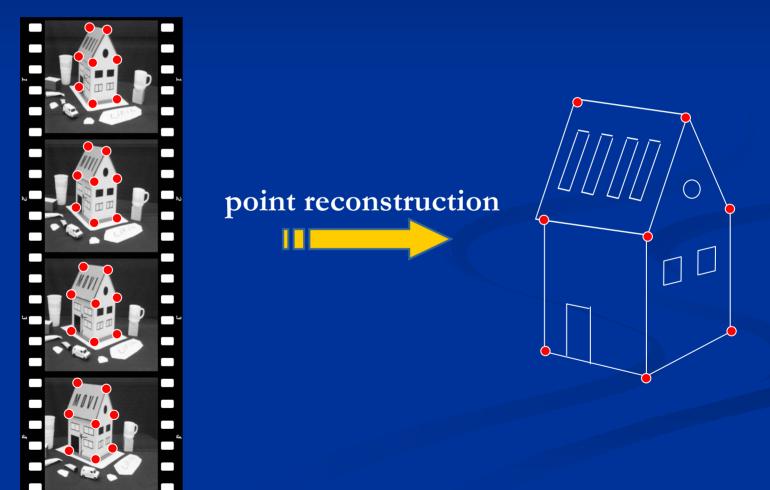
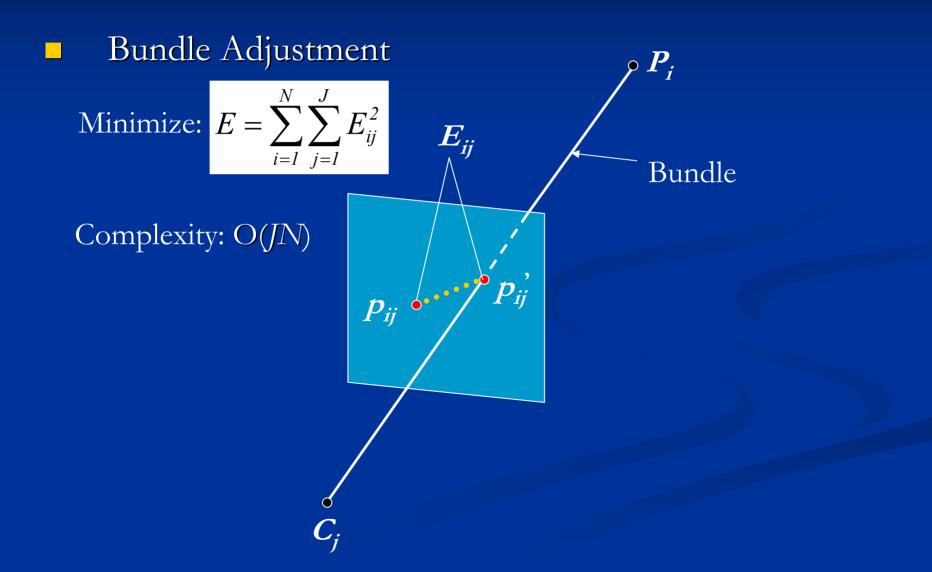
Angle-Independent 3D Reconstruction

Ji Zhang Mireille Boutin Daniel Aliaga

Goal: Structure from Motion

To reconstruct the 3D geometry of a scene from a set of pictures (e.g. a movie) of the scene





Bundle Adjustment

- Is a global optimization tolerant to missing samples and outliers.
- Optimizes both structure and motion even though structure may be the only objective.
- Needs a sufficiently good initial guess.
- Usually used as a final refinement stage.

- Projective Reconstruction
 - + upgrade to Euclidean Reconstruction
 - Use epipolar geometry to solve for a projective reconstruction *P*, which equals to Euclidean reconstruction *E* multiplied by a linear transform *F*.
 - Use extra information to get the linear transform *F* and upgrade the projective reconstruction *P* to Euclidean reconstruction *E*.

$$P = E \cdot F$$

- Projective Reconstruction
 - + upgrade to Euclidean Reconstruction
 - The first step is linear while the second one is nonlinear.
 - Structure reconstruction depends on motion reconstruction.
 - Sensitive to noise, need refinement (BA).

