Variable Elimination for 3D from 2D

Ji Zhang Mireille Boutin Daniel Aliaga

Purdue University

Objective

To generate more compact equation sets for 3D reconstruction problem by eliminating variables.

Inspiration

We want to use symbolic method instead of numerical method to solve nonlinear equations.
Comparison.
Numerical: popular, iterative, need initial guess.
Symbolic: don't need initial guess, high computational complexity.
Resultant method: up to 10 variables

Previous Work

Traditional Equations

 $p_{ij} = c_{ij} F_j \begin{pmatrix} P_i \\ 1 \end{pmatrix},$

for *i* = 1,..., *N* and *j* = 1,..., *J*.

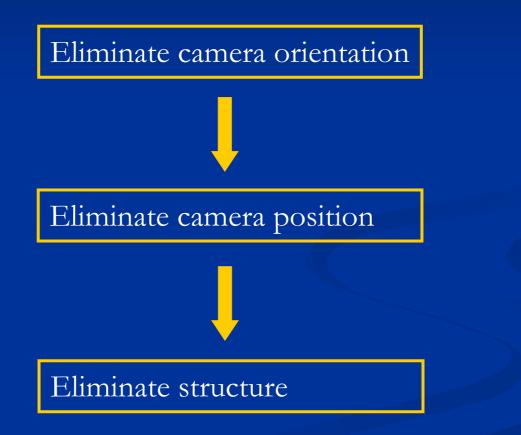
$$F_{j} = (R_{j}, T_{j}) \quad p_{ij} = (x_{ij}, y_{ij}, 1)$$

where p_{ij} represents the 2D coordinates of the 3D feature point P_i observed on picture *j*, c_{ij} is a depth variable, and F_j is a 3-by-4 matrix containing the camera parameters corresponding to picture *j*.

Previous Work

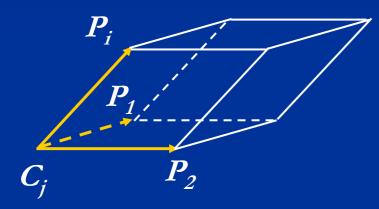
- Epipolar geometry.
 - Eliminate structure and depth (solve camera pose from images).
 - Camera pose estimation is an ill-conditioned problem.

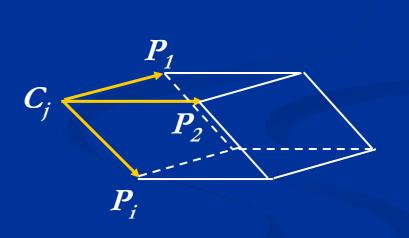
Our Solution



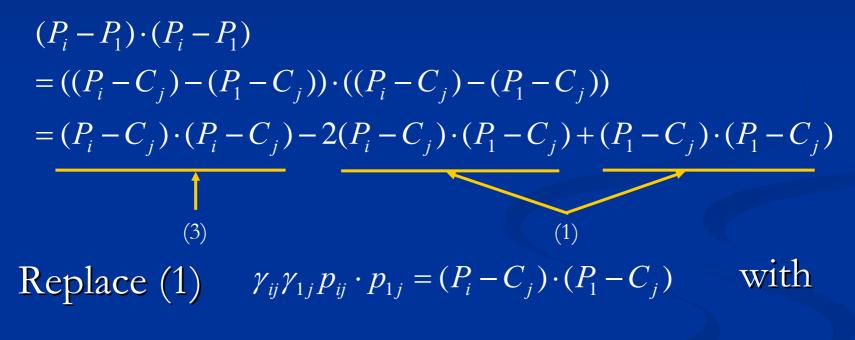
Eliminate Camera Orientation Invariant Based Elimination $\gamma_{ii}\gamma_{1i}p_{ii} \cdot p_{1i} = (P_i - C_i) \cdot (P_1 - C_i), \text{ for } i = 1, ..., N (1)$ $\gamma_{ij}\gamma_{2j}p_{ij} \cdot p_{2j} = (P_i - C_j) \cdot (P_2 - C_j), \text{ for } i = 2, ..., N$ (2) $\gamma_{ii}\gamma_{1i}\gamma_{2i}p_{ii} \cdot p_{1i} \times p_{2i} = (P_i - C_i) \cdot (P_1 - C_i) \times (P_2 - C_i), \text{ for } i = 3, ..., N(3)$ for all $j = 1, \dots, J$ This is a basis equation set. The (3) equation group is equivalent to $\gamma_{ij}\gamma_{ij}p_{ij} \cdot p_{ij} = (P_i - C_j) \cdot (P_i - C_j), \text{ for } i = 3,..., N$ except for an sign information.

