
1

AMUSE:AMUSE:
Acquiring and Modeling Urban Simulation EnvironmentsAcquiring and Modeling Urban Simulation Environments

Daniel G. Aliaga
Chris Hoffmann

Spring 2006

Department of Computer Science
Purdue University

MotivationMotivation

Visualization of large urban environments is a great
challenge for computer graphics
– An urban environment is a collection of buildings and roads

spanning a large area of land and arranged into neighborhoods,
blocks, and parcels

MotivationMotivation

Lafayette, Indiana

MotivationMotivation

Indianapolis, Indiana

MotivationMotivation

Beijing, China

MotivationMotivation

Rome, Italy

2

MotivationMotivation

Paris, France

ApplicationsApplications

Urban Planning
– What would a proposed neighborhood look like?
– What would an area look like after population growth?
– What would happen is we put a road here? (road planning)
– Architectural designs wish to use common building blocks yet

have unique and interesting spaces; can we extrapolate a city
given a set of building blocks?

ApplicationsApplications

Emergency Management
– Can we create a model of a very large urban space to train

emergency response personnel?
– Can we plan evacuation routes and suggest emergency

deployments?
– Can we prioritize policing and resource deployment?
– Given an urban model struck by a disaster/attack, we can deploy

an emergency-relief communication network?
– Can we deploy approximate structural information, via a PDA, to

rescuers using both the urban model and the emergency-relief
communication network?

ApplicationsApplications

Reconnaissance and Rapid Prototyping
– Can we rapidly build a prototype of an (enemy) location from

aerial views?
– Can we specify the most beneficial places from where to obtain

ground views so as to build an urban model for soldier training
and other simulations?

– If an environment is changing, can we indicate from where we
need the most updates?

ChallengeChallenge

Modeling large urban spaces typically requires
significant manual effort, storage, and computation

Dense urban areas are particularly difficult because they
are both very complex and very widespread
– Size of the environment makes obtaining detailed structural

information prohibitive, leaving us with only sparse information

ObservationsObservations

Large urban environments exhibit significant repetition
– Similar structures are repeated at the global level; however, they

maintain individuality in local detail

Widespread digital meta-data is available
– High-resolution aerial views

• e.g., 6 inch/pixel
– City/county/parcel boundaries, road networks, basic building

information
• e.g., input to Google Maps

3

ApproachApproach

Perform an inverse urban modeling task by inferring the
2D layout of an existing environment
– Procedural methods have the advantage of exhibiting a high-

degree of detail amplification, e.g. using a small number of
parameters yields significant plausible details

The resulting grammar allows us to
– create modifications to the existing urban environments, in the

style of the original
– determine the most representative areas and layouts

Example: Changing Urban SpacesExample: Changing Urban Spaces

Example: Changing Urban SpacesExample: Changing Urban Spaces Example: Changing Urban SpacesExample: Changing Urban Spaces

Example: Simplifying Urban SpacesExample: Simplifying Urban Spaces

Thousands of parcels/buildings Dozens of parcels/buildings

Related WorkRelated Work

Forward-generating grammars (L-systems) for creating plants, cities,
and buildings
– Specify a grammar and few initial parameters, then “grow” the structure
× Not based on an actual real-word layout or city

Photogrammetric Reconstruction and IBMR
– Build a model from photographs (e.g., Façade, Lightfields, robot-based

acquisition)
× Requires specialized acquisition systems and does not scale

Inspiration
– Epitomes and Vector Quantization
– Build-by-Number
– One paper: inferring plant L-system parameters from photographs

4

Terminology and AssumptionsTerminology and Assumptions

Parse
– From aerial views and meta-data, create a set of production

rules and a set of terminals
• e.g., string to grammar

Derive
– Using the production rules, terminals, and a starting

configuration, create an urban layout
• e.g. grammar to string

Terminology and AssumptionsTerminology and Assumptions

Parcel
– consists of a piece of bounded land; might contain building

structures

Block
– Collection of adjacent parcels; interior boundaries are all

imaginary; exterior boundary is a road; all parcels have access
to road (egress rule)

Neighborhood
– Collection of blocks, separated by roads, and mostly of the same

classification (e.g. “residential”, “commercial”, “industrial”,
“downtown”, etc.)

Region
– Collection of neighborhoods, usually separated by major roads

Terminology and AssumptionsTerminology and Assumptions

Production
– Given a region | neighborhood | block, partition by a road | boundary

• Assumptions (for now): regions are convex polygons, partitions are
polylines, production produces two children

Terminal
– Is a parcel
– May or may not contain building contours

MethodologyMethodology

1. Parsing
– How to parse aerial views and their metadata

2. Terminal Simplification
– Reducing the number of terminals

3. Production Simplification
– Reducing the number of productions

4. Novel Derivations
– Making new layouts

MethodologyMethodology

1. Parsing
– How to parse aerial views and their metadata

2. Terminal Simplification
– Reducing the number of terminals

3. Production Simplification
– Reducing the number of productions

4. Novel Derivations
– Making new layouts

1. Parsing1. Parsing

Parse aerial views in a top-down fashion to produce a
set of production rules for creating the urban layout

Existence Question
– Does such a grammar exist?