Traditional Projective Equations

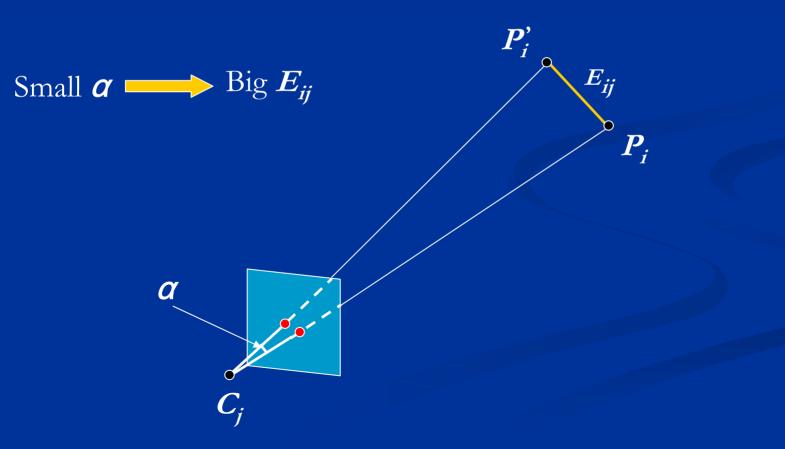
$$\begin{pmatrix} p_{ij} \\ 1 \end{pmatrix} = c_{ij}F_jP_i,$$

for $i = 1,...,N$ and $j = 1,...,J$.
 $F_j = (R_j, T_j)$ $p_{ij} = (x_{ij}, y_{ij})$

where p_{ij} represents the 2D coordinates of the 3D feature point P_i observed on picture *j*, c_{ij} is a constant, and F_j is a 3-by-4 matrix containing the camera parameters corresponding to picture *j*.

Challenge

Overcoming the fact that camera pose reconstruction is ill conditioned, especially for camera orientation



Our Approach

Variable elimination

 Eliminate camera position and/or orientation from the reconstruction process

This is *not* self-calibration which computes the camera pose on its own; rather camera position and/or orientation is mathematically eliminated from the equations

Our Approach: Eliminate Camera Pose

Gaussian Elimination (easy)

Nonlinear Elimination (hard)

$$c_{11}x_1 + c_{12}x_2 + c_{13}x_3 + c_{14} = 0$$

$$c_{21}x_1 + c_{22}x_2 + c_{23}x_3 + c_{24} = 0$$

$$c_{31}x_1 + c_{32}x_2 + c_{33}x_3 + c_{34} = 0$$

$$F_1(x_1, x_2, x_3) = 0$$

$$F_2(x_1, x_2, x_3) = 0$$

$$F_3(x_1, x_2, x_3) = 0$$

$$k_{11}x_1 + k_{12}x_2 + k_{13}x_3 + k_{14} = 0$$

$$k_{22}x_2 + k_{23}x_3 + k_{24} = 0$$

$$k_{33}x_3 + k_{34} = 0$$

$$G_{1}(x_{1}, x_{2}, x_{3}) = 0$$
$$G_{2}(x_{2}, x_{3}) = 0$$
$$G_{3}(x_{3}) = 0$$

Our Approach: Eliminate Camera Pose

Gröbner Bases

Degree increases rapidly when eliminating variables.