Eliminate Camera Orientation





Observe



 $(\gamma_{ij} p_{ij} - \gamma_{1j} p_{1j}) \cdot (\gamma_{ij} p_{ij} - \gamma_{1j} p_{1j}) = (P_i - P_1) \cdot (P_i - P_1)$

Similarly, we can replace (2) and (3) $\gamma_{ij}\gamma_{2j}p_{ij} \cdot p_{2j} = (P_i - C_j) \cdot (P_2 - C_j), \text{ for } i = 2,...,N$ $\gamma_{ij}\gamma_{1j}\gamma_{2j}p_{ij} \cdot p_{1j} \times p_{2j} = (P_i - C_j) \cdot (P_1 - C_j) \times (P_2 - C_j), \text{ for } i = 3,...,N$ (3)

with

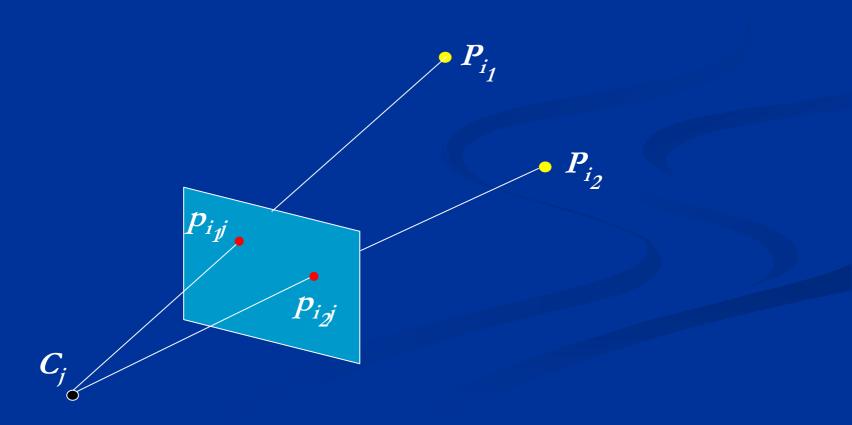
 $\overline{(\gamma_{ij} p_{ij} - \gamma_{2j} p_{2j}) \cdot (\gamma_{ij} p_{ij} - \gamma_{2j} p_{2j})} = (P_i - P_2) \cdot (P_i - P_2), \text{ for } i = 3, ..., N$ $(\gamma_{ij} p_{ij} - \gamma_{3j} p_{3j}) \cdot (\gamma_{1j} p_{1j} - \gamma_{3j} p_{3j}) \times (\gamma_{2j} p_{2j} - \gamma_{3j} p_{3j}) = (P_i - P_3) \cdot (P_1 - P_3) \times (P_2 - P_3)$ for i = 4, ..., N

A new camera pose free equation set

 $\begin{aligned} &(\gamma_{ij} \overline{p_{ij} - \gamma_{1j}} \overline{p_{1j}}) \cdot (\overline{\gamma_{ij}} \overline{p_{ij}} - \overline{\gamma_{1j}} \overline{p_{1j}}) = (P_i - P_1) \cdot (P_i - P_1), \text{ for } i = 2, ..., N \\ &(\gamma_{ij} p_{ij} - \gamma_{2j} p_{2j}) \cdot (\gamma_{ij} p_{ij} - \gamma_{2j} p_{2j}) = (P_i - P_2) \cdot (P_i - P_2), \text{ for } i = 3, ..., N \\ &(\gamma_{ij} p_{ij} - \gamma_{3j} p_{3j}) \cdot (\gamma_{1j} p_{1j} - \gamma_{3j} p_{3j}) \times (\gamma_{2j} p_{2j} - \gamma_{3j} p_{3j}) = (P_i - P_3) \cdot (P_1 - P_3) \times (P_2 - P_3) \\ &\text{ for } i = 4, ..., N \end{aligned}$

