WW WW-0.67 \sim 0.54 ww 0.53 ~WW 0.47 ww 0.41 0.41 0.23 0 ww 0.24 ww 0.27 ww 0.08 ≁₩₩ 0.15 -///// 0.14 ww 0

Probability of reaching L2

0.03 ww 0.20 ww 0.30 ww 0 MM ww 0.29 ww 0.06 0.40 0.14 WW-0.22 ww WW 0.43 0.61 0 Ŵ 0.16 ww 0.32 0.58 -WW

Probability of reaching L3

Segmentation results

My Work

- Make it fast, local and limited steps
- Reduce noise while keeping edges
- Apply to facial feature extraction

the random walkers eliminate the noise and keep the mutually connected feature pixels from vagueness

like morphology filters but it does not need to define a structural element in advance

Conclusions and Future Work

- Graphical models are powerful and ideal for image segmentation
- Choice of the deterministic and stochastic algorithms, trade-off
- To make them more robust and develop some applications

Thank You !