- Invariant Based Elimination
 - Pierre-Louis Bazin, Mireille Boutin (2003)
 - Invariant theory
 - Moving frame

$$\begin{split} \gamma_{ij}\gamma_{Ij}k_{Iij} &= (P_i - C_j) \cdot (P_I - C_j), \text{ for } i = 3,..., N\\ \gamma_{ij}\gamma_{2j}\gamma_{Ij}^2k_{2ij} &= ((P_I - C_j) \times (P_i - C_j)) \cdot ((P_I - C_j) \times (P_2 - C_j)), \text{ for } i = 2,..., N\\ \gamma_{ij}\gamma_{2j}\gamma_{Ij}k_{3ij} &= (P_i - C_j) \cdot ((P_I - C_j) \times (P_2 - C_j)), \text{ for } i = 1,..., N\\ k_{1ij} &= ((x_{ij}, y_{ij}, -1) \cdot (x_{Ij}, y_{Ij}, -1))\\ k_{2ij} &= ((x_{1j}, y_{Ij}, -1) \times (x_{ij}, y_{ij}, -1)) \cdot ((x_{1j}, y_{Ij}, -1) \times (x_{2j}, y_{2j}, -1)))\\ k_{3ij} &= (x_{ij}, y_{ij}, -1) \cdot ((x_{Ij}, y_{Ij}, -1) \times (x_{2j}, y_{2j}, -1)))\\ \gamma_{ij} &= \frac{W_{ij}}{W_{ij} - W_{0j}} = \frac{\left\| P_i - C_j \right\|}{\left\| (x_{ij}, y_{ij}, -1) - (0, 0, 0) \right\|} \end{split}$$

Simplify the equations to make it work for least square refinement. We focus on lower degree and symmetry. $(P_{i_{1}} - C_{j}) \cdot (P_{i_{2}} - C_{j}) - \gamma_{i_{1}j} \gamma_{i_{2}j} K_{i_{1}i_{2}j} = 0$ $K_{i_{1}i_{2}j} = (x_{i_{1}j}, y_{i_{1}j}, -1) \cdot (x_{i_{2}j}, y_{i_{2}j}, -1)$ $\gamma_{i_{2}j} = \frac{\left\| P_{i_{2}} - C_{j} \right\|}{\left\| p_{i_{2}j} - (0,0,0) \right\|}$ $\gamma_{i_{1}j} = \frac{\left\| P_{i_{1}} - C_{j} \right\|}{\left\| p_{i_{1}j} - (0,0,0) \right\|}$ p_{i}

A new angle independent cost function for Bundle Adjustment Refinement (AIBAR).

$$E = \sum_{i_1=l}^{N} \sum_{i_2=l}^{N} \sum_{j=l}^{J} \left[\left(P_{i_1} - C_j \right) \cdot \left(P_{i_2} - C_j \right) - \gamma_{i_1 j} \gamma_{i_2 j} K_{i_1 i_2 j} \right]^2$$

Here N is the number of 3D points, J is the number of images. Complexity $O(JN^2)$ higher than traditional BA O(JN)

Observe the original equations, if we know P_1 , P_2 and C_i , then the system is linear.

(M_1)	0		0	<i>V</i> ₃₁	0	0	
0	M_{I}		0	0	V_{4l}	0	
$\begin{vmatrix} 0 \\ M_2 \\ 0 \end{vmatrix}$	0 0 M ₂	·.	$egin{array}{c} M_{I} \ 0 \ 0 \end{array}$	0 V ₃₂ 0	0 0 V ₄₂	$egin{array}{ccc} & & & & & & & & & & & & & & & & & &$	$ \begin{pmatrix} P_3 \\ P_4 \\ \vdots \\ P_N \end{pmatrix} = \begin{pmatrix} B_1 \\ B_1 \\ \vdots \\ B_1 \end{pmatrix} $
0	0 :	·	M_2	0	0 :	V _{N2}	$ \begin{vmatrix} \gamma_{31} \\ \gamma_{41} \\ \gamma_{41} \\ \vdots \\ $
M_{J}	0		0	V_{3J}	0	0	
0	M_J	•.	0		V_{4J}	0 ·	$\left(\gamma_{NJ}\right) \left(B_{J}\right)$
	0		M_J	0	0	V_{NJ})	