Geometric meaning (representing 3D vectors in different coordinate systems)

 $(\gamma_{i_1j}p_{i_1j} - \gamma_{i_2j}p_{i_2j}) \cdot (\gamma_{i_1j}p_{i_1j} - \gamma_{i_2j}p_{i_2j}) = (P_{i_1} - P_{i_2}) \cdot (P_{i_1} - P_{i_2})$



Is it a basis equation set?

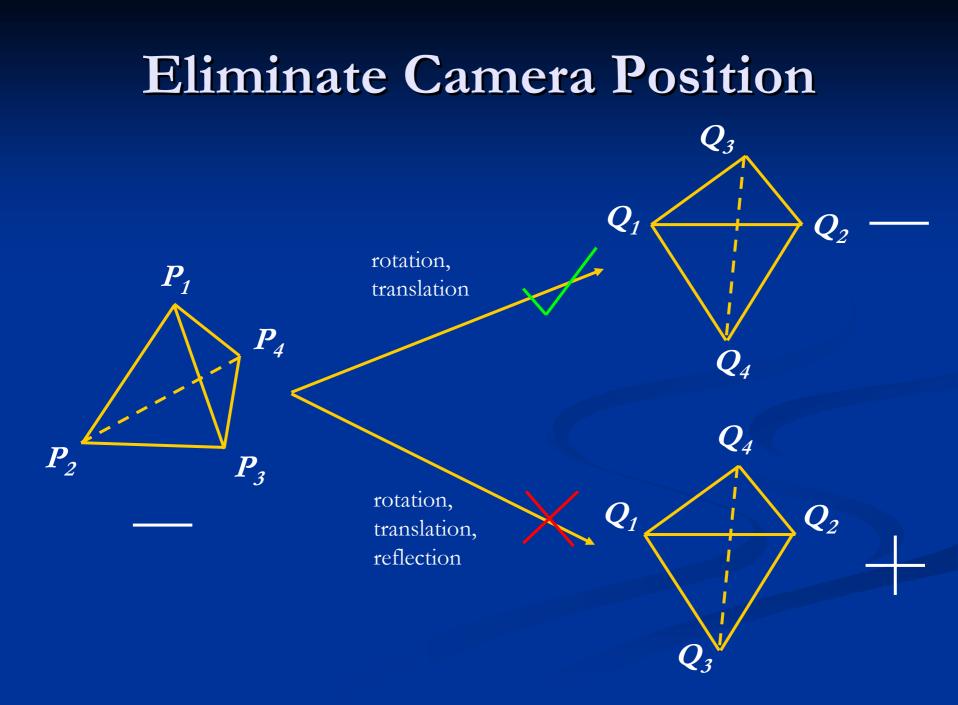
Let $Q_i = Y_{ij} p_{ij}$, then the equation set becomes

 $(Q_i - Q_1) \cdot (Q_i - Q_1) = (P_i - P_1) \cdot (P_i - P_1), \text{ for } i = 2,..., N$ $(Q_i - Q_2) \cdot (Q_i - Q_2) = (P_i - P_2) \cdot (P_i - P_2), \text{ for } i = 3,..., N$ $(Q_i - Q_3) \cdot (Q_1 - Q_3) \times (Q_2 - Q_3) = (P_i - P_3) \cdot (P_1 - P_3) \times (P_2 - P_3)$ for i = 4,..., N

Is it a basis equation set?

