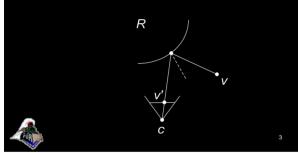


Voicu Popescu, Purdue University

Reflections on reflections


Reflections—a difficult problem

 Every reflector is a portal onto a world which is as rich as the directly observed scene and which has complex image formation laws

Reflections—a difficult problem

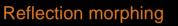
• Projecting reflected vertices is difficult

Reflection methods

	Ray tracing	Image-Based Rendering
	Feed-forward reflection rendering	Approximation of reflected scene
1		4

Reflection methods

Ray tracing	Image-Based Rendering
Feed-forward reflection rendering	Approximation of reflected scene
	5

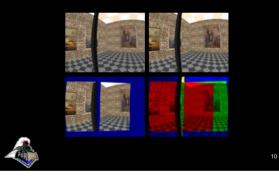


Reflection methods

	Ray tracing	Image-Based Rendering
	Feed-forward reflection rendering	Approximation of reflected scene
2		7

Image-based rendering

- Supports complex real-world reflections
- Data intensive
- Limited support for dynamic scenes
- Examples
 - View dependent texture mapping
 - Light fields
 - Reflection morphing


• Idea

 Use a sparse set of reference reflections and morph between them

Reflection mesh visualization

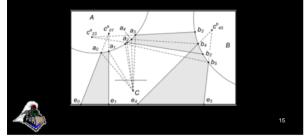
Reflection morphing results

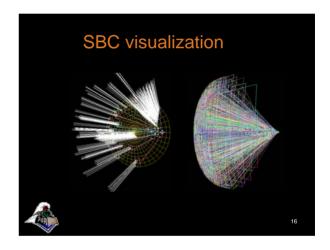
Reflection morphing +-

- Only a few images
- Accurate reflections
- Static scenes
- Scene geometry needed
- Disocclusion errors

Reflection methods

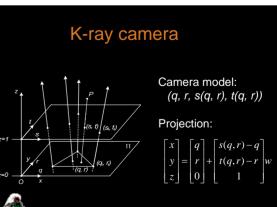
	Ray tracing	Image-Based Rendering
	Feed-forward reflection rendering	Approximation of reflected scene
3		13


Feed-forward reflections


- Idea: solve problem of projecting vertices
- Explosion maps
- Sample-based cameras

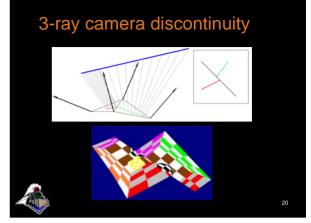
Sample-based camera

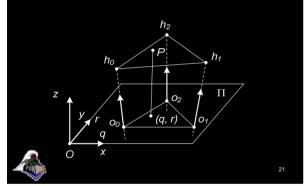
A set of BSP trees with simple cameras at their leafs



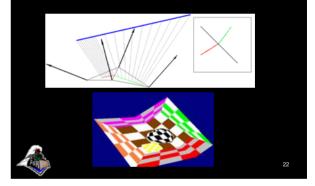
Simple cameras?

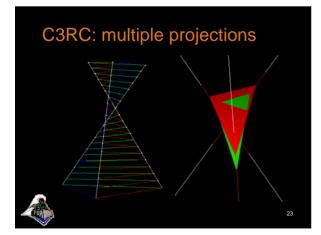
- Requirements
 - Closed form projection
 - Ability of modeling coherent but not concurrent rays
- Possibilities
 - Planar pinhole camera
 - General linear camera (aka 3-ray camera)
 - K-ray camera
 - Continuous 3-ray camera

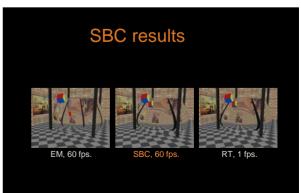



18

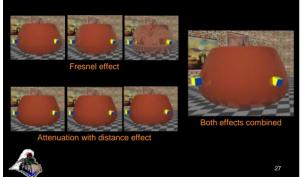
K-ray camera examples

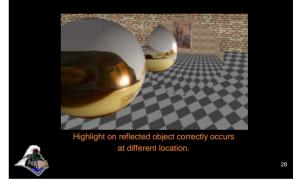

k	Projection equation	Comments
3	Linear	General linear camera [Yu 2004]. Projection discontinuous across shared edge.
4	Quadratic	Bilinear interpolation of 4 rays.
6	Quartic	Most powerful camera with closed form projection
C3	Cubic	Projection continuous across shared edge.
-		




Continuous 3-ray camera (C3RC)

C3RC: continuous projection


Results: complex reflectors


Results: second order reflections

Results: complex materials

Results: view-dependent lighting

Results: pixel accurate reflections

Prior art, 60 fps.

Our method, 60 fp

Future: extension to refraction

30

Sample-based cameras

- Accurate reflections
- SBC does not depend on reflected scene
- Lack of support for complex reflectors
- Limited support for dynamic reflectors

Ray tracing Image-Based Rendering Mege-forward reference Approximation of reflected scene