$$M_{j} = \begin{pmatrix} P_{l} - C_{j} \\ \|P_{l} - C_{j}\|^{2} (P_{2} - C_{j}) - (P_{l} - C_{j}) \cdot (P_{2} - C_{j}) (P_{l} - C_{j}) \\ (P_{l} - C_{j}) \times (P_{2} - C_{j}) \end{pmatrix}$$

$$V_{ij} = \begin{pmatrix} -\gamma_{1j} k_{1ij} \\ -\gamma_{2j} \gamma_{1j}^{2} k_{2ij} \\ -\gamma_{2j} \gamma_{1j} k_{3ij} \end{pmatrix}$$

$$B_{j} = \begin{pmatrix} C_{j} \cdot (P_{l} - C_{j}) \\ C_{j} \cdot (\|P_{l} - C_{j}\|^{2} (P_{2} - C_{j}) - ((P_{l} - C_{j}) \cdot (P_{2} - C_{j}))(P_{l} - C_{j})) \\ C_{j} \cdot ((P_{l} - C_{j}) \times (P_{2} - C_{j})) \end{pmatrix}$$

Two Possible Applications

Speed Priority:

Select a number of pairs to be use as "anchor points".

1. Reconstructed anchor points via initial guess and least squares minimization.

2. Reconstructed then rest of points linearly.

Accuracy Priority:

Use least square minimization to refine all 3D points and camera centers (AIBAR).

Two Possible Applications

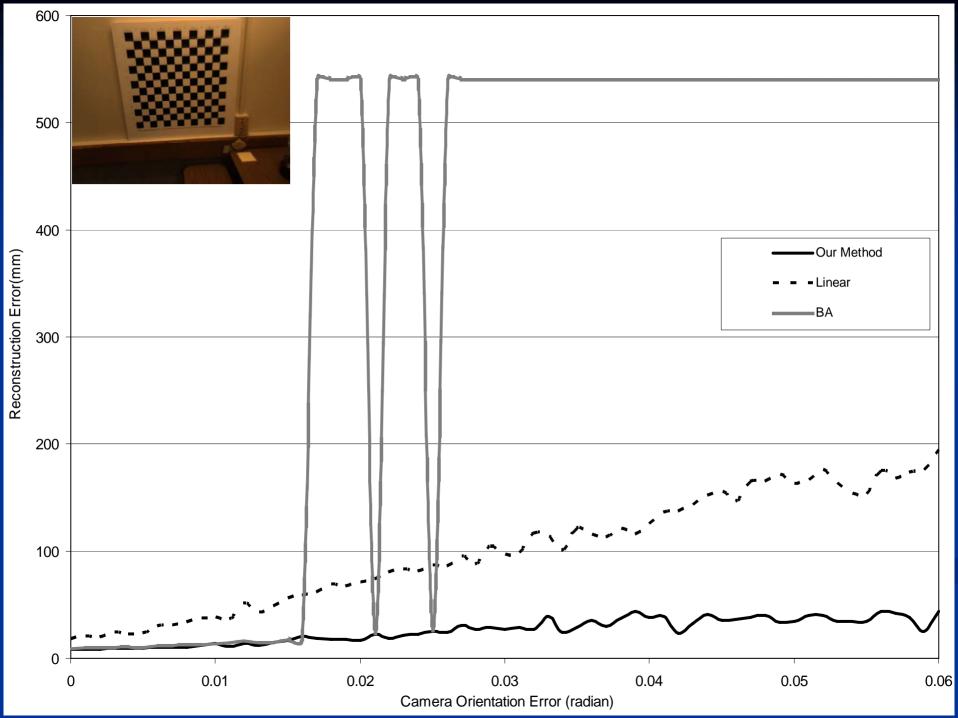
Objective:

To compare the robustness of our method with SBA (Sparse Bundle Adjustment).