Now we have two sets of points $P_{i,j}Q_i$ s.t. $||Q_i - Q_j|| = ||P_i - P_j||$ then there exist an orthogonal matrix A and a translation vector Ts.t. $Q_i = AP_i + T$. And the (3) equation set $(Q_i - Q_3) \cdot (Q_1 - Q_3) \times (Q_2 - Q_3) = (P_i - P_3) \cdot (P_1 - P_3) \times (P_2 - P_3)$ prevent the reflect operation, so the determinant of A can not be negative. Therefore A is a rotation matrix.

 $\gamma_{ij} p_{ij} = A P_i + T$



Observe the pose free equation set, here $Q_{ij} = \gamma_{ij} p_{ij}$

 $\begin{aligned} &(Q_{ij} - Q_{1j}) \cdot (Q_{ij} - Q_{1j}) = (P_i - P_1) \cdot (P_i - P_1), \text{ for } i = 2, \dots, N \\ &(Q_{ij} - Q_{2j}) \cdot (Q_{ij} - Q_{2j}) = (P_i - P_2) \cdot (P_i - P_2), \text{ for } i = 3, \dots, N \\ &(Q_{ij} - Q_{3j}) \cdot (Q_{1j} - Q_{3j}) \times (Q_{2j} - Q_{3j}) = (P_i - P_3) \cdot (P_1 - P_3) \times (P_2 - P_3) \\ &\text{ for } i = 4, \dots, N \end{aligned}$

A new depth from motion equation set

 $\begin{aligned} &(Q_{ij_1} - Q_{1j_1}) \cdot (Q_{ij_1} - Q_{1j_1}) = (Q_{ij_2} - Q_{1j_2}) \cdot (Q_{ij_2} - Q_{1j_2}), \text{ for } i = 2, \dots, N \\ &(Q_{ij_1} - Q_{2j_1}) \cdot (Q_{ij_1} - Q_{2j_1}) = (Q_{ij_2} - Q_{2j_2}) \cdot (Q_{ij_2} - Q_{2j_2}), \text{ for } i = 3, \dots, N \\ &(Q_{ij_1} - Q_{3j_1}) \cdot (Q_{1j_1} - Q_{3j_1}) \times (Q_{2j_1} - Q_{3j_1}) = (Q_{ij_2} - Q_{3j_2}) \cdot (Q_{1j_2} - Q_{3j_2}) \times (Q_{2j_2} - Q_{3j_2}) \\ &\text{ for } i = 4, \dots, N \end{aligned}$

This is a basis equation set. For N points and J images, we have NJ variables, and we can provide (3N-6)(J-1) equations.

Let J=2, N=5, we have the 9 equations

 $\begin{aligned} \left\| \gamma_{1j_{1}} p_{1j_{1}} - \gamma_{2j_{1}} p_{2j_{1}} \right\|^{2} &= \left\| \gamma_{1j_{2}} p_{1j_{2}} - \gamma_{2j_{2}} p_{2j_{2}} \right\|^{2} \\ \left\| \gamma_{1j_{1}} p_{1j_{1}} - \gamma_{3j_{1}} p_{3j_{1}} \right\|^{2} &= \left\| \gamma_{1j_{2}} p_{1j_{2}} - \gamma_{3j_{2}} p_{3j_{2}} \right\|^{2} \\ \left\| \gamma_{1j_{1}} p_{1j_{1}} - \gamma_{4j_{1}} p_{4j_{1}} \right\|^{2} &= \left\| \gamma_{1j_{2}} p_{4j_{2}} - \gamma_{4j_{2}} p_{4j_{2}} \right\|^{2} \\ \left\| \gamma_{1j_{1}} p_{1j_{1}} - \gamma_{5j_{1}} p_{5j_{1}} \right\|^{2} &= \left\| \gamma_{1j_{2}} p_{1j_{2}} - \gamma_{5j_{2}} p_{5j_{2}} \right\|^{2} \\ \left\| \gamma_{2j_{1}} p_{2j_{1}} - \gamma_{3j_{1}} p_{3j_{1}} \right\|^{2} &= \left\| \gamma_{2j_{2}} p_{2j_{2}} - \gamma_{3j_{2}} p_{3j_{2}} \right\|^{2} \\ \left\| \gamma_{2j_{1}} p_{2j_{1}} - \gamma_{5j_{1}} p_{5j_{1}} \right\|^{2} &= \left\| \gamma_{2j_{2}} p_{2j_{2}} - \gamma_{4j_{2}} p_{4j_{2}} \right\|^{2} \\ \left\| \gamma_{2j_{1}} p_{2j_{1}} - \gamma_{5j_{1}} p_{5j_{1}} \right\|^{2} &= \left\| \gamma_{2j_{2}} p_{2j_{2}} - \gamma_{5j_{2}} p_{5j_{2}} \right\|^{2} \end{aligned}$