Answer:
– Yes! It is exactly one production rule for each partition and

exactly one terminal for each parcel

The interesting work is in simplifying and compacting the
grammar so that it can be used in a flexible fashion

5

Example Aerial View IExample Aerial View I Example Metadata IExample Metadata I

Example Aerial View IIExample Aerial View II Example Metadata IIExample Metadata II

Example Metadata IIExample Metadata II Parse TreeParse Tree

c

g

d

h

o p

r

mkj

A

B

E

I

F

S

A L

B E

c d F I

g h j k

m

Po

N

q r

Urban
Layout

Parse
Tree

6

Production RulesProduction Rules

S → AL
A → BE
L → mN
B → cd
E → FI
F → gh
I → jk
N → oP
P → qr

(lower case = terminals)
(upper case = region|neighborhood|block)

~regions

~neighborhoods

~blocks

MethodologyMethodology

1. Parsing
– How to parse aerial views and their metadata

2. Terminal Simplification
– Reducing the number of terminals

3. Production Simplification
– Reducing the number of productions

4. Novel Derivations
– Making new layouts

2. Terminal Simplification2. Terminal Simplification

Reduce the number of terminals
– Find a compact “dictionary” of urban structures

Serves to
– make grammar more compact
– compress the data

• e.g. image compression
– prioritize the terminals

• e.g. guides which parcels should be captured in more detail

Urban DictionariesUrban Dictionaries

Aerial data Dictionary Reconstruction

words

Simplification PipelineSimplification Pipeline

Instance Cluster

Estimate
Similarity

Select
Neighbors

New Model

Dictionary

Input

cost-benefit metric

Simplification PipelineSimplification Pipeline

Instance Cluster

Estimate
Similarity

Select
Neighbors

New Model

Dictionary

Input

cost-benefit metric

7

Simplification PipelineSimplification Pipeline

Instance Cluster

Estimate
Similarity

Select
Neighbors

New Model

Dictionary

Input

cost-benefit metric

InstancingInstancing

Global redundancy is exploited by growing a bottom-up
hierarchy of equivalence classes

a

root

b c d e

InstancingInstancing

Increasing error (and smaller number of equivalence classes)

ClusteringClustering

By combining instantiation with spatial clustering, we find
spatially compact sets of representative urban areas

Cluster A

Cluster B

Cluster A: large and unique
Cluster B: small and common

Instancing vs. ClusteringInstancing vs. Clustering

1/eq-classes

er
ro

r

C

A
B

C’

a) Instancing

instances/cluster

si
ze

b) Clustering

A’

B’

Instancing vs. InstancingInstancing vs. Instancing--andand--ClusteringClustering

Increasing error (and smaller number of equivalence classes)

Increasing cluster size (and smaller number of clusters)

8

Instancing vs. InstancingInstancing vs. Instancing--andand--ClusteringClustering

Increasing error (and smaller number of equivalence classes)

Increasing cluster size (and smaller number of clusters)

Instancing and ClusteringInstancing and Clustering

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

C
os

t

Clustering
Class Merging

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

Q
ua

lit
y

Increasing error

Quality (left) and cost (right) for increasing amounts of instancing/clustering

a

b
c

a b

c

(c)(b)(a)

Example Terminal SimplificationsExample Terminal Simplifications

Aerial images Meta-data Dictionary

Reconstruction Synthetic City

MethodologyMethodology

1. Parsing
– How to parse aerial views and their metadata

2. Terminal Simplification
– Reducing the number of terminals

3. Production Simplification
– Reducing the number of productions

4. Novel Derivations
– Making new layouts

3. Production Simplification3. Production Simplification

Goal
– Find a set of representative “rules” of the urban environment that

can instantiate the same space, new spaces, and similar spaces

Method
– Find a dictionary of “rules” to build-up the urban space, for

example:
• Discover the rules by analyzing the layouts
• Provide core rules that can represent all possible layouts

3. Production Simplification3. Production Simplification

Rule Clustering
Rule Canonization

9

3. Production Simplification3. Production Simplification

Rule Clustering
Rule Canonization

Recall the Original Production RulesRecall the Original Production Rules……

c

g

d

h

o p

r

mkj

A

B

E

I

F

S → AL
A → BE
L → mN
B → cd
E → FI
F → gh
I → jk
N → oP
P → qr

Full specification of the production rules

Alternate Rule NotationAlternate Rule Notation

S → A0 A1
180

A0 → B0E0

B0 → cc
E0 → B0B0

A1
180 → E1m

E1 → mB1
90

B1
90 → cc

c

g

d

h

o p

r

mkj

A

B

E

I

F

Shape = letter; position = subscript; rotation = superscript

Rule Shape SimilarityRule Shape Similarity

S → AA
A → BE | mE
B → cc
E → BB | mB

c

g

d

h

o p

r

mkj

A

B

E

I

F

Rules grouped based on similar shape but ignoring differences
in location and rotation