Application 1

- Estimate camera center and camera orientation as best as we can.
- Add noise in camera orientation incrementally.
 a) Reconstruct structure using linear triangulation to generate initial guess.
 b) Use the result of a) as initial guess for SBA and our method .
 - c) Compare the results.

Check Board
 number of points=96
 number of images=48

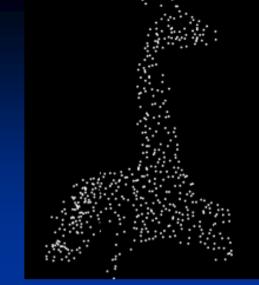


2. Giraffe

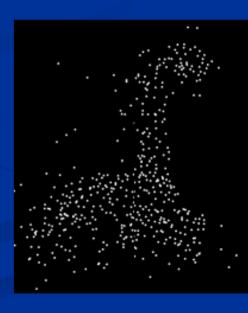
number of points=480 number of images=360

No noise

6 degrees noise



12 degrees noise



Linear with 6 degrees noise

BA with 12 degrees noise

3. House

number of points=672 number of images=10 Camera position error: 4% of the model space diagonal

Camera orientation error: 7 degrees.

Actual model

Our method

Linear

BA

Application 2

- Estimate camera center, camera orientation, structure as best as we can.
- Add error in camera center, camera orientation, and structure incrementally.

a) Refine structure+camera center+camera orientation using SBA.

b) Refine structure+camera center using AIBAR.

Check Board

 number of points=96
 number of images=48
 Time cost:
 AIBAR: 838s.
 SBA: 12s.

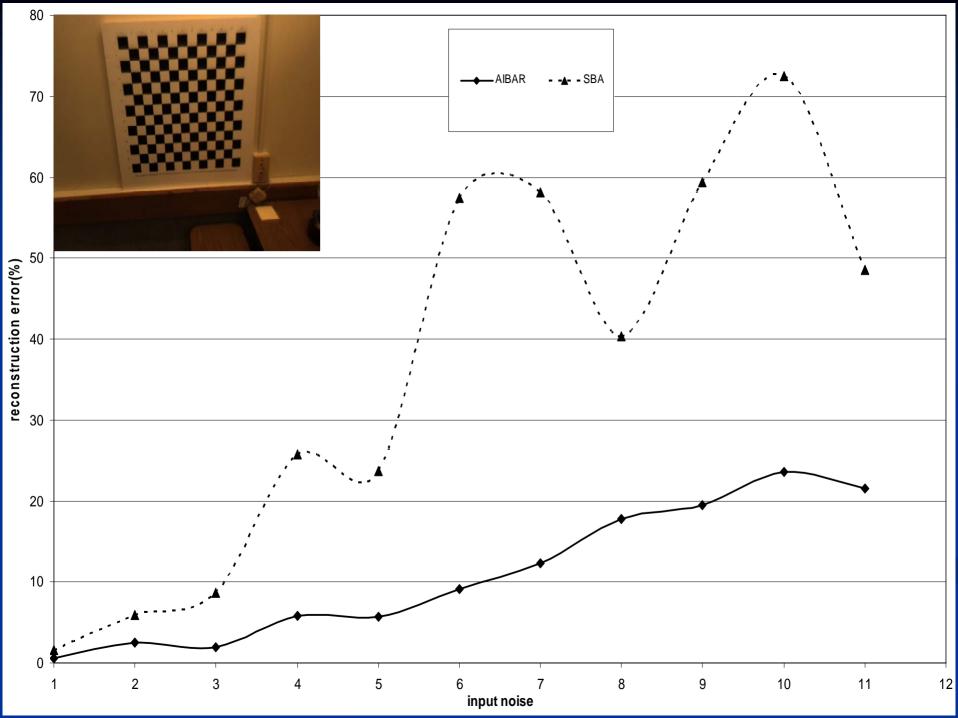
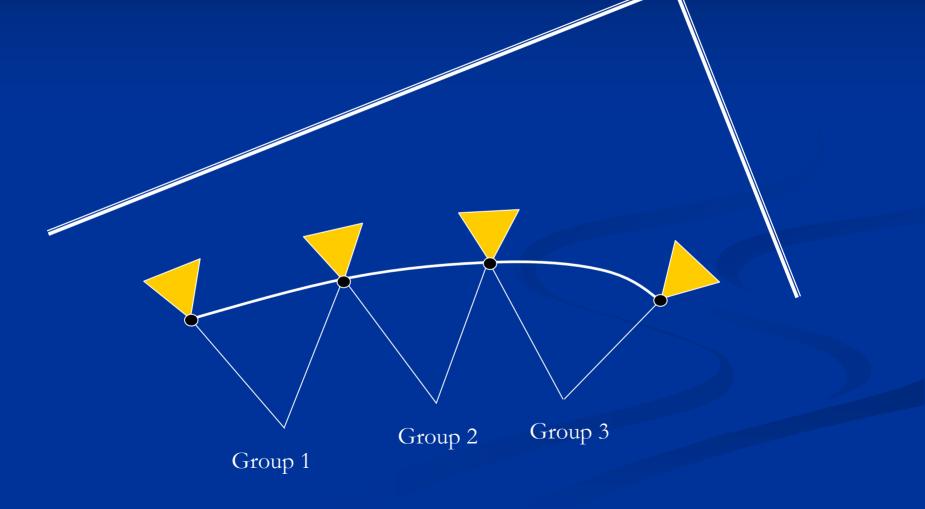


