

Nate Andrysco

Goal

Have a virtual cloth that can be dynamically torn.

Intro to Cloth Simulation

- Real-life cloths are meshes of thousands, if not millions, of threads.
- Approximate using meshes of particles.
 - □ Speeds up simulation while maintaining realism.

Mass-Spring Model

- Mesh of particles connected by virtual springs.
 - □The springs are analogous to threads.
 - □ Particles are the intersection of two threads.

Types of Springs

Structural

Shear

All Together

Other Forces

- Add additional forces to make the cloth behave more realistically.
 - Gravity
 - □Wind
 - Friction
 - Collision Response

Updating the Simulation

Use integration to update the position of a particle given a time step, h, and the forces acting on the particle.

 $\Box v = dx / dt$, F/m = a = dv / dt

Again, need to approximate using numerical integration.

Euler, Runge-Kutta 4th Order, Verlet

Collision Detection

- After position update, perform collision detection.
 - Collisions with external objects.
 - Collisions with the cloth's own triangles.
- Many papers devoted to both types of collisions.

Tearing a Cloth

■ Why such a "tear-able" idea?

- Animators must specify the ripping of a cloth by hand.
- □Incorporate into a game setting.
 - i.e. shoot a cloth in a first-person shooter

Difficulty

- If we had an infinite amount of resources, the problem would be easy.
- The particle approximations are what make it difficult.

What should we do if we have a rip in the middle of a quad?

Solution

Refine the mesh where a tear occurs.

Keep realism while maintaining minimal

complexity.

T-Junctions

Problem:

□After subdividing, T-junctions will occur.

When drawing quads, holes will appear.

T-Junctions

Do not want to subdivide neighboring regions.

Significant increase in complexity

T-Junctions

Solution:

Intermediate particles are interpolated.

- Guarantees that intermediate particles always are positioned on the edges of neighboring grids that are not subdivided.
- Negligible complexity added when updating position.

However, complexity is added to collision detector.

Initial Tests

Simulating the cloth in a game environment.

The user can shoot the cloth as if he had a gun.

Future Work

The ability to drop a heavy object onto the cloth and have it tear.

 \Box Or pull the cloth by its corners.

Pour water on the cloth and have it respond realistically.

 \Box Or set the cloth on fire.

References

1: Baraff. Large Steps in Cloth Simulation

2: Lin, Tang, Dong. <u>Cloth Simulation Based</u> on Local Adaptive Subdivision and <u>Merging</u>

Questions ???

Euler

- Fastest but least accurate.
- Equation: $x(t+h) = x(t) + h^*f(t, x(t))$
- Accuracy: First order Taylor series accurate -> O(h)

□Not good enough for cloth simulation.

- Instantly blows up, cloth requires much greater stability.
- Simpler particle meshes can get away with it (i.e. often used in games for ropes)

Runge-Kutta 2nd Order

Trades speed for better accuracy.

Equations:

 $\begin{aligned} x(t+h) &= x(t) + 0.5^*(K_1 + K_2) \\ K_1 &= h^*f(t, x) \\ K_2 &= h^*f(t + h, x + K_1) \end{aligned}$ $\blacksquare Accuracy: 2^{nd} order Taylor series accurate \\ -> O(h^3) \end{aligned}$

Runge-Kutta 4th Order

Even slower but even more accurate. Equations:

 $\begin{aligned} x(t+h) &= x(t) + 1/6 * (K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 &= h^* f(t, x) \\ K_2 &= h^* f(t + h/2, x + K_1/2) \\ K_3 &= h^* f(t + h/2, x + K_2/2) \\ K_4 &= h^* f(t + h, x + K_3) \end{aligned}$ $\blacksquare Accuracy: O(h^5)$

Verlet

- Speed on the order of Euler but with the numerical stability of RK4.
- Calculate new position using the last two positions of the particle (which allows for the approximation of the velocity!).
- Can slightly modify the equation to simulate damping effects (i.e. wind resistance)
- See Wikipedia for more details.