A Virtual Restoration Stage for Real-World Objects

Daniel G. Aliaga, Alvin Law, Yu-Hong Yeung
Purdue University

Accepted to SIGGRAPH Asia 2008

To enable visual restoration of damaged and historically significant objects without needing to touch or alter them.

To enable visual restoration of damaged and historically significant objects without needing to touch or alter them.

Photo of original object

Image of

To enable visual restoration of damaged and historically significant objects without needing to touch or alter them.

Photo of

object

To enable visual restoration of damaged and historically significant objects without needing to touch or alter them.

Video of China

Original and result

1) Computing a synthetic restoration of the object which corrects for its physical deterioration

2) Providing a restored visual appearance of the object using as little light as possible

1) Computing a synthetic restoration of the object which corrects for its physical deterioration

2) Providing a restored visual appearance of the object using as little light as possible

Key Observations

1) Our targeted objects have a few distinct colors which enables a robust synthetic restoration

2) Multiple overlapping digital projections can generate a light-efficient visual compensation

Key Observations

1) Our targeted objects have a few distinct colors which enables a robust synthetic restoration

2) Multiple overlapping digital projections can generate a light-efficient visual compensation

Key Observations

1) Our targeted objects have a few distinct colors which enables a robust synthetic restoration

2) Multiple overlapping digital projections can generate a light-efficient visual compensation

- 1) An image restoration method to infer the original appearance of an object.
- 2) A light transport based radiometric compensation algorithm to represent material and radiometric properties of the object and projectors.
- 3) A surface radiance model that best enables altering the object's appearance under a user-specified maximum light per unit surface area.

- 1) An image restoration method to infer the original appearance of an object.
- 2) A light transport based radiometric compensation algorithm to represent material and radiometric properties of the object and projectors.
- 3) A surface radiance model that best enables altering the object's appearance under a user-specified maximum light per unit surface area.

- 1) An image restoration method to infer the original appearance of an object.
- 2) A light transport based radiometric compensation algorithm to represent material and radiometric properties of the object and projectors.
- 3) A surface radiance model that best enables altering the object's appearance under a user-specified maximum light per unit surface area.

- 1) An image restoration method to infer the original appearance of an object.
- 2) A light transport based radiometric compensation algorithm to represent material and radiometric properties of the object and projectors.
- 3) A surface radiance model that best enables altering the object's appearance under a user-specified maximum light per unit surface area.

Restoration Pipeline

- 1) Object and acquisition stage
- 2) Image restoration
- 3) Visual compensation

Restoration Pipeline

- 1) Object and acquisition stage
- 2) Image restoration
- 3) Visual compensation

Restoration Pipeline

- 1) Object and acquisition stage
- 2) Image restoration
- 3) Visual compensation

Color classification

Color classification

Comparison of color classification techniques

mean-shift segmentation

naïve k-means clustering

our optimized approach

Restoration criteria for energy minimization:

Restoration criteria for energy minimization:

Contour smoothness and patch-to-patch distance similarity

Restoration criteria for energy minimization:

Contour smoothness and patch-to-patch distance similarity

Restoration criteria for energy minimization:

Contour smoothness and patch-to-patch distance similarity

Restoration criteria for energy minimization: Compensation-compliant restoration

Restoration criteria for energy minimization: Compensation-compliant restoration

Restoration criteria for energy minimization: Compensation-compliant restoration

bad

Image Restoration

Restoration criteria for energy minimization: Compensation-compliant restoration

good

Image Restoration

Restoration criteria for energy minimization

Image Restoration

Varying different parameters

highly smooth

 α , β small

original photograph

β large

final balance of α , β

non-compensation compliant restoration

compensation compliant restoration

 α : controls amount of smoothing β : weighs importance of moving towards optimal distance

Restoration Pipeline

- 1) Object and acquisition stage
- 2) Image restoration
- 3) Visual compensation

Surface Radiance Model

The amount of light incident on a unit surface area object point from all projectors is modeled based on a diffuse surface illumination model

Maximally efficient compensation

Photo of first projector contribution

Maximally efficient compensation

Photo with all projectors contributing

Visual Compensation

Combinations of projectors under different weighting schemes

Restoration Pipeline

Mexico object

original photograph

synthetic restoration image

restored objet photograph

Photos of weighted contributions from projectors

Videos

Original and results