Image Sequence Partitioning

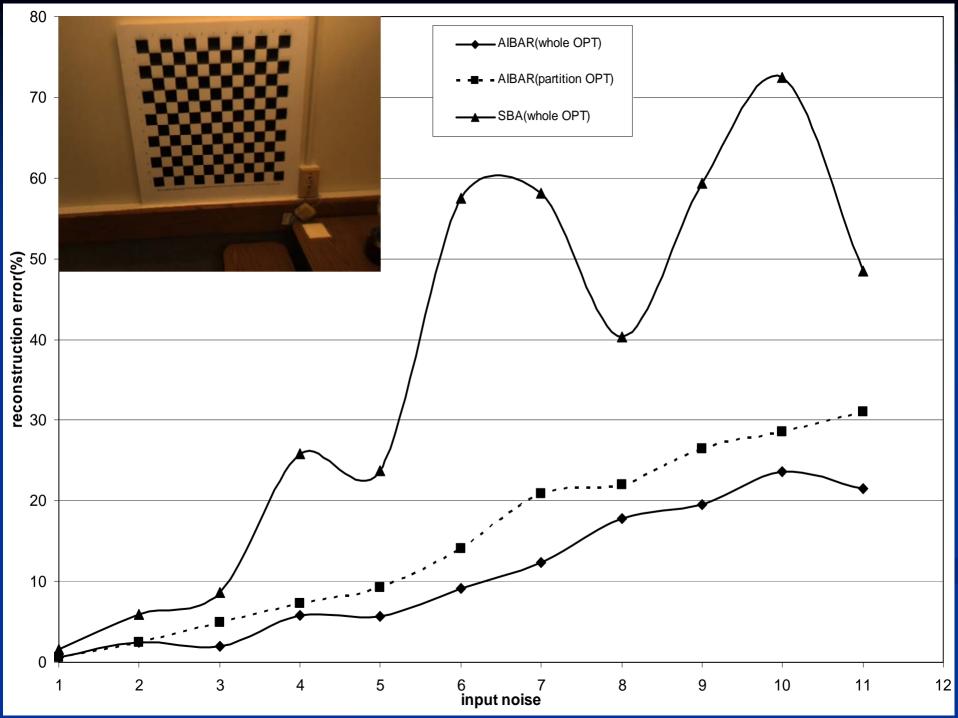
Complexity comparison: Our: $O(JN^2)$ BA: O(IN)To compensate for the additional computational cost, subdivide the image sequence into disjoint subsets according to different type of sequence. Inside looking out sequence Outside looking in sequence