 $(\gamma_{4j_{1}}p_{4j_{1}} - \gamma_{3j_{1}}p_{3j_{1}}) \cdot (\gamma_{1j_{1}}p_{1j_{1}} - \gamma_{3j_{1}}p_{3j_{1}}) \times (\gamma_{2j_{1}}p_{2j_{1}} - \gamma_{3j_{1}}p_{3j_{1}}) = (\gamma_{4j_{2}}p_{4j_{2}} - \gamma_{3j_{2}}p_{3j_{2}}) \cdot (\gamma_{1j_{2}}p_{1j_{2}} - \gamma_{3j_{2}}p_{3j_{2}}) \times (\gamma_{2j_{2}}p_{2j_{2}} - \gamma_{2j_{2}}p_{3j_{2}}) \times (\gamma_{2j_{2}}p_{2j_{2}} - \gamma_{2$

We can simplify the last two equations

$$\begin{aligned} \left\| \gamma_{1j_{1}} p_{1j_{1}} - \gamma_{2j_{1}} p_{2j_{1}} \right\|^{2} &= \left\| \gamma_{1j_{2}} p_{1j_{2}} - \gamma_{2j_{2}} p_{2j_{2}} \right\|^{2} \\ \left\| \gamma_{1j_{1}} p_{1j_{1}} - \gamma_{3j_{1}} p_{3j_{1}} \right\|^{2} &= \left\| \gamma_{1j_{2}} p_{1j_{2}} - \gamma_{3j_{2}} p_{3j_{2}} \right\|^{2} \\ \left\| \gamma_{1j_{1}} p_{1j_{1}} - \gamma_{4j_{1}} p_{4j_{1}} \right\|^{2} &= \left\| \gamma_{1j_{2}} p_{4j_{2}} - \gamma_{4j_{2}} p_{4j_{2}} \right\|^{2} \\ \left\| \gamma_{2j_{1}} p_{2j_{1}} - \gamma_{5j_{1}} p_{5j_{1}} \right\|^{2} &= \left\| \gamma_{2j_{2}} p_{2j_{2}} - \gamma_{3j_{2}} p_{3j_{2}} \right\|^{2} \\ \left\| \gamma_{2j_{1}} p_{2j_{1}} - \gamma_{4j_{1}} p_{4j_{1}} \right\|^{2} &= \left\| \gamma_{2j_{2}} p_{2j_{2}} - \gamma_{4j_{2}} p_{4j_{2}} \right\| \\ \left\| \gamma_{2j_{1}} p_{2j_{1}} - \gamma_{5j_{1}} p_{5j_{1}} \right\|^{2} &= \left\| \gamma_{2j_{2}} p_{2j_{2}} - \gamma_{5j_{2}} p_{5j_{2}} \right\| \\ \left\| \gamma_{3j_{1}} p_{3j_{1}} - \gamma_{4j_{1}} p_{4j_{1}} \right\|^{2} &= \left\| \gamma_{3j_{2}} p_{3j_{2}} - \gamma_{4j_{2}} p_{4j_{2}} \right\| \\ \left\| \gamma_{4j_{1}} p_{4j_{1}} - \gamma_{5j_{1}} p_{5j_{1}} \right\|^{2} &= \left\| \gamma_{4j_{2}} p_{4j_{2}} - \gamma_{5j_{2}} p_{5j_{2}} \right\| \end{aligned}$$

Use resultant method to solve the system. According to the complexity, the problem is solvable. But we haven't got the answer yet because of some technique problems.

Thank you!