Rule Shape SimilarityRule Shape Similarity

S → AA
A → BE | mE
B → cc
E → BB | mB

c

g

d

h

o p

r

mkj

A

B

E

I

F

Rules grouped based on similar shape but ignoring differences
in location and rotation

= “Cluster by
similar shape”

Rule ClusteringRule Clustering

Similarity(A,B) =
– W1ShapeSim(A,B) + W2LocationSim(a,B) + W3PositionSim(A,B)

+ W4PartitionSim(A,B) + W5TypeSim(A,B)

Production rule clustering:
– Define each rule by a n-dimensional vector
– Perform k-means clustering to obtain k clusters of rules
– Choose a representative rule from each cluster

Effectively “infer” the most popular/representative
production rule styles

Note: ???

10

Rule CanonizationRule Canonization

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

Consider triangles:

Rule CanonizationRule Canonization

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

Consider rectangles:

Rule CanonizationRule Canonization

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

Rule CanonizationRule Canonization

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

Rule CanonizationRule Canonization

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

Rule CanonizationRule Canonization

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

11

Rule CanonizationRule Canonization

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

Rule CanonizationRule Canonization

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

Rule CanonizationRule Canonization

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

Rule CanonizationRule Canonization

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

Rule CanonizationRule Canonization

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

Peel Rectangular
partition

Triangular
partition

Create an
Island

Etc…

Note: ???

MethodologyMethodology

1. Parsing
– How to parse aerial views and their metadata

2. Terminal Simplification
– Reducing the number of terminals

3. Production Simplification
– Reducing the number of productions

4. Novel Derivations
– Making new layouts

12

Novel DerivationsNovel Derivations

Given production rules and an initial structure, derive an
urban layout
Examples:
– Change original urban space
– “Move a road” in the original urban space
– Fill a new region with an urban space similar to the original
– Grow an urban area

Novel DerivationsNovel Derivations

Need to support subset of affine transformations:
– Translation (e.g., “move a region”)
– Rotation (e.g., “re-orient a neighborhood”)
– Scale (e.g., “stretch/squish a block”)

TransformationsTransformations

Translation
– Easy to handle

Rotation
– Easy to handle

Scale
– ???

Observation: Scaling/StretchingObservation: Scaling/Stretching

H region
V split

H region
H split

V region
H split

V region
V split

Conclusion:
– V stretches handled by H partition
– H stretches handled by V partition

Production Rules RevisitedProduction Rules Revisited……

S →V AA
A →H BE | mE
B →V cc
E →H BB
E →V mB

c

g

d

h

o p

r

mkj

A

B

E

I

F

Example DerivationsExample Derivations

Original urban space
S → AA
S → BEmE
S → ccBBmmB
S → ccccccmmcc

Stretched urban space
S → AA
S → BEmE
S → BEBEmEmE
S → ccBBccBBmmBmmB
S → ccccccccccccmmccmmcc Note: for simplicity, these

derivations are showing 1D
strings – data is really 2D

13

Original Urban Space IOriginal Urban Space I Original Urban Space IOriginal Urban Space I

Original Urban Space IOriginal Urban Space I Stretched Urban Space IStretched Urban Space I

Stretched Urban Space IStretched Urban Space I Stretched Urban Space IStretched Urban Space I

14

Original vs. Stretched IOriginal vs. Stretched I Original Urban Space IIOriginal Urban Space II

Original Urban Space IIOriginal Urban Space II Original Urban Space IIOriginal Urban Space II

Stretched Urban Space IIStretched Urban Space II Stretched Urban Space IIStretched Urban Space II

15

Stretched Urban Space IIStretched Urban Space II Original vs. Stretched IIOriginal vs. Stretched II

Original vs. Stretched IIIOriginal vs. Stretched III Original vs. Stretched IIIOriginal vs. Stretched III

DemoDemo ConclusionsConclusions

Urban Modeling is fun!

Ability to be able to take views of an entire urban space
and make an editable model out of it is very enticing

Similar to fractal-based compression, the key is to find a
good set of generators
– Fortunately, urban environments offer significant amount of

structure (and repetition) which we can exploit

16

Future WorkFuture Work

Procedural Simplification
– Specify canonical procedural rules?
– Infer canonical procedural rules?

Obtain data for a larger/more-interesting set of cities
– Chicago, Rome, Paris, Cusco, etc.

Full Inverse Modeling
– Combine with Build-by-Numbers

Applications
– Road planning
– Growth algorithms
– Rapid prototyping

Thank you!Thank you!