Inside looking out sequence



Outside looking in sequence Group 3 Group 1 Group 2

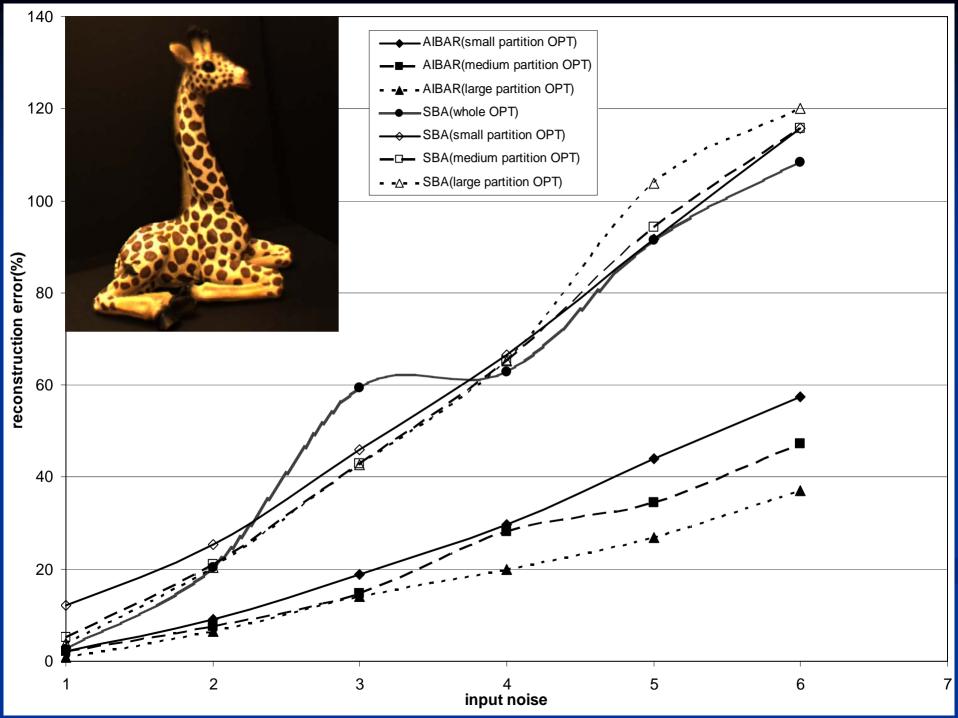
Check Board 1. number of points=96 number of images=48 Time cost: AIBAR (without partition): 838s. AIBAR (with partition into 8 subsets): 14s. SBA: 12s.



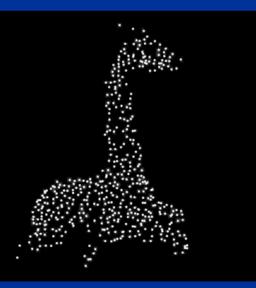
2. Giraffe

number of points=480 number of images=360 Time cost for different partitions:

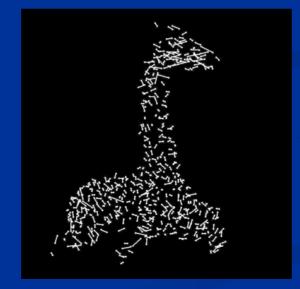
AIBAR	None	Small	Medium	Large
(S)		88	253	961
SBA	None	Small	Medium	Large



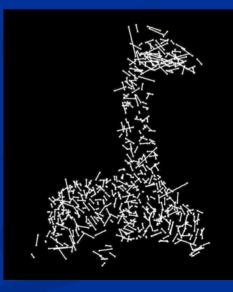
Actual Model



SBA (medium noise)



SBA (large noise)



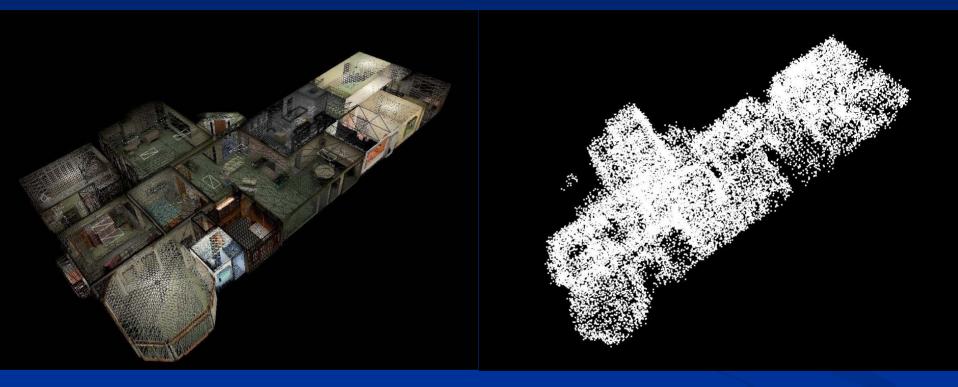
AIBAR (no noise)

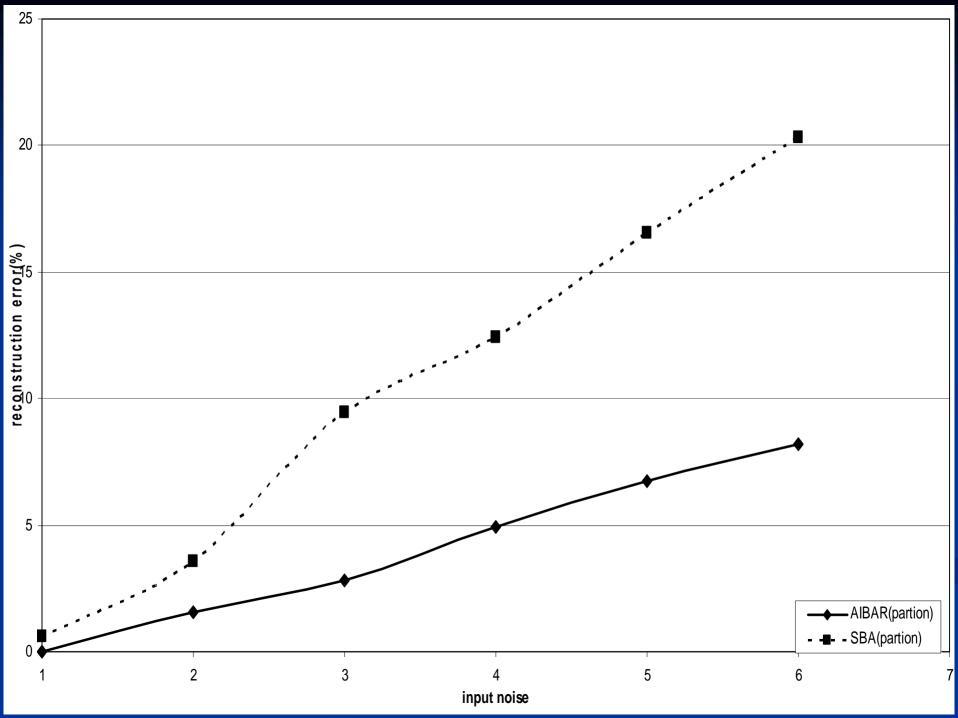
AIBAR (medium noise)

AIBAR (large noise)

3. Floor

number of points=32688 number of images=2644 Partition: 155 subsets





Conclusion

- Low dimension: 2.
- Robust : angle independent.
- Complexity: $O(JN^2)$.
- Scalable: partition or using anchor points.

Future Work

Eliminate camera centers
Lower the complexity.
Improve the partitioning.

Thank you!